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Minimal Linear Networks for 
Magnetic Resonance Image 
Reconstruction
Gilad Liberman   * & Benedikt A. Poser   

Modern sequences for Magnetic Resonance Imaging (MRI) trade off scan time with computational 
challenges, resulting in ill-posed inverse problems and the requirement to account for more elaborated 
signal models. Various deep learning techniques have shown potential for image reconstruction from 
reduced data, outperforming compressed sensing, dictionary learning and other advanced techniques 
based on regularization, by characterization of the image manifold. In this work we suggest a 
framework for reducing a “neural” network to the bare minimum required by the MR physics, reducing 
the network depth and removing all non-linearities. The networks performed well both on benchmark 
simulated data and on arterial spin labeling perfusion imaging, showing clear images while preserving 
sensitivity to the minute signal changes. The results indicate that the deep learning framework 
plays a major role in MR image reconstruction, and suggest a concrete approach for probing into the 
contribution of additional elements.

Deep learning (DL) has been playing a significant role in many fields of science, including imaging and medical 
image processing. Recently, DL techniques have also been applied to medical image reconstruction1–4. It has been 
shown that DL approaches can outperform state-of-the-art compressed sensing (CS)5 techniques to translate the 
signal acquired by an imaging device into a usable medical image by means of a suitable domain transformation.

In this work we introduce a minimal linear network (MLN) for magnetic resonance (MR) image reconstruc-
tion capable of outperforming best available CS and dictionary learning alternatives, and show its applicability 
under benchmark simulation tests and challenging imaging conditions, where near artefact-free images were 
obtained. We emphasize model simplicity, allowing us to probe into the elements that contribute to the recent 
successes of DL-based MR image reconstruction.

DL approaches to MR image reconstruction that have been investigated to date include: (a) using Neural 
Networks (NN) to improve images post-hoc after standard reconstruction1; (b) reconstructing from the sig-
nal domain (k-space) by Fourier transformation (FT)2, typically in combination with multi-coil parallel imag-
ing reconstruction6,7; (c) training an NN for the full transformation from signal into image domain through a 
representation manifold4; (d) mimicking CS iterative reconstruction techniques while allowing more versatility 
through non-linear operations3,8,9, following the assumption that MR images lie in a restricted manifold and using 
ideas from DL as learnt representation features of the data from training samples.

Linear neural networks have been previously analyzed10, and were shown to converge in a manner similar to 
non-linear networks11, in general domains. Nonlinear activation functions for Neural Networks on the complex 
field12 have been applied to e.g. MR fingerprinting13 reconstruction14.

Of important note is that MRI differs fundamentally from other imaging modalities: images are inherently 
complex, with important information contained in the phase; they are acquired indirectly by sampling a different 
domain (spatial frequency i.e. Fourier domain known as k-space); they are multidimensional, with different axes 
being encoded in a different manner. Commonly, a readout (RO) axis acquired continuously at high bandwidth, 
and phase-encoding (PE) axis acquired step-wise at low bandwidth (both in the spatial frequency domain), and 
a slice-select (SS) axis, acquired directly in the image domain by slice-selective excitation. Further dimensions/
axes include multiple receive channels (for parallel imaging), timeseries or any other data dimension that varies 
during the scan (e.g. diffusion weighting or direction).

Conventional MRI reconstruction thus commonly consists of a series of linear transforms. In the simple case 
of fully sampled, single-channel k-space data, this involves FT on the RO axis, followed by FT on the PE axis. 
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With modern vastly parallel reception, software coil-compression15 is often performed to reduce computation 
load, by multiplying the data on the channel dimension by a coil-compression matrix. These operations are matrix 
multiplications on one axis, while the weights are shared (for coil-compression, FT) or independent (for channel 
combination) on the other axes. Axes-specific tensor dot product generalizations are ubiquitous in MR image 
reconstruction.

The workhorses of neural networks are the fully-connected (FC) and convolutional layers. FC layers connect 
all neurons from one layer to the next, losing all localization information and enabling domain transformation 
(e.g. from spatial frequency to image space). Convolution layers, by contrast, have a neighborhood connectivity 
topology that preserves location, and the weights of the kernel are shared among all instances along the image.

Recently, separable convolutions, i.e. structured nD convolution operation which is separable to sev-
eral convolution operations of lower dimensionality, have been successfully introduced into neural networks 
applications16,17. In this work, a similar concept is suggested for separable nD tensor multiplications, i.e. for 
axes-dependent FC layers.

