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Abstract: A new series of laterally fluorinated mesomorphic compounds, namely 2-fluoro-4-((4-
(alkyloxy)phenyl)diazenyl)phenyl 4-substitutedbenzoate (Inx) were prepared and evaluated for
their mesophase behavior. The synthesized series constitutes five members that possess different
terminally attached polar groups (X). Their molecular structures were confirmed by elemental
analyses and both FT-IR and NMR spectroscopy. Examination of the prepared derivatives was
conducted via experimental and theoretical tools. Mesomorphic investigations were carried by
polarized optical microscopy (POM) and differential scanning calorimetry (DSC). DSC and POM
measurements indicated that except for the un-substituted analogue, all other derivatives were
purely nematogenic, possessing their nematic (N) mesophase enantiotropically. This is to say that
insertions of terminal polar substituents on their mesogenic structures induced the N phase. In
addition, the location of lateral and terminal polar moieties played a considerable role in achieving
good thermal N stability. Computational calculations were investigated to determine the deduced
optimized molecular structures. Theoretical data indicated that both size and polarity of the terminal
substituent (X) have essential impact on the thermal parameters and optical properties of possible
geometries.

Keywords: phase behaviour; lateral fluorine; induced nematic phase; optimize structure; DFT

1. Introduction

The thermal stability of azobenzenes and the possibility for their molecular-mobility
in response to light and heat make them suitable for many photonic applications [1–6]. Ad-
ditionally, their rigidity and linear geometry make them ready to exhibit liquid crystalline
phenomena [7,8]. They can also produce photoactive mesomorphic materials, whereby
they can easily undergo photo-induced trans/cis isomerization. Among many mesogenic
linkages, azobenzenes are the most widely documented [9–20].

Changing the core structure or insertion of lateral substituents to azobenzene-based
molecules affects marked differences in their photophysical and thermal properties [6,7].
The introduction of lateral groups with different volumes and polarities broadly improves
many properties of liquid crystal (LC) materials. This is attributed to the disturbance in the
molecular packing which drops the melting transition and thermal mesophase stability of
LCs [21–28]. Anisotropic molecules are produced from the overall molecular geometry of
architectures and the combination of both rigid and flexible chains. On the other hand, as
the terminal flexible chain length increases, the molecules tend to be oriented in parallel
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arrangements [29]. Modification of the behaviors of LCs will impact the mesomorphism
and their characteristics considered essential for many technological fields. Moreover,
their lateral or terminal polar group significantly affects the mesomeric characters of the
azobenzene derivatives.

Today, computational quantum chemistry of newly constructed materials has attracted
attention for its many potential applications [30–43]. The DFT method is a good perfor-
mance theoretical tool and gives excellent computational results. The mutual enhancement
of many geometrical parameters requires predicted information of their molecular orbital
energies. DFT calculations will provide a prediction of molecular geometry in the gas phase.
Thus the presence of the molecule in a condensed mesophase will lead to a slight difference
in the resulting energy. Consequently, more elongated species will be preferred [38,44].

Insertion of the F-atom, as a lateral group, offers new mesomorphic behavior for
the investigated LC derivatives [45–48] which is mainly dependent on the position and
orientation of the F-atom. The high polarity and small volume of the F-atom enables it to
enhance the mesomorphic and geometrical properties of the prepared LC compound such as
its melting point, mesophase transitions, dipole moments, and dielectric anisotropy [49–52].

Recently, a homologous series possessing lateral F moiety [48] was synthesized and
their mesomorphic behavior was investigated. These investigated derivatives and their
two terminal wings are of flexible long chains. These compounds were found to ex-
hibit N mesophases, and the position of F-atom in the molecular structure center was
found to influence the physical and geometrical parameters of the molecules. In other
studies [53–61], the investigation was directed toward measuring the impact of incorpora-
tion of lateral moiety on their mesomorphic properties in the terminal or central benzene
rings.

