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ABSTRACT  
Purpose: Predicting emergence from prolonged disorders of consciousness (PDOC) is important for plan-
ning care and treatment. We used machine learning to examine which variables from routine clinical data 
on admission to specialist rehabilitation units best predict emergence by discharge. 
Materials and methods: A multicentre national cohort analysis of prospectively collected clinical data 
from the UK Rehabilitation Outcomes (UKROC) database 2010–2018. Patients (n¼ 1170) were operation-
ally defined as “still in PDOC” or “emerged” by their total UK Functional Assessment Measure (FIMþ FAM) 
discharge score. Variables included: Age, aetiology, length of stay, time since onset, and all items of the 
Neurological Impairment Scale, Rehabilitation Complexity Scale, Northwick Park Dependency Scale, and 
the Patient Categorisation Tool. After filtering, prediction of emergence was explored using four techni-
ques: binary logistic regression, linear discriminant analysis, artificial neural networks, and rule induction. 
Results: Triangulation through these techniques consistently identified characteristics associated with 
emergence from PDOC. More severe motor impairment, complex disability, medical and behavioural 
instability, and anoxic aetiology were predictive of non-emergence, whereas those with less severe motor 
impairment, agitated behaviour and complex disability were predictive of emergence. 
Conclusions: This initial exploration demonstrates the potential opportunities to enhance prediction of 
outcome using machine learning techniques to explore routinely collected clinical data.    

� IMPLICATIONS FOR REHABILITATION 
� Predicting emergence from prolonged disorders of consciousness is important for planning care 

and treatment. 
� Few evidence-based criteria exist for aiding clinical decision-making and existing criteria are mostly 

based upon acute admission data. 
� Whilst acknowledging the limitations of using proxy data for diagnosis of emergence, this study sug-

gests that key items from the UKROC dataset, routinely collected on admission to specialist rehabilita-
tion some months post injury, may help to predict those patients who are more (or less) likely to 
regain consciousness. 

� Machine learning can help to enhance our understanding of the best predictors of outcome and thus 
assist with clinical decision-making in PDOC. 
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Introduction 

Enhanced emergency services (e.g., helicopter evacuation, acute 
major trauma centres, defibrillators in public places) have sub-
stantially improved the outcomes for many survivors of medical 
emergency. However, as we get even better at saving lives, a 
proportion of patents who would otherwise have died at the 
scene of injury now survive with catastrophic brain injury and 
are left in a prolonged disorder of consciousness (PDOC—i.e., 
vegetative or minimally conscious state)—sometimes perman-
ently [1]. 

In the early stages post injury, it is appropriate to treat 
patients expectantly in the hope of a good recovery, but the lon-
ger they remain in PDOC the less likely they are to emerge into 
consciousness. Better prognostic information may help to guide 
clinicians and patient’s families about an individual’s expectations 
for recovery and inform decisions about care and treatment. 
Unfortunately, there is a dearth of information on which to base 
such predictions. Factors that are known to be associated with 
more favourable outcomes include age, severity, type of injury 
(trauma vs non-trauma), and level of consciousness [2–4], but as 
yet there is no recognised algorithm for combining these to 
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predict individual outcomes with any degree of accuracy. 
Successive studies have repeatedly identified the same factors, 
not necessarily because they are the strongest predictors, but 
because they happen to be information that is readily available in 
acute settings [5–7]. When patients leave the acute hospital and 
transfer to rehabilitation, a range of other measures are recorded 
and it is pertinent to consider whether any of these may assist 
with more accurate predictions about which patients may emerge 
into consciousness. 

In the UK, assessment and management of prolonged disor-
ders of consciousness is primarily provided in designated special-
ist rehabilitation units. The UK Rehabilitation Outcomes 
Collaborative (UKROC) [8] provides the national clinical database 
for all specialist in-patient rehabilitation services in England. 
Although a PDOC registry is in development, as yet the dataset 
does not include tools formally designed to assess the level of 
consciousness. However, it does include a rich dataset of patient- 
level information that includes measures of needs, inputs, and 
outcomes from rehabilitation. In the US, the Traumatic Brain 
Injury Model Systems (TBIMS) national database provides the larg-
est longitudinal dataset in the world for monitoring outcomes [9]. 
Analyses of this dataset have used the lowest possible total score 
on the Functional Independence Measure (FIM ¼ 18) [10] as a 
proxy for identifying patients in VS [11]. The UKROC dataset rou-
tinely collects the UK Functional Assessment Measure (UK 
FIMþ FAM) [12] (an extended version of the FIM) as its primary 
outcome measure. This provides an opportunity to take a similar 
approach with the UK national dataset, using modern statistical 
techniques such as machine learning. 