NN in application to MR image reconstruction benefit from a variety of recent advances such as non-linear 
activation layers, deep topology, practically efficient algorithms and powerful parallel computing technology, 
and availability of large training datasets. Major disadvantages, however, are the lack of interpretability, and the 
lack of consistent procedures for designing optimal/minimal topology and understanding of elements’ contribu-
tion. Therefore, despite great successes, the ambiguity and inconsistency in method selection, understanding the 
results and what has contributed to a network’s success have raised concerns that may hold up widespread accept-
ance into routine use. This calls for a different approach to neural networks that allows for the interpretation of 
results, the design of minimal models to achieve the goal, and careful assessment of each element’s contribution. 
Implementation of NN that obey these principles is the core aim of this paper.

Following this direction with focus on MR image reconstruction, we restrict the present work to linear net-
works/models, thereby shifting the focus from learning local features to robust inversion of subject-specific 
ill-conditioned systems. Thus, no activation layers are used and bias weights are discarded throughout. The pro-
posed models and layers operate on the complex field. These ill-conditioned linear systems are however subject 
specific.

This results in an interpretation of the recently suggested AUTOMAP4 as a GRAPPA-type reconstruction 
technique. We thus suggest a way to reduce it to its essential elements, improving performance and interpreta-
bility. This can be viewed as a model-based GRAPPA, which is also a generalization of GRAPPA to arbitrary non 
Cartesian trajectories.

We are further motivated to test this approach in a challenging real-world MR image reconstruction setting, 
of an in-vivo perfusion experiment. In this scenario, limits to acquisition time result in the need for higher accel-
eration rates. Along with the influence of B0 field-inhomogeneities at ultra-high field (7 Tesla), this results in a 
challenge in which current state-of-the-art approaches fail to deliver usable images.

We introduce a family of connection layers fit for use in axis-dependent problems such as MR image recon-
struction, and propose a scheme of minimal linear networks (MLN), that are minimal in topology and in the 
number of weights to tune, allowing them to benefit from pulling more weight sharing, simpler models, and 
smaller computational/memory demands, while making them more interpretable analogous to conventional 
reconstructions.

We demonstrate that learning from large realistic datasets, using the common advanced backpropagation 
algorithms, is by itself very powerful, and should be explored separately from other neural network elements (e.g. 
deep networks, nonlinear activations and redundancy of features).

We conclude by applying the proposed schemes to the problem of undersampled spiral acquisitions at 
ultra-high field, and demonstrate its application to a notoriously low-SNR, Arterial Spin Labeling (ASL)  
in vivo perfusion experiment18,19. We thus demonstrate the existence of a instance-specific matrix that is a robust 
left-inverse for the 7 T undersampled spiral trajectory system, with domain of outperforming state-of-the-art 
algorithms which include the images scanned.

Connection layers.  Table 1 summarizes previously and proposed connection layers. Current NN architectures  
are dominated by convolution layers and fully connected (FC) layers. Locally connected layers20,21 have been 
suggested, but not yet widely explored.

An FC layer connects all nodes from one layer to the next. In a convolution layer, each neighborhood of 
“neurons” in one layer is connected to a respective neuron in the next layer, and the weights are shared between 

Weights between instances→

Shared IndependentTopology↓

Subspace Fully 
connected (SFC) All axes fully connected*

Only one set of weights*

SFCs
SFCi

SFCg

0-axes fully connected/1x1 
kernel neighborhood network linear combination of features Maps

Neighborhood
Convolution layer* Locally-connected layer*20,21

Locally Connected Layer with axis-dependent weight sharing

Table 1.  Currently used connection layers (marked with*) and the suggested ones.
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instances of that connection (i.e. per neuron in the receiving layer). Thus, FC layers and convolution layers differ 
in two aspects: connection topology, and weight sharing. Table 1 is organized according to these two aspects. 
Locally connected layers have the topology of convolutional layers, but not the weight sharing. An FC layer is a 
matrix multiplication, where each row corresponds to the weights connecting all neurons of one layer to a specific 
neuron in the next layer. For illustration, consider a layer with MxNxF1 neurons (e.g. describing an MxN image 
with F1 features) connected to the next layer, of size MxNxF2. An FC layer will be composed of M2⋅N2⋅F1⋅F2 weight 
variables (+M⋅N⋅F2 additive bias variables). A convolutional layer, with K1 × K2 kernel, will have K1⋅K2⋅F1⋅F2 
weight variables (+F2 bias variables as they are fully connected in the feature dimension). The neighborhood 
topology helps by limiting the number of variables to optimize, while the shared weights serve to reduce the 
number of variables to optimize, and to strengthen each optimization step by combining the information from 
all the data patches.

Axis dependent topology and weight sharing.  A 1D FT of a tensor, for example, may be described as 
a layer with specific topology such that it is fully-connected on one axis, while the weights are shared along the 
other axes. Thus, we suggest a subspace-connection layer, where some axes are fully connected, the weights shared 
along some of the other axes and independent along the remaining axes. Next, we demonstrate the applicability 
of this layer to common MR reconstruction schemes. The proposed layers are depicted in Fig. 1.