The goal of the present study is to focus on synthesizing new azo/ester liquid crys-
talline systems possessing a lateral F-atom in their central cores and unsymmetrical ter-
minals, namely 2-fluoro-4-((4-(alkyloxy)phenyl)diazenyl)phenyl 4-fluorobenzoate (Inx,
Scheme 1), and to discuss their mesomorphic and geometrical parameters. We also in-
vestigate the effect of the location of the lateral F-atom and the length of terminal alkoxy
chain (as well as the other different terminal compact groups) on the type and the stability
of the formed mesophase. This study also aims to investigate the effect of the predicted
computational DFT parameters on the optimized structures and determine how these
parameters could affect their mesomorphic properties.
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The mesomorphic compounds Inx were synthesized according to Scheme 2 and all 
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The mesomorphic compounds Inx were synthesized according to Scheme 2 and all
spectra of derivatives are depicted in Figures S1–S6 (Supplementary data):
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3. Results and Discussion
3.1. Mesomorphic and Optical Properties

Details of the mesophase transitions of all of the evaluated homologues Inx series, as
measured via DSC, are collected in Table 1. The types of phases, identified by POM for the
present homologues, are in agreement with their DSC results. Figure 1, a representative
example, depicted the DSC thermogram of I8d, taken as second heating/cooling rounds.
The N phase schlieren textures of compounds I8d and I16b observed under POM are
displayed in Figure 2. Phase transition temperatures of all of the derivatives are graphically
displayed in Figure 3 in order to investigate the effect of terminal alkoxy-chain length
(n = 8 and 16) on the mesomorphic properties in each group bearing different terminal
polar substituent X.

Table 1. Mesomorphic temperature of transitions (T ◦C), enthalpy of transition ∆H, kJ/mole, and
normalized entropy of transition ∆S/R for investigated set, Inx.

Comp X TCr-I ∆HCr-I TCr-SmC ∆HCr-SmC TCr-N ∆HCr-N TSmC-N ∆HSmC-N TN-I ∆HN-I ∆S/R

I8a
-

OCH3
- - 96.3 45.15 - - 116.2 2.80 175.2 1.94 0.52

I8b -CH3 - - - - 127.9 51.76 - - 160.8 2.13 0.59
I8c -H 105.3 57.64 - - - - - - - - -
I8d -Cl - - - - 123.7 46.70 - - 224.3 2.09 0.51
I8e -F - - - - 96.3 39.38 - - 177.3 1.23 0.33

I16a
-

OCH3
- - 87.6 48.78 - - 128.5 2.90 164.5 1.48 0.41

I16b -CH3 - - - - 106.9 44.6 - - 135.7 1.62 0.48
I16c -H 101.6 59.87 - - - - - - - - -
I16d -Cl - - - - 116.9 46.32 - - 220.2 1.87 0.46
I16e -F - - - - 103.1 42.30 - - 137.1 1.36 0.40

Cr-N refers to the solid-to-nematic phase. N-I refers to the nematic-to-isotropic liquid phase.



Molecules 2021, 26, 4546 4 of 13
Molecules 2021, 26, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. DSC thermograms captured from the second heating/cooling scan at heating rate 10 °C/min of compound I8d. 

 
Figure 2. Images (320 × 97 px) of N phases under POM observed on heating for compounds (a) I8d 
at 190.0 °C and (b) I16b at 120.0 °C. 

Table 1. Mesomorphic temperature of transitions (T °C), enthalpy of transition ΔH, kJ/mole, and 
normalized entropy of transition ΔS/R for investigated set, Inx. 

Comp X TCr-I ΔHCr-I TCr-SmC ΔHCr-SmC TCr-N ΔHCr-N TSmC-N ΔHSmC-N TN-I ΔHN-I ΔS/R 
I8a -OCH3 - - 96.3 45.15 - - 116.2 2.80 175.2 1.94 0.52 
I8b -CH3 - - - - 127.9 51.76 - - 160.8 2.13 0.59 
I8c -H 105.3 57.64 - - - - - - - - - 
I8d -Cl - - - - 123.7 46.70 - - 224.3 2.09 0.51 
I8e -F - - - - 96.3 39.38 - - 177.3 1.23 0.33 

I16a -OCH3 - - 87.6 48.78 - - 128.5 2.90 164.5 1.48 0.41 
I16b -CH3 - - - - 106.9 44.6 - - 135.7 1.62 0.48 
I16c -H 101.6 59.87 - - - - - - - - - 
I16d -Cl - - - - 116.9 46.32 - - 220.2 1.87 0.46 
I16e -F - - - - 103.1 42.30 - - 137.1 1.36 0.40 

Cr-N refers to the solid-to-nematic phase. N-I refers to the nematic-to-isotropic liquid phase. 