Traditional analytical approaches may use logistic regression 
techniques centred on hypothesis-based algorithms to identify 
characteristics in the data that may predict emergence from 
PDOC (either individually or in combination), but other methods 
can also be used. Machine learning (ML) involves the application 
of algorithms and techniques for generating statistical and rule- 
based models from data using patterns and inference without 
necessarily testing specific hypotheses. It involves techniques for 
finding patterns in data using algorithms (e.g., neural networks, 
decision trees, clustering, random forest) which can provide 
insights and enhance fast and accurate decision-making [13]. In 
particular, such models can be useful for generating explanations 
and predictions through identification of influential variables. ML 
can be supervised where the object is to predict a specified out-
come (e.g., alive/dead) or unsupervised where the outcomes are 
not preordained and a technique such as clustering might be 
used to determine the outcome categories [14]. 

ML algorithms (MLAs) have been successfully applied in mar-
keting and finance for some time, but their use in the health and 
social sciences has only become widespread recently [14]. This is 
changing quickly, however, and their application has important 
implications for diagnosis, prognosis and treatment [15]. For 
example, Chekroud et al. developed an MLA that showed promise 
for predicting which patients responded to one antidepressant 
rather than another [16]. In rehabilitation studies, MLAs have 
been used for guiding planning for home care clients, predicting 
risk of acute care readmission among rehabilitation inpatients and 
predicting functional status of community-dwelling older people 
12 months later [17–19]. Other applications of ML in rehabilitation 
have included: decision tree models to predict ventilator associ-
ated pneumonia after traumatic brain injury (TBI), accelerometer- 
based algorithms to classify physical activity after acquired brain 
injury (ABI), and prediction of outcomes after hip fracture [20–22]. 

For a comprehensive and accessible introduction to the appli-
cation of ML approaches in health research we recommend the 
review by Dwyer et al. [14]. MLAs including “neural networks” (or 
more correctly speaking artificial neural networks) have some 
advantages over traditional statistical methods. First, they do not 
rely upon any assumptions about the data conforming to any par-
ticular statistical distribution. Second, they typically involve 
“training” the network so that its ability to predict specific out-
comes on withheld data can improve over repeated presentations 
of different subsets (partitions) of data. Third, MLAs have the 
potential to identify variables that are predictors of an outcome 
that researchers might not have even considered, thus generating 
novel hypotheses. However, the reasons for their predictive and 
classification behaviour are not always clear when neural net-
works are used, because they use mathematical weights to com-
bine variable values and functions that transform or “squash” 
combined values into class-based output. In other words the 
neural network can be “trained” to be highly accurate at predict-
ing the outcome of interest but the researcher is unable to spe-
cify the precise algorithm underpinning its classification. For that 
reason, researchers frequently combine neural networks with 
more informative MLA approaches, such as “rule induction” meth-
ods, e.g., decision trees, to help them identify possible reasons for 
model behaviour and specific thresholds for use in antecedents of 
rules for prediction. 

In this first feasibility study, we apply two machine learning 
techniques to examine the extent to which data items contained 
within the UKROC clinical dataset might contribute to the predic-
tion of which patients admitted in PDOC may emerge into con-
sciousness by the end of the programme, and how these 
techniques might enhance the predictions derived from trad-
itional logistic regression and linear discriminant analyses. 

Materials and methods 

Design 

A large multicentre national cohort analysis of prospectively col-
lected clinical data from the UK Rehabilitation Outcomes 
Collaborative (UKROC) national clinical database 2010–2018. 

Setting and participants 
In England, the majority of patients with mild-moderate brain 
injury receive rehabilitation within their local non-specialist Level 
3 services. Those with more complex rehabilitation needs are 
referred to Level 1 (regional) to Level 2 (district) specialist rehabili-
tation services. The programmes provided within the specialist 
services are set out in the NHS England service specification [23] 
and include assessment and management of prolonged disorders 
of consciousness. 

Participants were all adults (aged 16-plus) who were admitted 
to a Level 1 or 2 specialist rehabilitation service in England during 
the eight-year study period who were in (or likely to be in) a pro-
longed disorder of consciousness on admission. 

Data source—the UKROC database 
The UKROC database was established in 2009 through funding a 
programme grant from the UK National Institute for Health 
Research (NIHR) [24] but now provides the national commission-
ing dataset for NHS England. Completed rehabilitation episodes 
are collected by each provider on local dedicated software and 
are uploaded at monthly intervals to a secured NHS server held at 
Northwick Park Hospital, London. 
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The dataset comprises socio-demographic and process data 
(waiting times, discharge destination, etc.) as well as clinical infor-
mation on rehabilitation needs, inputs and outcomes. Full details 
may be found on the UKROC website: http://www.csi.kcl.ac.uk/ 
ukroc.html. 

