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ABSTRACT

Macrophages are critical myeloid cells with the hallmark of phenotypic 
heterogeneity and functional plasticity. Macrophages phenotypes are commonly 
described as classically-activated M1 and alternatively-activated M2 macrophages 
which play an essential role in the tissues homeostasis and diseases pathogenesis. 
Alternations of macrophage polarization and function states require precise 
regulation of target-gene expression. Emerging data demonstrate that epigenetic 
mechanisms and transcriptional factors are becoming increasingly appreciated in 
the orchestration of macrophage polarization in response to local environmental 
signals. This review is to focus on the advanced concepts of epigenetics changes 
involved with the macrophage polarization, including microRNAs, DNA methylation 
and histone modification, which are responsible for the altered cellular signaling and 
signature genes expression during M1 or M2 polarization. Eventually, the persistent 
investigation and understanding of epigenetic mechanisms in tissue macrophage 
polarization and function will enhance the potential to develop novel therapeutic 
targets for various diseases.

INTRODUCTION

Monocyte-macrophage lineage derives from 
myeloid precursors in bone marrow and subsequently 
develop as tissues-specific macrophages in response to 
local microenvironment signals [1, 2]. Macrophages are 
heterogeneous and pleiotropic cells which can be generally 
polarized into M1-(classically activated) or M2-(alternatively 
activated) subtypes, which is a continuum of diverse 
functional states [3, 4]. M1 phenotype could be triggered by 
lipopolysaccharide (LPS) and/or interferon (IFN)-γ andis 
believed to exert pro-inflammatory effects on tissue injury 
[5, 6], which have the specific markers such as inducible 
NO synthesase (iNOS), interleukin(IL)-12 [7, 8]. In contrast, 
M2 macrophages are known to be polarized by IL-4 or IL-
13(M2a), immune complexes (M2b), or by glucocorticoids 

and transforming growth factor (TGF)-β (M2c),which could 
produce the M2 genes, such as genes chitinase-like protein 
(Ym1), found in inflammatory zone 1(Fizz1), arginase-
1(Arg)-1, IL-10 and TGF-β [9–11]. There is a documented 
role for M2 in both wound healing and tissue remodeling 
by releasing a set of anti-inflammatory products [12]. The 
acquisition and maintenance of macrophage M1 or M2 
phenotypes in diverse diseasesdepend on various signaling 
molecules and pathways controlled at transcriptional and post 
transcriptional levels [13, 14]., Additionally, there is growing 
evidence showing epigenetic modifications are involved in 
the macrophage polarization and function partially through 
the mechanisms, for example transcription inhibition and 
chromatin remodeling [15, 16].

MicroRNAs(miRNAs), DNA methylation(DNAm) 
and histone modifications have been reported as the best-
known epigenetic markers and events in different regulatory 
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networks. Firstly, miRNAs are defined as the short non-
coding RNAs(ncRNAs) with about 22 nucleotides, 
which could posttranscriptionally lead the target-gene 
silencing by targeting the 3'untranslated regions (UTRs) 
of complementary mRNAs [17, 18]. MiRNAs-mediated 
macrophage polarization is a highly conserved process and 
important in contributing to either M1 or M2 polarization 
for several pathophysiologically divergent diseases [19]. 
Previous studies highlights the specific roles of a miR-
dependent approach to manipulate the inflammation 
and immunity by controlling the subtle adjustment of 
macrophage phenotypes balance [20, 21]. Notably, DNAm 
is one of the best studied epigenetic regulatory system 
and is generally associated with transcriptional silencing. 
DNAm is essential for chromatin-associated gene silencing 
which is linked to the functions of methylated CpG islands 
[22, 23]. More recent studies using pharmacological 
and genetical approaches identify that DNAm is also 
associated with alterations in expression of M1/M2 
genes [24]. Furthermore, DNAm is believed to integrate 
aberrant miRNAs function into multi-type molecular 
processes and macrophage heterogeneity. For example,the 
hypomethylated CpG sites with aberrant miRNAs are 
associated with monocytes aging [25]. Additionally, DNA 
methyltransferases1 (DNMT1)-mediated suppressors of 
cytokines signaling 1(SOCS1) hypermethylation, which 
result in the enhancement of LPS-induced pro-inflammatory 
cytokines expression in macrophages [26].