Figure 1. DSC thermograms captured from the second heating/cooling scan at heating rate
10 ◦C/min of compound I8d.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. DSC thermograms captured from the second heating/cooling scan at heating rate 10 °C/min of compound I8d. 

 
Figure 2. Images (320 × 97 px) of N phases under POM observed on heating for compounds (a) I8d 
at 190.0 °C and (b) I16b at 120.0 °C. 

Table 1. Mesomorphic temperature of transitions (T °C), enthalpy of transition ΔH, kJ/mole, and 
normalized entropy of transition ΔS/R for investigated set, Inx. 

Comp X TCr-I ΔHCr-I TCr-SmC ΔHCr-SmC TCr-N ΔHCr-N TSmC-N ΔHSmC-N TN-I ΔHN-I ΔS/R 
I8a -OCH3 - - 96.3 45.15 - - 116.2 2.80 175.2 1.94 0.52 
I8b -CH3 - - - - 127.9 51.76 - - 160.8 2.13 0.59 
I8c -H 105.3 57.64 - - - - - - - - - 
I8d -Cl - - - - 123.7 46.70 - - 224.3 2.09 0.51 
I8e -F - - - - 96.3 39.38 - - 177.3 1.23 0.33 

I16a -OCH3 - - 87.6 48.78 - - 128.5 2.90 164.5 1.48 0.41 
I16b -CH3 - - - - 106.9 44.6 - - 135.7 1.62 0.48 
I16c -H 101.6 59.87 - - - - - - - - - 
I16d -Cl - - - - 116.9 46.32 - - 220.2 1.87 0.46 
I16e -F - - - - 103.1 42.30 - - 137.1 1.36 0.40 

Cr-N refers to the solid-to-nematic phase. N-I refers to the nematic-to-isotropic liquid phase. 

Figure 2. Images (320 × 97 px) of N phases under POM observed on heating for compounds (a) I8d

at 190.0 ◦C and (b) I16b at 120.0 ◦C.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 15 
 

 

Tr
an

sit
io

n 
te

m
pe

ra
tu

re
, o C

50

100

150

200

250
Cr
SmC
N

I8a I8b I8c I8d I8e I16a I16b I16c I16d I16e
 

Figure 3. Effect of terminal (X) on the phase behavior of the investigated series Inx. 

3.2. Computational Calculations 
3.2.1. Thermal and Geometrical Parameters 

The geometry of a compound is an inherent property which dictates other properties 
showcased by the molecule. Based on this, the optimized geometrical structure of each 
member of the present series (Inx) was determined in order to establish the most stable 
geometry for the molecule. The results are presented in Figure 4. Theoretical calculations 
were carried out via the DFT method for all of the designed derivatives in order to corre-
late the predated quantum chemical parameters and the experimental findings. Compu-
tational calculations were performed in the gas phase with DFT/B3LYP program at basis 
set 6–311G **. The designed homologues (Inx) ere proved to exist in planar conformation 
since they possessed mesomorphic characters, except for the unsubstituted derivatives 
which are non-mesomorphic. Zero-point energy and other predicted thermal parameters 
are summarized in Tables 2 and 3. It was found that all of the estimated parameters in-
creased with an increasing of the terminal alkoxy-chain length from n = 8 to n = 16. More-
over, these parameters normally changed according to the type of the terminal group (X). 
All compounds show linear and planar shapes, as displayed in Figure 4. It was docu-
mented in [70] that the mesogenic core planarity of the mesomorphic molecules is influ-
enced by the mesomeric-nature of the polar attached moieties. Thus, the conjugated π-
cloud interactions resulting from the polar lateral F and terminal X groups played a con-
siderable role in inducing mesomorphic phenomena with good physical parameters. 

Figure 3. Effect of terminal (X) on the phase behavior of the investigated series Inx.