The data reporting requirements for Level 1 and 2 services 
have evolved over time and vary somewhat between the different 
levels of service. Systematic data collection started in April 2010, 
but reporting of the full dataset was initially voluntary. Since April 
2013, services commissioned centrally by NHS England are 
required to report the full UKROC dataset for all admitted epi-
sodes [25], but some locally commissioned Level 2 services still 
report only a reduced dataset. All units registered with UKROC 
receive training in use of the tools to support accurate data col-
lection, and have access to update workshops and tele-
phone support. 

Measurement tools 

Specific tools within the dataset include the following measures:  

� The Neurological Impairment Set (NIS) [26] records the 
severity of neurological (e.g., motor, sensory, cognitive, com-
municative and psychological) impairments. 

� The Patient Categorisation Tool (PCAT) [27,28] records the 
types of need a patient may have that lead to a requirement 
for treatment in a specialist rehabilitation unit. 

� The Rehabilitation Complexity Scale (RCS-E) [29,30] is an 
ordinal scale that records the resource requirements to meet 
the patient’s needs for medical support, basic care and nurs-
ing, therapy, and equipment. 

� The Northwick Park Dependency Score (NPDS) [29,31] is 
an ordinal scale of basic care and nursing dependency on 
nursing staff time (number of helpers and time taken to 
assist with each task) designed to assess needs for care and 
nursing in clinical rehabilitation settings [31]. It is shown to 
be a valid and reliable measure of needs for care and nursing 
in rehabilitation settings [32]. 

� The UK Functional Assessment Measure (UK FIM 1 FAM) 
[33] is a global measure of disability comprising 16 items 
addressing physical function (FIMþ FAM motor) and 14 
addressing cognitive, communicative and psychosocial func-
tion (FIMþ FAM cognitive). Each item is scored on a seven- 
point ordinal scale from 1 (total dependence) to 7 (complete 
independence) giving a total score range of 30–210. Further 
details are published elsewhere [12,33]. Collected on admis-
sion and discharge the UK FIMþ FAM forms the principal 
measure of outcome (change in physical and cognitive dis-
ability) within the UKROC dataset. 

Identification of patients in prolonged disorders of consciousness 
As noted above, the FIMþ FAM does not provide a direct meas-
ure of consciousness; however, a recent study has demonstrated 
that, at large population level, it can provide a reasonable proxy. 
In 312 patients admitted to a designated specialist PDOC assess-
ment and management programme, UK FIMþ FAM scores were 
examined alongside formal detailed evaluation of consciousness 
including validated measures (e.g., the Coma Recovery Scale (CRS- 
R) [34] and the Wessex Head Injury Matrix (WHIM) [35]). 
Examination of the area under the ROC curve demonstrated that 
total UKFIMþ FAM scores of <¼31 and >¼36 would, respect-
ively, provide a reasonably robust separation of low level PDOC 
(VS/MCS-minus) versus emerged into Consciousness for the pur-
pose of future evaluations [36]. For the purpose of this study, 

scores of 32–35 were excluded to provide clear separation and 
reduce the chance of cross contamination. 

Data extraction 

De-identified data were extracted for all recorded in-patient epi-
sodes for adults aged 16þ admitted to a Level 1 or 2 specialist 
rehabilitation service and discharged during the eight-year period 
between April 2010 and July 2018, if they had:   

a. An acquired brain injury with total FIMþ FAM score on 
admission �31 (“PDOC on admission”). 

b. A length of stay 8–400 days (i.e., plausible admissions for 
PDOC assessment management). 

c. Valid ratings of the RCS-E (version 12), PCAT and NPDS on 
admission, and of the UK FIMþ FAM on both admission 
and discharge. 

This resulted in 1170 patients admitted to a total of 53 centres 
in England. 

Analyses 

Four different options for statistical analyses were explored:  

� Binary logistic regression (LR) constructs linear combinations 
of one or more independent variables to model a binary 
dependent variable, typically labelled “0” and “1.” LR makes 
no assumptions about the distribution of the independent 
variables. Instead, odds ratios for each independent variable 
are estimated through calculating the ratios of being in one 
dependent class as opposed to the other class and then con-
verting these log-odds into probabilities and regression coef-
ficients. Variables can be entered together (block entry) or 
stepwise. Conditional stepwise entry was used in the analysis 
below. Binary LR is used mainly for data-fitting purposes and 
for identifying significant input variables for further model 
evaluation and classification. 

� Linear discriminant analysis (LDA) produces linear classifiers 
for separating two or more classes of samples. Whereas LR 
finds the best fitting model through log-odds ratios and 
regression coefficients, LDA creates discriminant functions 
consisting of coefficients to maximise the difference between 
classes relative to the difference within the same class. Such 
coefficients can be interpreted as contributing to class assign-
ment, where positive LDA coefficients indicate increases in 
standard deviations towards the higher valued class 
(emerged in our case, coded as “1” in the data) and negative 
as decreases towards the lower valued class (not emerged, 
“0”), with larger values signifying better predictors. Similar to 
LR, variables can be entered as a block or stepwise. LDA is 
typically used with cross-validation techniques to test the 
accuracy of classifier models (see below). 