Notation.  In the remainder of this paper we will use the following notation to denote use of the proposed 
connection layers: [Fully connected: Source- > New | Shared | Independent]. In the fully connected case, location 
information is lost, and sometimes a domain change (e.g. spectral- > spatial: k-space to image space) is indicated. 
The names of the source and new axis (e.g. kRO- > RO) is noted for clarity.

Results
2D-FT and 2 × 1D-FT.  As a first step, we compared two networks performing 2D FT, one using a 2D-FC sin-
gle layer and one composed of two FC-1D layers with weights sharing in the other dimension (see Supplementary 
Fig. S1). For an NxN image, the number of weights is the two networks is thus N4 and 2N2, respectively. The 
2 × 1D network showed more rapid convergence (shown in Supplementary Fig. S1C). For the N = 128 case, the 
2D-FC network did not fit into the device memory. Notably, for the case of N = 64 and a fast learning rate of 
0.002, training the 2D-FC topology did not converge, while the 2 × 1D network was robust to this rate.

Coil compression.  Multi-channel data that are undersampled along the phase-encoding direction can 
be reconstructed by applying a convolution kernel shared over k-space and FC over the channel dimension to 
fill-in the missing lines, followed by a 2D (or 2 × 1D) FT. The kernel weights are usually calculated to fit the 
auto-calibration lines, or by the coil sensitivity maps from a separate acquisition. A network mimicking this 
reconstruction pipeline is depicted in Fig. 2A. (This toy example borrows elements from GRAPPA7 as the kx-ky 
block, and elements from SMASH22 as the single combined output channel). Training this network resulted in 
extraction of a kernel which enabled successfully reconstructing images from undersampled data.

Software Coil Compression(SCC) and Geometrical Coil Compression (GCC).  Coil compression is 
commonly applied as a first step in parallel imaging reconstruction to decrease computational demands15,23–25 
and reduce noise. A network element capable of performing software coil compression is depicted in Fig. 2B. 
Compressing the example data set from eight to two channels resulted in compressed channels with expected 
phase variation along the PE dimension (Fig. 2F), allowing for parallel imaging reconstruction.

A network mimicking Geometrical coil compression25 is depicted in Fig. 2C. GCC achieves more efficient 
channel reduction by using aligned spatial-location-specific coil compression, and is thus built up using 3 SFCg 
layers: (i) performing FT: shared weights along PE, channels, matrix multiplication along kRO- > RO axis, before 
FT back to k-space. In the network implementation, (ii) location-specific coil compression: independent along 
RO, FC along channels- > compressed channels; shared along kPE; (iii) performing iFT, as (i). Step (ii), the core 
of GCC, thus exemplifies a common use of the full versatility of subspace FC operation. As illustrated in Fig. 2C, 

Figure 1.  Layers proposed in this work.
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weights (different line widths in the figure) are different along one axis, and shared along the other axis (i.e. the 
black and blue). Matrix multiplication operation is run on the feature (channels- > compressed channels) axes.

Unlike the analytical implementation of GCC, the network needed no explicit constraint to be added for coil 
compression matrices to align and produce smooth compressed channels. The defined goal of reconstructing 
a correct image is sufficient to constrain the network to produce the desired behavior, i.e. smoothness of the 
resulting compressed channels. Figure 2E shows resulting image reconstructions, showing the network was able 
to learn more effective compression (than SCC) due to the added GCC flexibility. Figure 2G shows the resulting 
compressed coils, demonstrating the smoothness achieved without explicit constraints.

Reconstruction from spiral trajectory acquisition.  Spiral trajectories enable high-efficiency coverage 
of k-space. However the spiral readout results in data points not lying on the Cartesian grid, requiring alternative 
approaches such as location specific regridding kernels26 or NUFT27–29 for image reconstruction. Here we explore 
the use of MLN for the reconstruction of such trajectory under field inhomogeneity common in 7 T systems.

MLN for spiral reconstruction.  Figure 3A shows a standard time-segmented28 image-to-signal operator 
for iterative reconstruction from non-Cartesian sampling under field inhomogeneity. Two topologies of Minimal 
Linear Networks were designed: one tightly mimicking the transposed time-segmented NUFT pipeline, and 
another slightly more relaxed version, composed of a k-domain regridding layer into several “time segments” 
(TS), a fixed 2D FT and an image-domain side combining the segments into the final image. We will refer to the 
latter topology as k + I MLN.

In the first topology, NTraj⋅Nsegments + N2⋅NNeighbors⋅NChannels + N2⋅NSegments weights are trained by the network, 
equal to the number of coefficients calculated by a time-segmented NUFT operator, where Nsegments is the number 
of time-segments.