Molecules 2021, 26, 4546 5 of 13

The results of Table 1 and Figure 3 revealed that the melting transitions of both
homologues (I8x and I16x) have irregular trends. Melting temperature depends on the
polarizability of the molecule as well as its geometrical structure. Moreover, all the com-
pounds of the homologous series are enantiotropic, exhibiting mesophase thermal stability
and mesomorphic temperature range depending on their terminal group X, except for
the un-substituted derivatives (I8c and I16c) which show non-mesomorphic behaviors. In
case of the electron-donating terminal methoxy substituted homologues (Ina), both com-
pounds are dimorphic possessing enantiotropic SmC and N mesophases. The SmC range
(∆TSmC = TSmC − Tcr) increases from 19.9–40.9 ◦C with increasing the length of terminal
alkoxy chain from n = 8 to n = 16, while the nematic range (∆TN = Tiso − TSmC) is dropped
from 59.0–36.0 ◦C as the alkoxy chain length increases from 8 to 16 carbons. It was docu-
mented that the nematic thermal stability decreases with n [62,63]. Thus, the derivative of
shortest terminal-chain (I8a) exhibits a higher N thermal stability value (175.2 ◦C) than the
higher homologue I16a, which possesses an N stability value of about (164.5 ◦C). The two
homologues possess smectic C stabilities 116.2 and 128.5 ◦C for I8a and I16a, respectively.
Homologues with the terminal CH3 group (Inb) are found to be monomorphic, possessing
only the N phase. On the other hand, ∆TN is decreased from 32.9–28.8 ◦C with an increasing
n from 8 to 16. Additionally, the thermal N stability is reduced from 160.8–135.7 ◦C as the
terminal length increases from n = 8 to n = 16. In the case of the unsubstituted homologues
(X = H, Inc), all of the homologues exhibit non-mesomorphic behaviors, irrespective of
their terminal alkoxy chain length. Moreover, only one endotherms characteristic peak
of the crystal–to–isotropic transitions was observed in DSC measurements upon heating
and reversed during the cooling cycle for Inc. In addition, the POM investigations showed
no mesophase textures, affirming that the materials do not exhibit any mesomorphic
properties.

Electron-withdrawing terminally substituted Cl homologues (Ind) showed the broad-
est nematic temperature range and stability. The N phase stability and temperature range
for I8d reached values of 224.3 and 100.6 ◦C, respectively. By increasing the length of the
terminal chain to n = 16 (I16d), the N phase stability was slightly reduced to 220.2 ◦C and
the nematogenic temperature range became 103.3 ◦C. In the case of the small size terminal
F-atom derivatives (Ine), the compounds were also purely nematogenic and exhibited only
the N mesophase. Moreover, ∆TN was reduced from 81.0 to 34 ◦C and the N stability was
reduced from 177.3 to 137.1 ◦C with an increase of n from 8 to 16 carbons. The descending
trend in the N thermal stability can be ascribed to the dilution of the rigid mesogenic
portion.

Based on the above results, the thermal N phase stability declined in the following
order: Cl > F > OCH3 > CH3 for I8x, and Cl > OCH3 > F > CH3 for I16x, while the
un-substituted homologues (Inc) were non-mesomorphic. Thus, the introduction of the
terminal polar group induced the mesophase when incorporated in the mesogenic structure.
In general, the polarity of the attached-groups, aspect-ratio, polarizability, molecular
rigidity, and shape of the molecule are considered to be essential factors responsible for
the thermal stability and range of the formed mesophases and their texture types. The
factors that affect the mesophase properties will be briefly discussed in the next section of
theoretical calculation studies.

The normalized entropy changes of mesophase transitions (∆S/R) for all designed
laterally F members (Inx) are collected in Table 1. Data indicate that, independent of the
terminal substituents, the N-I entropy transitions showed irregular trend and lower values.
Their relatively small magnitudes may be due to the somewhat molecular biaxiality and
the relatively high values of clearing temperatures, which in turn reduced the N-I entropy
changes [64–66]. The configuration of the lateral F-atom plays a considerable role in the
physical and geometrical parameters of the molecule. This will be briefly discussed in the
theoretical work of this study. Additionally, the azo moiety thermal cis/trans isomerization
leads to lower entropy changes, as has been determined before (for example, see [65,67–69]).
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3.2. Computational Calculations
3.2.1. Thermal and Geometrical Parameters