Finally, histone modifications are mainly thought to 
be the crosstalk between transcription factors and chromatin-
modifying enzymes, which could function as epigenetic 
markers of chromatin state correlated with gene activation 
and repression [27]. Methods for measuring histone 
modifcations have identified that they associate with a variety 
of macrophage biological processes, including. survival, 
differention and activation [28–30]. Remarkably, analysis of 
specific histone modifications demonstrates that they serve as 
the predictors of M1/M2 polarization through the positively 
and negatively regulate the M1/M2 gene expression.

In general, in this review we include insights 
from signature genes, cellular signals, particularly 
epigenetic changes including miRs, DNAm and histones 
modifications, to highlight the general features of 
these modifications in the regulation of macrophage 
polarization and function Here we conclude the properties 
of macrophage polarization and function in the context 
of transcriptionally and post-transcriptionally biological 
processes. Epigenetic factors that directly or indirectly 
regulate the macrophage polarization and function have 
been linked to many human diseases pathogenesis. 
Taken together, more and more evidence that epigenetic 
alterations are crucially molecular mechanisms in 
controlling macrophage heterogeneity and plasticity 
might provide novel therapeutic targets in the light of 
macrophage-based cellular approaches.

MICRORNA

Multiple miRs have been shown to be important 
mediators of macrophage physiological and pathological 
events such as proliferation, differentiation, activation and 
apoptosis [31–33]. Further studies indicating the alterated 
miRs regulatemacrophage inflammatory phenotype 
by targeting cellular signaling, gene expression and 
morphological features of macrophages [34–36]. Thus, 
there is a great need to identify functional miRs and find 
the mechanisms underlying miRs-exerted macrophage 
polarized effects. In conclusion, here we demonstrate the 
potential miRs which play central roles in the disturbance 
of a delicate equilibrium between the M1 and M2 
profiles. We will also describe the factors that drive miRs-
associated polarization of macrophages towards classically 
and alternatively activated phenotypes.

M1-polarized macrophage is commonly described 
as the pro-inflammatory cell type, which exhibit potent 
microbicidal properties and promote Th1 responses.