The k + I topology, depicted in Fig. 3B, has N2⋅NPE⋅NNeighbors⋅NChannelsj⋅Nsegments + N2⋅NSegments weights trained 
by the network. Table 2 compares the resulting number of tunable weights in a specific configuration. In contra-
diction with linear networks, nonlinear networks are universal approximators30,31, and the expressiveness of the 
network grows exponentially with depth32,33. Thus we keep the comparison to comparable topologies. While the 
number of tunable parameters in MLN is still high compressed to e.g. convolutional networks, the linearity of 
MLN means the system cannot do anything but projection of the input into a vector space, and only vector spaces 
can be learned.

The recently suggested dAUTOMAP34 achieved results comparable to AUTOMAP while much reducing the 
number of parameters by decomposition, not dissimilar to the one approach taken in this work. However, it does 
not fit non-Cartesian trajectories.

Figure 2.  (A) Basic subsampled, parallel imaging reconstruction network. (B) Software coil compression 
(SCC) and (C) geometric coil compression (GCC) modules that can be inserted before the network depicted 
in A. (D) Sensitivity maps of an eight-channel coil used in the simulations. (E) Results of image reconstruction 
using various SCC and GCC settings, with the number of target coils indicated in the lower row with reduced 
dynamic range emphasizing ghost artifacts. (F,G) show the sensitivity maps of the two coils resulting from 
training the SCC- and GCC compressed parallel-imaging reconstruction networks, respectively.
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Both topologies were also ran with a single segment, mimicking NUFT without B0 inhomogeneity correction. 
Note that with NSegments = 1, both topologies became nearly identical.

Figure 4B shows the reconstruction with the first topology and NSegments = 7, and with the second topol-
ogy and NSegments = 1,7,15 segments. The number of segments is in the order of the number of time-segments 
needed for sufficiently accurate description of the phase evolution due to field inhomogeneity. As expected, the 
single-segment (non-B0 corrected) reconstruction showed distortion and blurring in regions of strong inhomo-
geneity (marked by red arrow). The time-segmented reconstruction with shared-weights resulted in an image 
with some residual blurring. Comparing the reconstructions with 7 and 15 independent-weights segments did 
not indicate further gains when using > 7 segments and the variant with 7 independent weights (i.e. ~2.1 ms dif-
ference between segments, see Methods) was hence chosen for further exploration.

The k + I MLN was also trained using a database of simulated multi-ellipse (modified Shepp-Logan) phan-
toms. The result of then applying this to reconstruct the actual in vivo data is shown in Fig. 4, clearly illustrating 
that the phantom-trained network did not generalize to the real data, indicating that the real data (as MR brain 
images) do not lie within the vector-space (or, have a high cost in the linear scalar field) learned by the MLN using 
multi-ellipses. It did perform well in reconstructing similar multi-ellipse phantom data (not shown).

Comparison with reference reconstruction techniques.  Figure 5 summarizes the comparison to estab-
lished regularized CS-based reconstruction technique. Suggestions for direct regridding through interpolation  
kernels27 include optimized Kaiser-Bessel, Gaussian, minimal least squares and other approaches. However, the 
state-of-the-art methods for non-Cartesian image reconstruction combine CS with kernel interpolation for the 
image-to-signal operations. We have tested BART35 as reference reconstruction (relying on Kaiser-Bessel kernels, 
and Toeplitz embedding). SparseMRI5 with optimized Keiser-Bessel showed comparable results (not shown). 

Figure 3.  (A) Standard time-segmented28 image-to-signal operator for use in iterative reconstruction from 
non-Cartesian sampling under field inhomogeneity. (B) Corresponding Minimal Linear Network with k-
domain location specific regridding kernels into “time-segments”.

#Tunable weights N = 128 matrix size, Nch = 13 channels, 
NTS = 7 Time segments, NN = 12 Neighbors, Acc = 4

AUTOMAP4 1,409,286,144 Nch⋅N4/Acc + 2⋅N4 + C

Full general-purpose linear transform 1,744,830,464 2Nch⋅N4/Acc

k + I MLN, TS independent 36,012,032 2Nch⋅NSegments⋅NN⋅N2 + 2N2⋅NTS

MLN, TS shared 5,398,528 2⋅N2⋅Nch/Acc + 2N2⋅NSegments⋅NN + 2N2⋅NTS

MLN, no B0 correction 5,111,808 2⋅N2⋅Nch⋅NN

Table 2.  Number of trainable weights in different topologies. The full general-purpose linear transform 
transforms is similar to the main layer of AUTOMAP - transforming directly from signal data to reconstructed 
image.
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Supplementary Dataset 1 contains more complete comparison with reference reconstructions, for all of the sub-
jects and slices scanned.