� Artificial neural networks for supervised ML use the concept 
of interlinked neurons (nodes) to perform general function 
approximations for learning a complex mapping from inde-
pendent attributes to dependent attributes. In a three-layer 
perceptron neural network, independent attribute values are 
fed to the input layer of the perceptron, and mathematical 
weights on the links convert these input values to be new 
values at the hidden layer and the output layer using transfer 
functions that produce output from the weighted input. A 
threshold logic function, for instance, produces a 1 if a spe-
cific weighted sum threshold is exceeded, otherwise 0. A 
logistic sigmoid transfer function, on the other hand, 
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produces output values between 0 and þ1 according to the 
formula: r xð Þ ¼ 1

1þe� x , where rðxÞ is the sigmoid value of the 
weighted sum x, and e� x is the natural logarithm of x: At the 
output level, a comparison is made between the actual out-
put and the desired output to calculate an error sample by 
sample, and adjustments are made to the weights so that 
the error is reduced through gradient descent the next time 
the samples are presented. Each presentation of all samples 
is an epoch. The architecture chosen here consists of a layer 
of 12 input neurons (one for every attribute selected through 
filtering), a layer of 30 hidden neurons, and one output neu-
ron for the emerged/not emerged state coded as 1 and 0, 
respectively, in the data. Parameters for learning include a 
learning rate (the maximum amount of weight change 
allowed per epoch, 0.2 in our case), momentum (the rate of 
convergence to an ideal set of weights, also set to 0.2), 
epochs (the number of presentations of all the data, set to 
10 000) and termination condition (stop training if output 
error does not exceed 0.0001 in any epoch). Sensitivity ana-
lysis (how a trained neural network behaves under input and 
weight perturbations) is also used to identify which attributes 
influence output values the most. 

� Rule induction algorithms typically generate decision trees 
for splitting samples using tests based on variable values so 
that samples of one class are separated from samples of 
another class in different branches of various tests. Chi- 
squared automatic interaction detector (CHAID) uses Pearson 
Chi-square p values to find the most significant variable for 
splitting samples at each level and each path of the tree until 
no more significant splits can be found. The tree is then con-
verted into a rule set by tracing paths from the root node to 
every terminal node of the tree, with the antecedents of 
each rule consisting of branch tests and the consequent the 
class of samples at the terminal node. A probability value is 
associated with each rule regarding the rate at which that 
rule captures all samples in a specific class. 

Models can be “data-fitting” or “cross-validated.” A data fit 
model uses all the data for model construction, with no samples 
withheld for testing. A cross-validated model uses only a subset 
of data for model construction and then tests the robustness of 
the model against the remaining withheld data. Common meth-
ods of cross-validation include leave-one-out (LOO) and x-fold. 
LOO constructs a model on all the samples except one and then 
tests the model on that withheld sample, repeated for every sam-
ple. This leads to the construction of as many models as there are 
samples, and the accuracy of prediction of LOO cross-validation 
(true positives plus true negatives over all samples) is reported at 
the end of all model evaluations. In x-fold cross-validation, the 
data is split into x equal-sized sets (typically, 10). A model is con-
structed on all but one set and then tested against the withheld 
set. This is repeated for every set with the overall average accur-
acy reported at the end of all evaluations. 

For both data-fitting and cross-validation, area under receiver 
operating characteristic (AUROC) curves are used to display dis-
crimination ability of the model by plotting the false positive rate 
(usually calculated as 1 minus specificity or the true negative rate) 
on the x-axis, and the sensitivity (the true positive rate) on the 
y-axis. The closer the AUROC figures to 1, the better the discrimin-
ation ability. In the experiments below, 0 (non-Emergence) is con-
sidered positive and 1 (Emergence) is negative, meaning that 
sensitivity refers to non-Emergence and specificity refers to 
Emergence. Below, regression is used for data-fitting only, and 

the three other approaches use both data-fitting and some form 
of cross-validation. 

Our approach in this analysis 
SPSS v26 was used for all data analysis. 