Analysis of different stimuli (LPS, oxLDLand IFN-γ) 
has identified the inflammatory miRNA(inflamma-miR) 
profiling in M1 polarized microglia/macrophags [37, 38]. 
Recent studies have revealed that many miRs play crucial 
roles in fine-tuning the level of M1 genes expression in 
different dieases, such as inflammatory diseases, rheumatoid 
arthritis(RA) and tumors. The pretreatment of chronic 
alcohol consumption augmented LPS-induced miR-155 
levels in macrophages via NF-κB and the increased miR-
155 contributes to alcohol-induced elevation in TNF-α 
production [39]. More recently, miR-155 knockout (KO) 
mice exhibited predominance of M2 phenotype when 
received alcohol diet for several weeks, which led to the 
decreased steatosis and inflammation in liver [40]. Elevated 
miR-155 levels are also the biomarkerof atherosclerotic 
lesions [41]. MiR-155 plays a pro-atherogenic role 
by promoting the SOCS1-STAT3-PDCD4 axis and 
expression of CC-chemokine ligand 2(CCL2) in M1-type 
macrophages, thereby enhancing vascular inflammation, 
plaque formation and rupture [42]. Silencing of the miR-
155 target gene B-cell CLL/lymphoma 6 (Bcl6) in mice 
harboring miR155–/– macrophages enhanced atherosclerotic 
plaques, and experiments performed by moxLDL/IFN-γ 
induction in vitro also confirmed it [43]. Bcl6 is therefore 
performed as the possible antiatherosclerotic targets through 
the intervention of miR-155 induced M1 polarization [43, 
44]. Akt1 and Akt2 conversely mediated M1 and M2 
polarization with the involvement of miR-155 [45–47]. The 
Akt1 suppression by miR-342-5p induces proinflammatory 
cytokines such as IL-6 in macrophages via the upregulation 
of miR-155 [47]. Thus, the crosstalk of miR-342-5p 
and miR-155 may offer a promising strategy to treat 
atherosclerotic vascular disease. MiR-155 in macrophages 
could possibly lead to the hierarchical miRs expression at 
least partially due to inhibition of the transcription factor 
CCAAT/enhancer-binding transactivator proteins(C/
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EBPβ) [48]. Both miR-155 and miR-146a are coordinately 
regulated the development of endotoxin tolerance via gene 
colocalization of C/EBPβ, NF-κB with the transcriptional 
machinery and histone3 methylation,in macrophages [49]. 
Synovial membrane and synovial fluid (SF) macrophages 
from patients with RA display up-regulated expression 
of miR-155,which lead to the inhibition of Src homology 
2-containing inositol phosphatase-1 (SHIP-1) in CD68+ cells 
[50]. In turn, miR-155 inhibits the expression of SOCS1 and 
may lead to the upregulation of proinflmmatory cytokines 
(TNF-α and IL-1β) in macrophages of RA patients [51]. 
The upregulation of Notch-mediated miR-223 inhibits 
the aryl hydrocarbon receptor (AHR) signaling activation 
in CD14+macrophages and increases pro-inflammatory 
cytokines pruduction in RA [52]. Therefore, divergent 
miRs--based macrophage activation and polarization may 
be an intriguingly therapeutic target for RA. MicroRNA-155 
promotes the pathogenesis of experimental colitis through 
the pro-inflammatory secretions including IL-6, TNF-α, 
IL-1β, and IFN-γ by repressing SHIP-1 expression [53]. 
Most importantly, miR-155 promotes the phenotypic 
skewing from M2 to M1 could by targeting M2-associated 
genes instead of M1-like genes [54], including lead to the 
inhibition of STAT6 by targeting IL-13Rα1 [55] and directly 
repress SMAD2 expression which influence TGF-β/Smad 
signaling pathway in the macrophage [56]. However, 
miR-155 a typical multifunctional microRNA which in 
atherosclerosis(AS) also acts as an anti-inflammatory 
microRNA [57], is evidenced by hematopoietic deficiency 
of miR155 enhances the ‘inflammatory’ monocyte subset 
(CD11b+Ly6G−Ly6Chi) and inhibits ‘resident’ monocytes 
(CD11b+Ly6G−Ly6Clow) in the circulation [58]These 
results might be explained by the appropriate activation of 
miR-155 is used to hold the balance between M1 and M2 
macrophages in the disease pathogensis.

Many other miRs are involved in the establishment 
of M1 polarization. Previously, it was uncovered that 
miR-147 is involved in a negative-feedback loop in 
which TLR stimulation induces miR-147 to prevent 
excessive inflammatory responses in macrophages [59]. 
Peroxisome proliferator-activated receptorδ (PPARδ) 
is regulated by miR-9 in primary human monocytes 
stimulated with LPS, which is of great importance 
of skewing inflammatory M1-subtype [60]. M1-like 
macrophage is not only correlated with inflammatory 
diseases responses, but also is capable of involving in the 
invasion, migration and resolution of carcinoma. Tumor-
associated macrophages (TAMs)polarization associated 
with the tumorigenesis is strongly relied on the well-
programmed process of TAMs phenotype switch from 
an anti-tumoral M1-like phenotype to a pro-tumoral M2-
like phenotype in the tumor microenvironment [61, 62]. 
MiR-19a-3p was downregulated in RAW264.7 cells of 
the M2 phenotype in conditoned medium of 4T1 mouse 
breast tumor cells. Most importantly, overexpression 
of miR-19a-3p could switch the TAMs phenotype from 