The results reveal artifacts in the reference reconstructions, while the proposed MLN produces a clean and 
detailed image of improved quality. The consistency of the results over all scanned subjects is summarized in 
supplementary dataset SD1A and detailed in supplementary material SD1B.

Application to perfusion measurement with arterial spin labelling at 7T.  Due to the linearity of 
the model, we expect it to generalize well. The temporal variations between the label and control images in an 
Arterial Spin Labelling (ASL) experiment are notoriously low, around 1%36. The results shown in Fig. 6 demon-
strate the method’s sensitivity to these minute changes and are in good agreement with conventionally obtained 
perfusion results using echo-planar ASL at 7 T19. Figure 6E shows the time course signal average over the acti-
vated area. Indeed, a 1% signal change was detected, indicating the full difference between labeled and unlabeled 
timepoints was preserved. While tSNR values are slightly lower using MLN than by the reference reconstruction, 
the maps are cleaner and fuller, without loss of contrast in areas due to artifacts and regularization.

Interpretability of MLN.  The chosen network is composed of trainable weights before and after FT. 
Figure 7A shows the Frobenius norm of the signal (k) side weight matrix for each k-space location. As expected, 
the locations which lie on the sampled trajectory enjoy a small norm, while those between sampled locations 
demand higher weights, indicating stronger use of the different channels’ and neighbors’ data, and increased noise 
for these locations. In the image domain, the trained weights can be depicted as maps, and are shown in Fig. 7B. 
The trained maps contain features that are reminiscent of the field inhomogeneity (B0) map, in similarity with 
time-segmentation maps, but also of compressed channel sensitivities.

Figure 4.  Top row: Result of image reconstruction after training the network using multi-ellipse phantoms 
only. Bottom row: Image reconstruction after training various network topologies. The bottom row shows 
zoomed views. Red arrow indicates a region with strong field-inhomogeneity induced artifact.

Figure 5.  Result of image reconstruction from real data using state-of-the-art regularized CS technique and the 
proposed method, as well as the measured field inhomogeneity.

https://doi.org/10.1038/s41598-019-55763-x
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Benchmark performance in Cartesian reconstruction.  The k + I MLN topology was applied to image 
reconstruction from standard 2D Cartesian 8-channel example data that was undersampled post-hoc. The SSIM 
score37 was used as a quantitative metric of image quality. Figure 8 shows the performance at different under-
sampling factors on a standard image not within the training database. In each case, the MLN reconstruction 
outperforms the reference method, notably producing images with acceptable quality even at factor > 12. Fig. S2 
shows the performance on additional test-set images which do not belong to the training database, including 
complex-valued images acquired at our institution, with SSIM scores summarized in Table S1.

Similar trends are seen for newly acquired complex-valued 7 T MR images, publicly available magnitude MR 
images, simulated phantom images and even general non-MR images. The proposed MLN reconstructions out-
performed the reference method in all cases, indicating that the MLN learned a vector subspace (linear scalar 
field) more general than the training samples brain MR images. This follows the relatively weak descriptive power 
of the architecture, which restricts in to linear relations, and enjoys generalizability and reduced risk of overfitting.

Comparison to neural network.  Figure  9 Shows results in comparison to the CascadeNet on 
single-channel data. Notably, CascadeNet outperformed MLN, and MLN-Knee outperformed MLN-HCP. In this 
experiment, networks are challenged to extract information on the image manifold from the database, rather than 
utilize a coil’s channels. As MLN was designed to have a low, linear descriptive power, its ability to reconstruct 
the data in such settings are expectedly low. The gap between the MLNs trained on Knee and HCP data reflects 
that those datasets lie in a different vector spaces. The results thus confirm the observation regarding the limited 
model used by MLN, which is aimed to mimic a linear GRAPPA operation using model-based training on arbi-
trary trajectories.

Noise considerations.  Fig. S3 shows the noise calculated using the proposed MLN and reference method 
on simulated data, and Fig. S4 on real 7 T MRI in-vivo acquisitions. In both cases the MLN reconstruction suf-
fered from increased noise compared to the reference method, however with smaller difference in the real data. As 
the trained MLN does not contain any element effectively applying denoising, such as conv-net, or the regulariza-
tion used in the reference method, some noise amplification is expected. Several approaches to reduce the noise 
amplification include the introduction of nonlinear, effectively denoising layers; weights regularization; denoising 
the training images; and adding realistic noise to the simulated signals.