The geometry of a compound is an inherent property which dictates other properties
showcased by the molecule. Based on this, the optimized geometrical structure of each
member of the present series (Inx) was determined in order to establish the most stable
geometry for the molecule. The results are presented in Figure 4. Theoretical calculations
were carried out via the DFT method for all of the designed derivatives in order to correlate
the predated quantum chemical parameters and the experimental findings. Computational
calculations were performed in the gas phase with DFT/B3LYP program at basis set
6–311G **. The designed homologues (Inx) ere proved to exist in planar conformation since
they possessed mesomorphic characters, except for the unsubstituted derivatives which
are non-mesomorphic. Zero-point energy and other predicted thermal parameters are
summarized in Tables 2 and 3. It was found that all of the estimated parameters increased
with an increasing of the terminal alkoxy-chain length from n = 8 to n = 16. Moreover,
these parameters normally changed according to the type of the terminal group (X). All
compounds show linear and planar shapes, as displayed in Figure 4. It was documented
in [70] that the mesogenic core planarity of the mesomorphic molecules is influenced by the
mesomeric-nature of the polar attached moieties. Thus, the conjugated π-cloud interactions
resulting from the polar lateral F and terminal X groups played a considerable role in
inducing mesomorphic phenomena with good physical parameters.
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Table 2. Estimated thermal parameters for present series, Inx.

Compound ZPE
(Kcal/Mol)

Thermal
Energy

(Kcal/Mol)

Enthalpy
(Kcal/Mol)

Gibbs Free
Energy

(Kcal/Mol)

Entropy (Cal
mol·k)

I8a 339.931 360.875 361.467 295.216 222.206
I8b 336.987 358.034 358.627 290.124 229.761
I8c 319.853 339.674 340.266 275.311 217.862
I8d 313.578 334.225 334.818 267.740 224.983
I8e 314.447 334.832 335.424 269.207 222.091
I16a 483.249 511.573 512.165 426.784 286.371
I16b 480.291 507.554 508.147 425.184 278.260
I16c 463.181 489.788 490.381 408.976 273.032
I16d 456.900 484.336 484.928 401.334 280.376
I16e 457.772 484.943 485.536 402.825 277.414

Table 3. Total Energy, EHOMO, ELUMO, ∆E, dipole moment, ionization energy, electron affinity, and polarizability for the
investigated series, Inx.

Compound Total Energy (Ha) EHOMO (ev) EluMO (ev) ∆E (ev) Dipole
Moment (D) IE (ev) EA (ev) Polarizability

Bohr3

I8a −1595.223 −6.043 −2.515 3.528 2.6252 6.043 2.515 424.26
I8b −1520.026 −6.074 −2.547 3.527 1.8676 6.074 2.547 414.42
I8c −1480.739 −6.108 −2.586 3.522 2.6458 6.108 2.586 396.84
I8d −1940.352 −6.194 −2.701 3.493 5.4948 6.194 2.701 414.23
I8e −1579.994 −6.175 −2.668 3.507 5.0740 6.175 2.668 397.89

I16a −1909.479 −6.042 −2.515 3.527 2.6315 6.042 2.515 519.56
I16b −1834.285 −6.074 −2.547 3.527 1.9022 6.074 2.547 509.61
I16c −1794.997 −6.107 −2.586 3.521 2.6949 6.107 2.586 492.04
I16d −2254.610 −6.193 −2.701 3.492 5.5510 6.193 2.701 509.50
I16e −1894.251 −6.174 −2.667 3.507 5.1293 6.174 2.667 493.10

As shown in Table 3, the lower magnitudes of predicted ionization potential (I.E)
for the Ina compounds indicate a more basic nature of the terminal OCH3 derivatives
than other compounds in the prepared series [71]. Additionally, a pronounced increase of
polarizability is observed for member I16a that may be due to the increment of the molec-
ular shape aspect ratio. In general, the polarity of the attached substituents, rigidity and
polarizability as well as geometry of the mesomorphic molecule are considered important
parameters for inducing and influencing the mesophase behavior. In addition, the thermal
stability is mainly dependent on the length of the terminal chains [72].

3.2.2. Frontier Molecular Orbitals (FMOs)

The frontier molecular orbitals presented in Figure 5a,b show that all compounds
in the series (Inx) have different HOMO and LUMO distributions. For the HOMO, the
electron clouds were evenly distributed over the carbon atoms and the π-electron of the
two benzene rings bearing the lateral F, as well as the linking groups. On the other hand,
the LUMO distributions of electron clouds are extended to the third phenyl ring bearing
the alkoxy chain. The resulting energies and energy gaps for the present investigated Inx
series are collected in Table 3. The HOMO and LUMO energy gap (∆E) are both related to
the chemical reactivity of the compounds. More reactive molecules have an energy gap
with a lower magnitude. Predicted ∆E (Table 3) confirms that the Ind derivatives (X = Cl)
are more reactive than the other compounds. They are also softer than other members
due to that fact that the ∆E is inversely related to the softness. Furthermore, the FMO
energy gaps are highly impacted by the orientation and location of the mesogens (ester
and azo linkages). This orientation cloud allows for the maximum delocalization of the
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The frontier molecular orbitals presented in Figure 5a,b show that all compounds in 