M2 to M1 with the consequence of downregulation 
of Fra-1 and it downstream genes VEGF,STAT3 and 
pSTAT3 [63]. Recent data highlight the anti-tumoral 
function of miR-155 by reprogramming the TAMs into 
M1-phenotype by the Akt signaling which constraining 
carcinogenesis [64]. Adipose tissue from obese individuals 
has been shown that the elevated expression of miR-
125b which is associated to increase M1 macrophage 
polarization via directly repressing interferon regulatory 
factor 4(IRF4) levels [65–67]. Surprisingly, mouse Raw 
264.7 macrophages stimulated by LPS resulted in the 
upregulation of miR-155, but down-regulation of miR-
125b levels which was accompanied by the proper TNF-
αproduction [68]. Therefore, the miR-125b-mediated M1 
polarization may be triggered by TNF-α [69]. In summary, 
further investigation remains necessary for the deeper 
understanding of macrophages acquire the M1 phenotype 
by specific miRs (see Figure 1).

Considerable evidence has suggested that different 
miRs are involved in the anti-inflammatory action via 
regulating immune cells functions and immune responses. 
Herein, we clarify the functions and mechanisms of M2-
associated miRs in various physiological and pathological 
conditions.

MiR-146a has been implicated as an essential 
molecule links the anti-inflammatory M2 polarization in 
different diseases. In systemic juvenile idiopathic arthritis 
(SJIA), knockdown of miR-146a promoted M1 but 
diminished M2 SJIA monocytes polarization by targeting 
INHBA [70]. Systematic studies of miR-146a functions in 
TAMs in breast cancer found that miR-146a enhanced the 
M2 molecules production and the antagomir of miR-146a 
transfected RAW264.7 cells inhibited 4T1 tumor growth 
[14].Conversely, miR-222 in TAMs suppressed 4T1 tumor 
growth by downregulating CXCL12 and CXCR4. Notch1 
signaling is also proved to be the target of miR-146a, which 
promote the M2 polarization of RAW264.7 cells [71]. 
Akt2 suppression and miR-146a induction skew the M2 
phenotype by repressing expression of IRAK-1 and TRAF-
6, resulting in the attenuation of lung injury induced by 
acid and LPS [72, 73]. Tumor cells migration and invasion 
can be largely diminished by miR-181a, which promote 
the M2 macrophages polarization through directly target 
KLF6 and C/EBPα [74].TAMs are now considered to 
promote tumor progression in multiple ways and the miRs-
mediated TAMs polarization might be necessary for the 
poor prognosis in tumor microenvironment. Let-7c is one 
of the first noted miRs, which expression is increased in 
alveolar macrophages from fibrotic lungs than controls and 
play pro-fibrogenic roles in lung. Further study demonstrate 
that let-7c and miR-125a-5p are expressed at a higher level 
in M-BMM (M2 macrophages) than in GM-BMM (M1 
macrophages) and interestingly its level could be inversely 
changed when M-BMM converted to GM-BMM by 
targeting C/EBP-δ and KLF13 [75, 76]. Alcohol-exposed 
monocytes can stimulate naive monocytes to polarize into 
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M2 macrophages via extracellular vesicles (EVs) and miR-
27a cargo [77]. High levels of miR-27a in circulating EVs 
from plasma might be a potential therapeutic target for 
alcoholic hepatitis patients. Adipose tissue inflammation 
and systemic insulin resistance are more severer in miR-
223-/- mice, which might partially due to miR-223 could 
suppress M1 and in favor of M2 polarization pathway in 
macrophages by inhibiting Pknox [78]. An increased ratio of 
M1/M2 type markers in spinal cord microglia/macrophages 
is associated with persistent hyperalgesia in GRK2+/− mice 
and reduced spinal cord microglia miR-124 levels. Then it 
was found that miR-124 treatment could restore the M1/M2 
balance and reversed the persistent hyperalgesia by skewing 
the M2-like polarization via inhibiting the activation of C/
EBP-α [79]. More interestingly, brain-specific miR-124 is 
expressed in microglia but not in peripheral macrophages, 
which directly inhibited the C/EBPα and its downstream 
target PU.1, could lead to the activated phenotype into a 
quiescent CD45low MHC class IIlow phenotype resembling 
resting microglia and suppress the experimental 
autoimmune encephalomyelitis (EAE) [31]. The anti-
inflammatory functions of miR-181a were investigated in 
LPS-induced Raw264.7, the results indicated that miR-
181a mimics significantly inhibited levels of inflammatory 
factors (IL-1β, IL-6, and TNF-α) at least in part by down-
regulating IL-1α levels [80].