Discussion
Deep learning brings various benefits over conventional approaches to image reconstruction. Among these are: 
(a) efficient use of computational resources; (b) learning from large databases; (c) optimizing directly in the result 
domain; (d) exploiting redundancy for robustness and over-complete representations, and (e) learning nonlinear 
functions. However, indications for the construction of a successful network remain vague with commonly used 
general topologies. Evidence presented in this work indicates that even when removing the hallmark elements of 
neural networks, namely non-linear activation, deep topology and redundancy (overrepresentation), elements a-c 
alone already outperforms state-of-the-art techniques. Lacking the non-linear activation layers, the resemblance to 

Figure 6.  Perfusion experiment at 7 Tesla: Result of multi-slice image reconstruction from actual spiral MRI 
acquisitions using (A) a regularized CS-based technique (A) and the proposed method (B). Panels (C,D) show 
the corresponding tSNR maps. The center part shows zoomed-in versions of one selected slice. (E) Shows the 
ASL signal time course of the perfused region of interest where green and red colours indicate the label and 
control time points respectively.
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“neurons” diminishes, and we hence use the term linear nets, or “minimal linear nets”, MLN. A concrete criterion  
for minimality is the inability of any reduced model to fully describe the underlying physics.

We propose connection layers that fit MR and other axis-dependent domains and applied them to design 
minimal, problem-specific and physics-based networks for the various elements in a typical MR reconstruction 
pipeline. This enables analysis of each connection layer’s role. The use of minimal architectures is analogous to the 
traditional concepts of model regularization for improved generalization.

Instead of learning features and patterns of the possible image space, the suggested MLN suffice in learning 
the signal-image relation in the restricted “possible image” vector space, thus decreasing the complexity learned 
and embedded into the system. As NN reconstruction trains a signal-to-image function by iteratively augment-
ing incorrect reconstruction of the training set, we explore the power of this element without adding powerful 
image-based pattern description mechanism.

In application to the real-world example of 7T spiral ASL perfusion measurements, we demonstrated the 
method’s robustness under challenging imaging conditions, and applicability to timeseries imaging.

The robustness of MLN compared to conventional reconstruction approaches can be explained by adopting an 
interpretation by which the learned network is a robust inversion function that is trained directly as a left-inverse, 
and thus emphasizes correct rather than “good” reconstruction.

Treating the MR reconstructions with a problem-specific architecture resulted in orders-of-magnitude 
decrease (~500×) in the computational and memory demands in comparison with the general signal-to-image 
transform, and allowed reconstruction on a commercial desktop computer in cases where the computational 
demands of a general approach are too high.

This work focused on inverting fully known but underdetermined linear systems. Thus, and also for clarity of 
presentation, only pure linear networks were used. However, another domain of MR reconstruction challenges 
deals with problems where the forward image-to-signal function is not fully known: For instance, in cases where 

Figure 7.  Interpretability of the proposed MLN. (A) shows the root-mean-square (rms) value of regridding 
kernel weights per pixel, with the sampled trajectory overlayed in blue. Grid locations closer to acquired points 
have lower rms weight. (B) Magnitude (top) and phase (bottom) of four of the “segment” maps, extracted from 
the weights of the trained network’s last layer.

Figure 8.  Results of image reconstruction from eight-channel Cartesian data with various undersampling 
factors, using the proposed (MLN) and reference (BART) methods.

https://doi.org/10.1038/s41598-019-55763-x
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motion or changes in the B0 field affect the image. In this case, use of common neural network techniques as 
non-linear activation functions in combination with redundancy is expected to be beneficial; but even then, MR 
physics will allow us to constrict the expected artifact, for example, to the low-bandwidth (phase-encoding) axis. 
In such cases, we propose the use of the connection layers introduced here, in combination with problem-specific 
nonlinear layers, which we will explore in future work.

For real MRI experiments, the choice of a relatively difficult imaging scenario which demands estimation and 
accounting for the sensitivity maps and the B0 inhomogeneity, required us to generate training data that is subject 
and slice specific, resulting in high computational, time-consuming demands. In order to achieve real-time or 
near real-time reconstruction, a network should be designed with robustness to changes in these properties. In 
such cases, the inverse, signal-to-image function is highly non-linear and cannot be described using linear mod-
els, which will hence require some degree of nonlinearity to be introduced to the system.

In conclusion, this work in the context of MR image reconstruction indicates a greater role for the learning 
from training sets and utilization of the slow-learning back-propagation optimization algorithm, than advanced 
description of the MR image manifold.

Methods
Training dataset.  For training, 10,000 magnitude-only images were randomly chosen from the Human 
Connectome Project38 database. The images were randomly taken from axial, sagittal and coronal reslicing, and 
were resized into a 256 × 256 matrix. Data augmentation included random cropping to 128 × 128, flipping in both 
dimensions and 90° rotation. A random phase was added, generated using the sum of sinusoidal functions over a 
randomly selected quadratic plane.