The analysis proceeded in two stages: feature filtering, and 
model construction. Feature filtering methods remove the least 
interesting or relevant variables so that the remaining variables 
can be used for model construction. Filtering examines the influ-
ence of each variable separately on the grouping variable and 
does not look for combinations of variables. For the purpose of 
filtering, patients who scored �36 on the total FIMþ FAM at dis-
charge (“Emerged from PDOC”) were compared as a group 
against all other patients on a full range of admissions variables 
using bootstrapped T-tests. These admission variables included: 
Age, length of stay, time from onset to admission and all the 
individual items of the Neurological Impairment Scale (NIS), 
Rehabilitation Complexity Scale (RCS-E), Northwick Park 
Dependency Scale (NPDS) and the Patient Category Scale (PCAT). 
After filtering, those variables identified as significantly different 
between patients who remained in PDOC and those who 
emerged were entered into logistic regression models, a linear 
discriminant model, a neural network model and a rule induction 
model. For the purpose of model construction, the two discharge 
thresholds of PDOC �31 FIMþ FAM and emerged �36 FIMþ FAM 
were adopted, resulting in 1043 cases: 579 non-emerged from 
PDOC, 464 emerged from PDOC. 

Results 

Table 1 shows the demographics and aetiology of the sample, 
broken down into those who did and did not emerge in con-
sciousness by the end of the programme. Overall, just under half 
of the patients emerged into consciousness during the pro-
gramme. Age and gender had little effect, the reason for the for-
mer may reflect the relatively young age of this sample (overall 
48.4 years (SD 15.8). The overall mean time since onset was 
231 days (95% CI 169, 321). It tended to be longer in those who 

Table 1. Breakdown of patients (n¼ 1043) on discharge, with age at admission 
broken down into four quartiles.   

At discharge from programme 

Parameter Overall N 

Still in PDOC  
(FIMþ FAM<¼31)  

n¼ (%) 

Emerged  
(FIMþ FAM>¼36)  

n¼ (%)  

Gender N¼ 1043 n¼ 579 (54%) n¼ 464 (46%)  
Male   689   391 (68%)   298 (64%)  
Female   353   187 (32%)   166 (36%) 

Time since onset (days)     
Mean (95% CI)    297 (194, 468)   146 (94 232) 

Aetiology diagnosis     
CVAa   309   141 (24%)   168 (36%)  
Trauma   379   198 (34%)   181 (39%)  
Hypoxia   241   187 (32%)   54 (12%)  
Inflammatory   27   11 (2%)   16 (3%)  
Tumour   18   12 (2%)   6 (1%)  
Otherb   57   27 (5%)   30 (7%) 

Age at admission (Years)     
16–37   275   157 (27%)   118 (26%)  
38–49   261   156 (27%)   105 (23%)  
50–61   260   142 (26%)   118 (25%)  
>¼62   247   124 (22%)   132 (26%)  
Mean (SD) years   1043   47.6 (15.8)   48.9 (15.9)  

95% CI: 95% confidence interval. 
aCerebrovascular accidents due to infarct, haemorrhage, subarachnoid haemor-
rhage, or other aetiologies. 
bIncludes toxic/metabolic injuries e.g., hypoglycaemia, drug overdose, etc.
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remained in PDOC, but this did not reach significance due to 
wide confidence intervals. As expected, fewer patients with hyp-
oxic injury emerged into consciousness. It should be noted that 
CVA patients who present in PDOC are those with profound brain 
injury, rather than typical stroke patients with more localised defi-
cits. Nevertheless, the slightly higher rates of emergence may indi-
cate that a proportion of them proved to be locked-in or had 
more localised deficits (e.g., Aphasia) that masked their initial 
potential for cognitive interaction. 

Filtering 

Initial filtering resulted in 12 significant variables for further ana-
lysis: “Eating,” “Drinking,” “Communication,” and “1:1 Specialling” 
items from the NPDS: “Neuro-psychiatric needs,” “Mood/emotion,” 
“Complex disability management,” “Tracheostomy/ventilator 
support,” “Behavioural,” and “Special equipment/Facilities” from 
the PCAT, “Medical” score from the RCS-E and the “Motor 
Subtotal” item from the NIS. 

Stage 1 logistic regression 

The 12 variables were entered as scalar in a first logistic regres-
sion (LR) with entry probability 0.05 and removal 0.10, resulting in 
a significant data fit model (p� 0.01) that explained between 18% 
(Cox and Snell R square) and 24% (Nagelkerke R square) of the 
variance using 6 of the 12 filtered variables: RCS-Medical, NIS- 
Motor, NPDS-Communication, PCAT-Behaviour, PCAT-Mood, and 
PCAT-Complex Disability. Data fit accuracy was 71% (84% sensitiv-
ity for “not Emerged from PDOC,” 54% specificity for “Emerged 
from PDOC”). Some improvement was obtained with a second LR 
where these six significant variables were entered as categorical 
for removal of non-significant values, resulting in a significant 
model (p� 0.01) that explained between 28% and 38% of the 
variance. Data fit accuracy also improved to 77% (86% sensitivity, 
66% specificity). 