Increasingly studies show that the interaction of 
miRs and other epigenetic factors are now emerging as 
critical regulators in immune responses [81]. A study 

from Lin et al. firmly demonstrated that the activation of 
type I IFN (IFN-I) and downstream IFN-I receptor-JAK1-
STAT1 signal cascade could inhibit the expression of 
miR-145 in macrophages, which through directly targeting 
the epigenetic IL-10 gene silencer histone deacetylase 
11(HDAC11) [82]. In consequence, the enhanced IL-
10 production lead to the suppression of inflammatory 
response, which might skew the macrophage to M2 
phenotype [83, 84]. The roles of other epigenetic factors 
in the macrophage polarization will be discussed later in 
this review (see Figure 2).

DNA METHYLATION

The aberrant occurrence of DNAm patterns 
(chemical modifications to the cytosine residues of DNA) 
has a significant influence on the biological behavior of 
macrophages [85, 86]. This part was therefore conducted 
to summarize that alterations in DNAm profiles, including 
both hyper- and hypomethylation, with the specific 
emphasis on the influence present in the macrophage 
polarization.

The Kruppel-like transcription factor (KLF) family 
participates in the activation and inflammation of myeloid 
and lymphocyte cell lineage during immune responses 
[87]. KLFs have been recognized as the molecular toggles 
controlling macrophage polarization, including KLF6 
and 10 [88, 89]. KLF4 exhibits remarkable function to 
cooperate with STAT6 to induce an M2 genetic profile and 

Figure 1: Regulation of M1 polarization by microRNAs in the macrophages. Several mircoRNAs, including miR-9, 19a-3p, 
33, 125a-5p, 125b, 146a, 147, 155, 223, 342-5p are involved in the M1 macrophage polarization by targeting the expression of various 
signature genes, such as C/REPβ, SOCS-1, NF-κB. MicroRNA-mediated M1 polarization has significant implications for various diseases, 
for example colitis, atherogenesis and other inflammatory diseases.
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inhibit M1-type targets via sequestration of coactivators 
for required for NF-κB activation [90]. More importantly, 
many studies recently proposed the association between 
KLF4 and DNAm [91, 92]. It was involved a common 
principle of recognition of methylated CpG by C2H2 zinc 
finger (ZnF) proteins, involving a spatially conserved Arg-
Glu pair, which might be regulated by DNMT3a [91, 93]. 
Mechanically, KLFs are epigenetically involved in the 
macrophage polarization through the regulation of miRs 
and DNAm.

DNMTs are responsible for catalyzing epigenetic 
silencing and inappropriate activation of gene 
expression of DNAm [94]. There is novel evidence 
to suggest that DNMT 1, 3a and b are differentially 
expressed in M2 compared to M1 macrophage, which 
are all associated with gene silencing [95]. DNMT1-
mediated M1 polarization is causally linked to the 
development of AS by directly target the promoter of 
PPAR-γ in macrophages [86]. The promoter of PPAR-γ 
is binded to DNMT3b, which may contribute to the M1 
adipose tissue macrophages (ATMs) polarization and 
inflammation [24]. Hyperhomocysteinemia (HHcy) is 