Spiral acquisitions at 7T.  Experiments were performed on four healthy volunteers (24–39 years old, 
1 female) after obtaining informed consent. The study was approved by the Ethics Review Committee for 
Psychology and Neuroscience (ERCPN #180_03_06_2017) at Maastricht University and all procedures followed 
the principles expressed in the Declaration of Helsinki. Data was acquired on a Magnetom 7 T whole-body MRI 
research scanner (70 mT/m amplitude, 200 T/m/s slew rate gradients; Siemens Healthineers, Erlangen, Germany), 
with a 32-channel receive head coil (Nova Medical Inc, Wilmington, MA).

At ultra-high field, B0 field inhomogeneity poses significant challenges to fast echo-train imaging such as EPI or spiral  
trajectories. Moreover, the short T2* requires use of short TE in some applications which at the desired resolution,  
however, may be precluded by the echo-planar readout duration. ASL for perfusion imaging is one method that 
benefits greatly from shorter echo-time, making a spiral-out readout an attractive solution. An ASL sequence with 
spiral readout was developed in-house, with the FAIR39 QUIPSS II40 labeling scheme with tr-FOCI inversion pulse41 
to obtain quantitative maps of perfusion using a single subtraction approach42,43. All ASL measurements followed19,  
i.e. had 12 slices with no interslice gap, FOV 192 mm, echo time (TE)/TI1/TI2/TR1 = 3/700/1,800/2,500 ms, 
67°−90° excitation flip angle (according to each subject’s Specific Absorption Rate limits), 80 repetitions, total 
scantime 4 minutes. Dielectric pads were used to improve labelling efficiency44. Variable-density spiral trajectories 
were designed according to45, duration 12.5 ms, with effective undersampling factor of ~3.2.

Multi-echo GRE data (TEs 1.5, 3.18 ms) with matched geometry was acquired separately for B0 field mapping 
and coil sensitivity estimation.

Figure 9.  Results of image reconstruction from single-channel Cartesian data with 1D Poisson masking, using 
the proposed (MLN) and CascadeNet. (A) Reconstructed images and sampling masks. (B) NRMSE values.
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Network topologies used for Spiral reconstruction.  Two topologies were designed: (i) A minimal 
linear network (MLN) topology tightly mimicking the transposed time-segmented NUFT pipeline: the trajectory 
data is first expanded by the number of “segments”, using kernels that are trajectory location specific, but shared 
along channels. These are then rearranged into a grid, with each grid location containing a concatenation of 
the data from neighboring k-space locations on the trajectory, and the different channels, along a new channel/
neighbor dimension. Those are collapsed into Nsegments value using learned location specific kernels (shared along 
segments). The data are then Fourier transformed (using a fixed, non-trained standard FT matrix), and the result-
ing images from the different segments are collapsed into the final reconstructed image.

(ii) relaxed variant, depicted in Fig. 3B: the data are first arranged into an oversampled k-space grid, collect-
ing data from neighboring k-space locations and channels along a new dimension, which is reduced to length 
NSegments using k-domain specific kernels, followed by the rest of the network as before.

The networks, specific for subject and slice, were trained to reconstruct images from simulated signal. Signal 
was simulated from database images (HCP, with data augmentation as detailed above), with slice-specific sensi-
tivity and B0 maps, obtained in a separate acquisition on the subject, and with the nominal trajectory, according 
to the image-to-signal transform suggest in28,46.

Benchmarking.  The MLN was trained using the same training samples on 8-channel sensitivity maps 
(shown in Fig. 2B). Poisson disk undersampling masks were computed using the “poisson” module of BART at 
various (equal) accelerations in both axes.

For comparison of the reconstruction with BART pics module, it was run with wavelet regularization, with 
weights of 10 to the power of -8, -7, -6, -5, -4, -3.5, -3, -2.5, -2, -1.5, -1; for each image and each acceleration factor, 
the one that gave the highest SSIM was chosen.

Dictionary learning was run with recommended parameters (98 patches of size 7 × 7; lambda = 140 and 
thresholds as in the provided code). Iterations were run until relative change in reconstructed image energy went 
below 7e-3, which provided good reconstructions in accordance with published results.

Test set: the reconstruction was tested on an independent set of images from several categories: a standard 
test brain image (taken from the ESPIRiT publically available demo code); magnitude abdomen MR images 
from the public domain (https://images.computerhistory.org/makesoftware/5.6_Abdominal-MRI.jpg); a natural 
magnitude image of a house; a multi-ellipse phantom image; and two complex-valued brain images acquired in 
our institution.

Additionally, MLN were compared to CascadeNet47, based on single-channel Cartesian data, in order to 
match the provided implementation. 2 MLNs were tested, with training on HCP data, as described above, and on 
the knee data, as the one used by the CascadeNet. NRMSE values are reported.