the series (Inx) have different HOMO and LUMO distributions. For the HOMO, the elec-
tron clouds were evenly distributed over the carbon atoms and the π-electron of the two 
benzene rings bearing the lateral F, as well as the linking groups. On the other hand, the 
LUMO distributions of electron clouds are extended to the third phenyl ring bearing the 
alkoxy chain. The resulting energies and energy gaps for the present investigated Inx se-
ries are collected in Table 3. The HOMO and LUMO energy gap (∆E) are both related to 
the chemical reactivity of the compounds. More reactive molecules have an energy gap 
with a lower magnitude. Predicted ∆E (Table 3) confirms that the Ind derivatives (X = Cl) 
are more reactive than the other compounds. They are also softer than other members due 
to that fact that the ∆E is inversely related to the softness. Furthermore, the FMO energy 
gaps are highly impacted by the orientation and location of the mesogens (ester and azo 
linkages). This orientation cloud allows for the maximum delocalization of the ℿ -elec-
trons, and thereby decreases the ∆E of the FMOs.   -electrons, and thereby decreases the ∆E of the FMOs.
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3.2.3. Molecular Electrostatic Potential (MEP)

The geometry of the prepared mesomorphic molecules was impacted by the me-
someric configurations, which were in turn affected by molecular-molecular interactions.
The polarizability, electronic shape, dipole moment, and other parameters were impacted
by the distribution of the electron density at the atomic sites of the liquid crystalline com-
pounds [73]. MEP is considered to be one of the best tools for the estimation of the presence
of inter-/intra-molecular interactions the evaluated molecules. The MEP of the present
series (Inx) are shown in the Figure 6. Here, the shadowing of carbonyl oxygen and the lat-
eral F-atom by a red cloud suggests a low electrostatic potential but a high electron density
for these regions. On the other hand, the blue cloud over the first alkoxy methylene and the
neighboring phenyl hydrogen indicates low electron density but high electrostatic potential.
Additionally, as the terminal chain length increases from n = 8 to n = 16, the polarizability
of the molecule increases. This observation could be explained in the term of the less
ordered nematic phase which covers all of the prepared molecules of terminal polar groups.
Additionally, Figure 6 indicated that the location of mesogens and the electronic nature
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of the terminal polar X influenced the distribution of the MEP. Moreover, they appeared
to impact the mesophase kind and stability by altering the competitive forces between
end-end and side-side interactions. In recent studies, we have investigated the correlation
between computational charge distribution and mesomorphic properties [48,60,74,75]. The
increment of the charge distribution on the molecules is attributed either to the greater
electron-donation or electron-acceptance of terminal aggregations to enhance the N phase
or the parallel-interactions to predominate the semectic phase.
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4. Conclusions

New fluorinated liquid crystalline analogous series possessing different terminal
polar compact groups, namely, 2-fluoro-4-((4-(alkyloxy)phenyl)diazenyl)phenyl 4-
substitutedbenzoate, were prepared and investigated for their properties via experimental
and computational measurements. Their molecular structures were determined via differ-
ent spectroscopic analyses. Both mesomorphic and optical examinations were measured
using DSC and POM and revealed that all of the designed analogues are monomorphic and
purely nematogenic with enantiotropic properties (except for the un-substituted analogues,
which demonstrated non-mesomorphic behavior). The selected terminal polar electron
donating and electron withdrawing groups contributed to achieving the induced N phase
with good thermal stability. DFT theoretical calculations revealed that the lateral and
terminal polar groups have essential effects on the stability of the predicted geometries and
their thermal parameters. Moreover, the produced N mesophase was dependent on the
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influenced dipole moment of the mesogenic portion, which was in turn dependent on the
geometrical shape of molecule.

Supplementary Materials: The following are available online. Figures S1–S6: Materials, Methods
and spectroscopic analyses, Characterizations.
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