an independent risk factor associated with the AS and 
other cardiovascular events. Hcy inhibits cystathionine 
γ-lyase (CSE) expression and hydrogen sulfide (H2S) 
production by binding to the CSE promoter region 
through the increased DNMT1 expression and DNA 
hypermethylation, which may trigger the elevations 
of pro-inflammatory cytokines (TNF-α, IL-1β) in 
macrophages [96]. Lund et al. unequivocally observed 
that atherogenic lipoproteins (APOE) promote global 
DNA hypermethylation in monocyte which is the effective 
markers of AS [97]. Therefore, DNMT inhibition or 
knockdown could decrease the M1 polarization, which 
provides a novel strategy for the prevention and therapy 
of AS. In addition, treatment with DNMT inhibitor 5-Aza 
2-deoxycytidine(Aza) promotes an anti-inflammatory 
M2 macrophage phenotype and attenuation of acute 
lung injury(ALI) [98]. Pharmacologically using 5-aza 
or genetically by DNMT1 deletion inhibits PPARγ 
promoter DNAm and promotes M2 macrophage 
activation, which protected from the obesity-induced 
inflammation and insulin resistance [99]. Curcumin 
ameliorates experimental autoimmune myocarditis 

Figure 2: MicroRNAs are involved in the regulation of M2 macrophages phenotypic and functional polarization. 
MicroRNAs (inculding let-7c, miR-27a, 124,145, 146a, 155, 181a, 124, 222 and 233) could contribute to the M2 macrophage polarization. 
MicroRNA-induced M2 polarization mainly depends on the interaction with cytokines signaling and transcription factors pathway, such as 
TGF-β, IL-10, STAT1, C/EBPα.
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(EAM) by activating STAT6 and inducing M2 polarization 
of macrophages through a possible way by which 
inhibits DNMT [100]. Consequently, these data clearly 
demonstrate that DNA hypermethylation of multiple 
genes serves as s a critical determinant of macrophage 
polarization, which contributes to the development of 
many inflammatory diseases. It is important to note that 
the expression of DNMT3a and DNMT3al are increased 
significantly in M2 compared to M1macrophages, which 
is dramatically associated with AMPK-signaling [101]. 
Conversely, DNMT3b was significantly lower in M2 
vs M1 adipose macrophages. Moreover, up-regulation 
of galectin-3 production is the characteristic of M2-like 
macrophage [102]. Galectin-3 ablation in tumor stroma 
and parenchyma could induce the M1-like TAMs and 
decrease angiogenesis through disturbing the responses 
of macrophages to the interdependent VEGF and TGF-β1 
signaling pathways [103]. Furthermore, through the DNA 
methylation analysis by the bisulfate genome sequencing 
method [104], the loss of galectin-3 of associated with 
its promoter methlation which could be inhibited by the 
treatment of 5-aza. Given the mentioned statements it is 
therefore might exist a negative feedback loop between 
M2-like macrophage and galectin-3. Dysregulated bone 

morphogenetic proteins (BMP) may also contribute to 
the macrophage polarization [105]. The initiation and 
progression of renal cell carcinoma (RCC) is promoted 
by BMP-6-mediated IL-10 expression, which regulates 
M2 polarization. Another BMP, BMP-2 is also involved 
in controlling M2 macrophage by the regulation of 
jumonji domain containing-3 (Jmjd3), a histone 3 
Lys27 (H3K27) demethylase [106]. And lovastatin was 
shown to inhibit DNMT activity in vitro, resulting in the 
demethylation of the BMP2 promoter region [107, 108]. 
Some other interplay between DNA methylation and 
histone modification in the macrophage polarization will 
be discussed later in this review (see Figure 3).

HISTONE MODIFICATION

Epigenetic traits are tightly regulated by the major 
epigenetic modification: histone proteins associated with 
DNA (histone modifications). Histones may undergo 
divergent epigenetic changes, including methylation, 
acetylation, phosphorylation, ubiquitylation and 
SUMOylation, which are often involved in establishing 
patterns of gene dysregulation associated with altered 
chromatin states, leading to gene activation and gene 

Figure 3: DNA methylation in the determination of macrophages M1/M2 polarization. Firstly, DNMTs are responsible for 
catalyzing epigenetic silencing and inappropriate activation of gene expression involved with the macrophage phenotypic changes. Then, 
DNMTs (including DNMT1, 3a and 3b) are differentially expressed in M1 or M2 macrophages, which might play opposite roles in the 
M1/M2 polarization. For example, the activation of DNMT1/3 might lead to the M1 polarization by targeting KLF4 and NF-κB signaling, 
which could be inhibited by 5-aza. Conversely, it inhibits the M2 macrophage polarization via the disturbance of the TGF-β and VEGF 
signaling. Among this complex process, STAT6 and other genes also participate in it.