Stage 2 linear discriminant analysis 

LDA (stepwise entry at F¼ 0.05 and removal at F¼ 0.10) produced 
a single-function, six-variable model with 71% data fit accuracy 
(85% sensitivity for “not Emerged,” 53% specificity for “Emerged”), 
with Wilks’ Lambda of 0.81 (p� 0.001). The six variables were the 
same as those found by logistic regression (Table 2). LOO step-
wise LDA produced a similar 71% cross-validated accuracy model 
(84% sensitivity for “not Emerged,” 52% specificity for “Emerged”). 

Stage 3 artificial neural network 

A 12-30-2 artificial neural network (ANN) perceptron architecture 
(12 input units, a layer of 30 hidden units and 2 output units, sig-
moid transfer functions, gradient descent with 0.2 learning rate 
and 0.2 momentum, 10 000 epochs, training stopped if error does 
not exceed 0.0001 in any epoch) produced a data fit model of 
89% accuracy (95% sensitivity for “not Emerged,” 82% specificity 
for “Emerged”). Variable sensitivity analysis revealed that NIS- 
Motor and NPDS-Communication were the most important varia-
bles (see Table 3) (100% and 93% normalised importance, respect-
ively), followed by NPDS-Eating, PCAT-Behaviour and PCAT- 
Psychiatric (74%, 72%, and 72%, respectively). Figure 1 shows the 
AUROC curves for this data-fitting perceptron, with area figures of 
0.94 for both the emerged and non-emerged class. 

Using the same architecture for a 90% training/10% testing 
regime, repeated 10 times, produced an overall test accuracy 
of 69% (78% sensitivity for “not Emerged,” 57% specificity for 
“Emerged”), with NIS-Motor, NPDS-Communication, PCAT- 
Behaviour, and PCAT-Complex Disability regularly featuring as 
the most important variables (over 80% normalised import-
ance), with NPDS-Eating also occasionally featuring above 
70% importance. 

Table 2. The six variables found by LDA and their standardised canonical func-
tion coefficients. 

Variables Coefficients  

NIS-Motor   0.40 
NPDS-Communication   0.20 
PCAT-Behaviour   � 0.36 
PCAT-Complex disability   0.33 
PCAT-Mood   � 0.24 
RCS-Medical   0.31  

NIS: Neurological Impairment Scale; NPDS: Northwick Park Dependency Scale; 
PCAT: Patient Categorisation Tool; RCS: Rehabilitation Complexity Scale.

Table 3. Independent variable importance for data-fitting ANN. 

Independent variable on admission Importance Normalised importance  

NIS-Motor   0.130   100.00% 
NPDS-Communication   0.120   92.10% 
NPDS-Eating   0.096   73.60% 
PCAT-Behaviour   0.094   72.40% 
PCAT-Psychiatric   0.094   72.40% 
PCAT-Complex Disability   0.082   63.00% 
RCS-Medical   0.076   58.00% 
PCAT-Mood   0.067   51.50% 
PCAT-Facilities   0.066   50.80% 
NPDS-1:1 Specialling   0.062   47.50% 
NPDS-Drinking   0.059   45.40% 
PCAT-Tracheostomy   0.052   39.90%  

NIS: Neurological Impairment Scale; NPDS: Northwick Park Dependency Scale; 
PCAT: Patient Categorisation Tool; RCS: Rehabilitation Complexity Scale.

Figure 1. ROC curve for data-fitting artificial neural networks. ROC curve for 
data-fitting ANN for emerged (yes) and not emerged (no) The area under the 
curve was 0.94 for both emerged and non-emerged on discharge.  
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Stage 4 rule induction 

Exhaustive CHAID generated a data fit six-rule set (two for “not 
Emerged,” four for “Emerged”) with an overall accuracy of 73% 
(78% sensitivity for “not Emerged,” 65% specificity for “Emerged”), 
as shown in Table 4. 

The best rule induced (91% capture) stated that non-emer-
gence resulted when patients had an NIS-Motor admission score 
greater than 13, a PCAT-Complex Disability admission score >2 
and diagnosis subcategory of Anoxia or Stroke or Toxic (Rule 6). 
Emergence, on the other hand, resulted from patients having an 
NIS-Motor admission score of 12 or 13, �1 on PCAT-Behaviour 
and �2 on PCAT-Complex Disability (60% capture, Rule 5). 

Ten-fold cross-validation achieved 73% accuracy, with sensitiv-
ity to “not Emerged” at 78% and specificity to “Emerged” at 65%. 
No further rules were found. 

Discussion 

In this retrospective analysis of a large national rehabilitation 
dataset, we applied both traditional statistical and machine learn-
ing techniques to determine whether items contained within the 
routinely collected UKROC clinical dataset might help to predict 
which patients admitted in PDOC may emerge into consciousness 
by the end of the programme. 