Implementation.  The networks were implemented in TensorFlow using a standard configuration (Adam 
optimizer with fixed learning rate (unless mentioned otherwise) of 0.002 and beta = 0.9, L1 loss) on a desktop 
workstation with commercial GPU (NVIDIA GTX 1080 Ti with 11GB of memory). The networks were trained 
by applying the slice-specific B0 field map and sensitivity maps.

Networks were implemented to perform complex-field operations. No activation layers were used. B0 maps 
were calculated using the method of Cusack et al.48. Coil sensitivity maps were calculated with BART’s ESPIRiT 
module49 using default parameters, and software coil compression (SCC) of the experimental MRI data was 
done using SVD. For reference reconstruction, BART’s pics module35 with manually optimized parameters was 
expanded with implementation accounting for B0 correction with time-segmentation28, using up to 15 time seg-
ments, equally spaced over the acquisition time. NUFT50 was also calculated using gpuNUFFT51. The images 
were also reconstructed using either the sparseMRI package5, or L1-CG-ESPIRiT with L1-wavelet or split TV and 
L1-wavelet regularization49. Parameters were set manually to optimize image quality.

The ASL data was motion corrected using ANTs52 and brain extracted using FSL BET53 following which per-
fusion tSNR maps were computed.

Memory and performance considerations.  The memory requirements for training are linear with the 
size of the two tensors calculated (the k- and I- side tensors). In these experiments, we also loaded the database to 
the GPU memory for increased performance. For the real-data spiral trajectories, training was run for 2 hours per 
instance, which achieved convergence. Inference was done by directly applying the calculated kernels.

NUFFT for MRI under field inhomogeneities.  For the sake of completeness, we briefly summarize the 
approach developed in27,28,46,50 for MR image-to-signal transform under field inhomogeneities and its use for 
image reconstruction, which was used for reference reconstruction as detailed above and laid the basis for the 
suggested networks’ topologies.

Let I be an image, and Fu be the non-uniform Fourier transform according to the given trajectory, acquiring N 
data points in acquisition duration T. Set L to be a (small) number of “time-segments”, separated by duration 
Δ = T/L. The local phase evolution due to the field inhomogeneity at time-segment l, i.e. after lΔ acquisition 
time units, is = − ΔP r e( )l

iB r l( )0 , and the image affected by the phase evolution is = D I Pl l, where  marks 
element-wise Hadamard multiplication. Let G be an Nx(L + 1) matrix containing interpolation coefficients for 
each (discrete) timepoint (e.g. linear of Hanning interpolation, or interpolation matrix optimized for the specific 
case, such as via the min-max approach28. The signal at time t can be approximated by = ∑ .=  

ˆ { }s F I P Gj
L

u j j0  
A NUFFT operation can be effectively and accurately approximated by (sparse) matrix multiplication of the FFT 
of the image with a precalculated coefficients matrix C, which is non-zero for a row corresponding to spatial fre-
quencies fx,fy only in a window around those frequencies50.
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Conversely, The input to the network is the data, put into the 4-dimensional tensor S, of the form, [kRO,kPE,  
Neighbor, Channel]. That is, at each kx,ky location, the data from the NNeighbors nearby (non-Cartesian) 
acquired points is put into the tensor S.

The system only trains two tensors, H of size [RO,PE,NNeighbors, Nch, NTS] and M of size [RO,PE,NTS].
The regridded “segments (?)” are = ∑K S Hi j t n c i j n c i j n c t, , , , , , , , , , , and the reconstructed image is = ∑Î K Mi j t i j t i j t, , , , , .
While the 2nd multiplication is done pixel-wise in image-space, H is a non-Cartesian GRAPPA-like operation, 

i.e. a localized regridding kernel.
The generalization to multi-channel data is trivial and was implemented in the suggested networks.

Data availability
Benchmark: The benchmark reconstruction datasets generated during and/or analysed during the current study 
are available in https://github.com/giladddd/MLN/tree/master/Benchmark and the trained networks in https://
figshare.com/s/65c0e9f77f23c664aabe. Real data: The reconstructed slices generated during during the current 
study are available at https://doi.org/10.6084/m9.figshare.7007774. The acquired subjects’ data for the current 
study are available from the corresponding author on reasonable request.

Code availability
The code is available at https://github.com/giladddd/MLN. The training dataset used for the real data and 
benchmark test is a collection of randomly chosen slices from the HCP38 and can be accessed in the link above. 
For the real data, an acquired signal, the trajectory, NUFFT coefficients and time-segments data are included. For 
the benchmark test, the poisson-disc masks and the images used are provided, as well as the reconstructed images 
using various methods.
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