Oncotarget57699www.impactjournals.com/oncotarget

silencing in a host of diseases [109–111]. In this part, 
we particularly focus on the latest advances in the field 
of the histones modifications profiles associated with 
the regulation of macrophages polarization to M1 or M2 
phenotypes.

Expressions of multiple genes encoding enzymes 
are responsible for catalyzing and modifying various 
histones post-translational modifications, such as 
methyltransferases, demethylases, acetyltransferases and 
deacetylases, which are differentially expressed in M1/M2 
statuses [112, 113]. Emerging findings have suggested the 
existence of new regulatory epigenetic-based macrophage 
polarization mechanisms of histones modifications in 
inflammation and immune regulation. As the result of 
the devoid of tri-methylated H3K27 in IL-4-induced 
M2 macrophages, human CCL1 gene is selectively 
targeted by aryl hydrocarbon receptor (AhR) [114]. Pro-
inflammatory cytokines (TNF-α and IL-6) promoters have 
a histone 3 lysine 4- and H3K36 dimethylation effect by 
the specific methyltransferase SET and MYND domain-
containing 2 (Smyd2), which can lead to the decreased M1 
polarization and NF-κB and ERK signaling [115]. Histone 
modification of increased levels of H3 at TNF-α gene 

locus was similarly concomitant with the activation of M1 
polarization and M1-related chemokines and cytokines 
in the low-level laser therapy (LLLT) of human THP-1 
monocytes [116]. Collectively, histones modifications 
of genes required for M1 or M2 polarization might have 
the therapeutic potential in various pathologies. For 
example, emodin seemingly to bidirectionally restore 
macrophage M1/M2 polarization and immune homeostasis 
by inhibiting the removal of H3K27 trimethylation 
(H3K27me3) and the addition of H3K27 acetylation 
(H3K27ac), respectively [117]. Ornithine decarboxylase 
(ODC) could inhibit gastric and colonic inflammation 
by the deletion of M1 macrophage responses, which 
accompanied by the decreased H3K4 monomethylation, 
H3K9 acetylation and increased H3K9 di/trimethylation 
in primary macrophages [113]. As early stated, Jmjd3 is 
indispensable for M2 macrophage polarization in response 
to helminth infection and chitin, which depend on the 
demethylase activity of Jmjd3, lead to the inhibition of 
trimethylation of H3K27 by targeting a key transcription 
factor, IRF 4 [106]. Of note, Jmjd3-IRF4 axis was also 
essential for M2 microglia polarization [118], which 
therefore play a pivotal role in the reprogramming and 

Figure 4: The altered patterns of histone modifications in the regulation of M1/M2 macrophages polarization. Epigenetic 
regulation of histone modifications patterns, such as methylation, and acetylation, could drive macrophage polarization into either M1 or 
M2 phenotype. Of note, many genes are associated with histone modifications-dependent macrophage polarization, including Jmjd3 and 
MAPKs. These genes could cooperate with HDACs, HATs and other proteins, which exerting important effects on macrophage polarization 
and function.
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maintenance of microglia phenotypes that may contribute 
to the immune pathogenesis of Parkinson’s disease (PD).
In keep with these results, demethylation of H3K27me3 
in the nuclear factor-activated T cells (NFAT) c1 (Nfatc1) 
gene locus by Jmjd3, playing important roles in NF-κB 
ligand (RANKL)-induced osteoclast differentiation [119]. 
Conversely, Jmjd3 is the transcription factor NF-κB-
dependent induced in response to microbial stimuli, and 
Jmjd3 modifies the transcriptional output of LPS-activated 
macrophages in an H3K27 demethylation-independent 
manner [120].