Initial filtering resulted in 12 significant variables for fur-
ther analysis. 

Stepwise logistic regression (LR) identified a six-variable data 
fit model consisting of RCS-Medical, NIS-Motor, NPDS- 
Communication, PCAT-Behaviour, PCAT-Mood, and PCAT-Complex 
Disability management, which attained 71% data fit accuracy. 
Repeating LR with just these six variables entered as categorical 
(allowing selection of subsets of variable values) resulted in an 
improvement of variance explained to between 28% and 38%, 
with 77% data fit accuracy. The LR model fitted non-emergence 
(sensitivity 86%) better than emergence (specificity 66%). Logistic 
discriminant analysis identified a similarly accurate data fit model 
(71% accuracy). Cross-validation accuracy remained at 71%, which 
shows reasonable predictive capability overall on test cases, with 
sensitivity a high 84%. However, cross-validation specificity was 
poor at 52%, indicating that there was insufficient information in 
the training samples for reliable prediction. 

An artificial neural network (ANN) data fit model produced 
89% accuracy (95% sensitivity, 82% specificity) and returned an 
area under the ROC curve of 0.94, showing very good discrimina-
tive ability, although cross-validation reduced overall accuracy to 
69% (78% sensitivity, 57% specificity). NIS-Motor, NPDS- 
Communication, PCAT-Behaviour, and PCAT-Complex Disability 
featured as the most important variables for classification accur-
acy (over 80% normalised importance). Given that the ANN cor-
rectly predicted 78% of patients remaining in “non-Emerged” but 
only 57% of patients in “Emerged” after 10% of samples were 

repeatedly removed in cross-validation, this drop in predicted spe-
cificity in comparison to the data fit model (82%) indicates that 
critical information concerning “Emergence” within patient data is 
being lost in these four most important variables. Rule induction 
produced a rule for non-emergence from PDOC with 91% sensitiv-
ity involving NIS-Motor (admission >13), PCAT-Complex Disability 
(admission score >2), and diagnosis subcategories of Anoxia, 
Stroke or Toxic. The best rule for Emergence (60%) involved NIS- 
Motor (admission score of 12 or 13), PCAT-Behaviour (admission 
� 1) and PCAT-Complex Disability (admission � 2). Cross-valid-
ation resulted in 73% accuracy (sensitivity 78%, specificity 65%), 
indicating reasonable predictive performance when reasons for 
classifications were required. 

Triangulation through these various techniques therefore quite 
consistently identified characteristics that are associated with 
emergence from PDOC. Severe motor impairment, high need for 
complex disability management, medical instability and specific 
aetiology were predictive of non-emergence, whereas those with 
less severe motor impairment and agitated behaviour were pre-
dictive of emergence. These findings resonate with clinical experi-
ence. Non-emergence (78%–95% sensitivity) was modelled and 
predicted more accurately than emergence (57%–82%). The ANN 
with hidden layer produced the best model, indicating that the 
problem may be best addressed through non-linear techniques. 

Our results compare favourably with previous machine learn-
ing approaches used in neurorehabilitation modelling. For 
instance, Xue et al. [18], when predicting risk of care readmission, 
found that logistic regression achieved 84% test accuracy in com-
parison to support vector machine (SVM) and random forest fig-
ures of 81% using FIM-only measures. Higher specificity figures 
were reported in comparison to sensitivity. Verrusio et al. [17] 
used Comprehensive Geriatric Assessment (CGA) measures to pre-
dict patient disability levels one year ahead. Their SVMs achieved 
higher predictive accuracy for patients in three classes (self-suffi-
ciency, disability risk, and disability) than linear regression models 
(84% vs 67%, respectively). Zhu et al. [19] used k-nearest neigh-
bours and SVNMs to identify older patients for rehabilitation 
potential and planning using Activities of Daily Living Clinical 
Assessment Protocol (ADLCAP) measures. High false-positive and 
false-negative rates were reported, providing further evidence of 
the difficulty in identifying suitable neurorehabilitation measures 
for accurate prediction. 

Our results of 95% sensitivity and 82% specificity with ANNs 
for patients who remain in PDOC versus those who emerge (as 
identified by their discharge FIMþ FAM scores) are therefore in 
line with previously reported research outcomes using machine 
learning approaches. One important difference in our approach is 
the range of multi-measurement tools used to provide data across 
a number of different dimensions for predicting emergence. The 
predictive importance of Motor measurement from the NIS ques-
tionnaire and Communication measurement from the NPDS ques-
tionnaire, as well as of a number of measures from the Patient 

Table 4. Rule induction—data fit six-rule set. 