Histone acetyltransferases (HATs) andHDACs 
mediate the acetylation and deacetylation for histone 
lysine,respectively. Histone H3 and H4 acetylation were 
found to be strongly associated with developmental stage 
of human monocytes and regulated the TNF-α promoter 
[121] Loss of HDAC function has been strongly linked 
to inhibition of several inflammatory diseases [122]. 
Monocytes polarized by IFN-γ increased histone H4 
acetylation at the TNF-α promoter via the ERK and p38 
mitogen-activated protein kinases (MAPKs) signaling 
pathyways, lead to the durable effects on the activation 
of transcription factor-2 (TF-2) and M1 polarization 
[123]. Noticeably, previous findings have identified that 
SOCS3 as a modulator of M2 macrophage polarization 
[124]. LPS-induced STAT-3 and MAPKs activation, 
including ERK1/2, JNK, p38 pathways, combination 
with the acetylation of histones H3 and H4 on the 
SOCS-3 promoter, eliciting critical roles in SOCS-3 
expression, which provides for feedback attenuation of 
cytokine-induced immune and inflammatory responses 
in macrophages and microglia [125]. Histone acetylation-
mediated SOCS-3 production might be involved in 
the macrophage polarized status. HDAC3-deficient 
macrophages were unable to activate almost half of the 
inflammatory gene expression profiles when stimulated 
with LPS, which resulted of decreased expression of 
IFN-β and Cox-1 [126]. Thus, the inhibitor of HDACs has 
a causative role in developing as anti-inflammatory agents. 
In consistent, M2-like macrophage activation is mediated 
by the HDAC3 by targeting PU.1 promoter region [127]. 
The macrophage lacking of HDAC3 displays a phenotype 
similar to IL-4 stimulation and thereby ameliorate many 
inflammatory diseases, such as pulmonary inflammation 
[127, 128].

Finally, secretion of some bioactive substances 
in a signal- and context-specific manner could 
influence macrophage polarization by targeting histone 
modifications [126]. For example, vitamin D3 (VD3) 
interacts with the signalling of transcription factors, 
also participates in the macrophage activation and 
polarization as the immunosuppressor [129, 130]. Most 
importantly, the VD3 exerts an ample regulatory effect 
on the expression of HDACs, such as Jmjd3, involved 
in epigenetic regulation that may mediate its actions on 
gene transcription and macrophage phenotype [131]. In 

summary, the relationships between histone modifications 
and macrophage polarization have significant implications 
for understanding the mosaic patterns of macrophage 
heterogeneity as well as function (see Figure 4).

CONCLUDING REMARKS

Recent data highlight how some other epigenetic 
changes impact macrophage functional responses 
and M1/M2 polarization, influencing the immune 
homeostasis in response to infection and inflammation. 
Long non-coding RNAs(lncRNAs) expression profiles 
are significantly altered in macrophages exposure to 
differently incubated conditions, which evokes the distinct 
M1/M2 functional responses [132]. Of note, lncRNA 
MALAT1-overexpressed mesenchymal stem cells (MSCs) 
supernatants may serve to promote the M2 macrophage 
polarization, which may enhance the immunosuppressive 
properties of MSCs in vivo [133]. The crosstalk of 
lncRNA and other epigenetic manner could determine the 
macrophage phenotypes. SNHG14 promoted the microglia 
cells (MCs) classical activation by the inhibition of miR-
145-5p, which resulted in the high levels of TNF-α and 
NO in MCs during cerebral infarction [134, 135]. In 
conclusion, the underlying epigenetic mechanisms of 
macrophage polarization and function might be indicative 
of functional association. Macrophage-dependent 
inflammatory responses are considered a pivotal biological 
process and remain to be fully elucidated, which 
contributes to fit the therapeutic requirement of antiviral, 
antibacterial or antitumor immunity in a host of diseases.
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