Rule IF THEN 
Prediction 
Probability  

1 NIS-Motor> 11 AND NIS-Motor� 13 AND PCAT-Behaviour � 1 AND PCAT-Disability > 2 Not emerged 65% 
2 NIS-Motor> 11 AND NIS-Motor� 13 AND PCAT-Behaviour > 1 Emerged 75% 
3 NIS-Motor� 11 Emerged 75% 
4 NIS-Motor> 11 AND NIS-Motor� 13 AND PCAT-Behaviour� 1 AND PCAT-Disability � 2 Emerged 55% 
5 NIS-Motor> 13 AND PCAT-Complex Disability � 2 Emerged 60% 

When aetiology diagnosis subcategory on admission was included:  
6 NIS-Motor> 13) AND PCAT-Complex Disability> 2 AND (Diagnosis Subcategory¼Anoxia OR (Stroke: Other) OR Toxic Not emerged 91%  
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Categorisation Tool, provides evidence that predicting outcomes 
of patients after they enter rehabilitation will need analytical tech-
niques that can cater for a wide variety of measures (categorical, 
ordinal, scale) in an integrated manner. Finding statistical and 
machine learning techniques that offer this facility is likely to be 
the main challenge in neurorehabilitation research for the foresee-
able future. Nevertheless, the induction of a highly accurate but 
narrow rule involving aetiology on admission provides a pointer 
as to where research hypotheses can be focussed in future. 

Strengths and weaknesses 

Strengths of this study include the large size of the dataset, gath-
ered in the context of real life clinical practice across over 50 
centres in England, which supports the generalisability of the find-
ings. The use of tools that are routinely collected within the 
national clinical dataset confers the advantage of utility as the 
data to inform prediction should be readily available to clinicians 
at least in the UK. Moreover, these tools are readily available and 
free to use for anyone wishing to do so in other countries. 

The authors acknowledge some differences between this study 
population and others that have explored outcome of patients in 
PDOC. Firstly, this was a relatively young population (mean age 
48.4 (SD 15.8) as the UK specialist rehabilitation services are gen-
erally targeted at working aged adults, and this may explain the 
lack of age effect that is seen in other studies. Although our 
range of aetiologies was similar to other studies, the proportion 
of traumatic brain injury (TBI) was lower than in some, e.g., 
Giacino and Kalmar [6]. The US study followed patients from an 
early acute stage, while our group did not present until an aver-
age of eight months post injury, and it is possible that many of 
the TBI patients had already emerged by this stage. A relative 
strength of our study is that it examines patents further down the 
line from some other published studies. We believe that our find-
ings are likely to have reasonable generalisability for the younger 
adult population of patients who still present in PDOC some 6- 
12 months post injury. 

The most significant weakness of the study is that the diagno-
sis of both PDOC and emergence from it is gathered by proxy 
from the UK FIMþ FAM. While our previous paper demonstrated 
the sensitivity and specificity of the FIMþ FAM for identifying 
patients in PDOC it remains to validate the FIMþ FAM in this con-
text by direct correlation with a “gold standard” such as the 
Coma Recovery Scale or the Wessex Head Injury Matrix. Although 
there is a precedent for using the FIM as a proxy for “vegetative 
state” and, with its additional 12 cognitive and psychosocial varia-
bles the FIMþ FAM might be expected to provide a more sensi-
tive test of cognitive interaction, we cannot be certain about the 
diagnosis of PDOC or emergence in this analysis. Cases in the 
grey zone (FIMþ FAM score 32-25) were excluded to reduce the 
chance of cross contamination. The UKROC database is currently 
being expanded to include a dedicated PDOC registry. This will 
enable routine collation of tools specifically designed to record 
the level of consciousness including the Coma Recovery Scale and 
the Wessex Head Injury Matrix. Once this is formally established 
and a sufficient body of multicentre data has been collected, 
future ML studies may include these direct measures of conscious-
ness to enhance the certainty of PDOC diagnosis. 

On the other hand, on a pragmatic level, it is reasonable to 
make use of the extensive data that are available. Moreover, clin-
ical decision-making in the context of PDOC has evolved over 
recent years. Decisions to give, continue or withhold active med-
ical and life-sustaining treatments in the UK are no longer simply 

based on whether or not the patient will emerge into conscious-
ness, but whether they will recover a quality of life that they 
themselves would value. In this context the FIMþ FAM could 
potentially form a more useful framework for discussing the type 
of functional profile that an individual patient might consider 
acceptable—for example some people may tolerate physical dis-
ability if they had sufficient cognitive and communicative ability, 
while others may feel differently. Future longitudinal analyses 
would therefore focus not simply on emergence but the ultimate 
functional outcome for these catastrophically brain- 
injured patients. 

Conclusion 

Notwithstanding these recognised limitations, this study demon-
strates the potential opportunities to enhance the prediction of 
outcome using machine learning techniques to explore the rich-
ness of routinely collected clinical data. 
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