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Abstract

High-throughput -omics techniques have revolutionised biology,
allowing for thorough and unbiased characterisation of the
molecular states of biological systems. However, cellular deci-
sion-making is inherently a unicellular process to which “bulk” -
omics techniques are poorly suited, as they capture ensemble
averages of cell states. Recently developed single-cell methods
bridge this gap, allowing high-throughput molecular surveys of
individual cells. In this review, we cover core concepts of analy-
sis of single-cell gene expression data and highlight areas of
developmental biology where single-cell techniques have made
important contributions. These include understanding of cell-to-
cell heterogeneity, the tracing of differentiation pathways, quan-
tification of gene expression from specific alleles, and the future
directions of cell lineage tracing and spatial gene expression
analysis.
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Introduction

High-throughput -omics techniques have revolutionised molecular

biology, providing insight at every step of the central dogma. At the

level of DNA, we now know the genome sequences for many

species and how these vary between individuals of these species

(The 1000 Genomes Project Consortium, 2015). Differences in gene

expression between organisms, tissues and disease states have been

extensively quantified by microarrays and RNA-seq (for both coding

and non-coding transcripts), while mass spectrometry and other

approaches have begun to yield a high-throughput overview of

protein expression. Other techniques reveal how each level of the

dogma affects the other: where protein binds DNA (Aparicio et al,

2004; Johnson et al, 2007), how DNA conformation affects gene

expression (Belton et al, 2012) and which RNA molecules are being

translated (Ingolia et al, 2009).

However, these approaches typically require as input hundreds

to millions of cells, revealing only an average reading across cell

populations. For developmental biology, where individual cells

make decisions about their fate, these ensemble measures provide

only limited information, as individual cellular measurements are

lost. Nonetheless, procedures such as fluorescence-activated cell

sorting enable isolation of specifically labelled cell populations.

Isolation of specific cell types or subpopulations allows for meaning-

ful bulk genomic analysis and has contributed a great deal to our

understanding of developmental biology (Spitz & Furlong, 2006),

albeit large numbers of input cells are required.

Recently developed single-cell -omics techniques (Tang et al,

2009; Smallwood et al, 2014; Buenrostro et al, 2015b; Heath et al,

2016), by contrast, are particularly apposite for developmental

biology, transferring high-throughput molecular techniques onto

the correct scale for understanding cellular decision-making. In

particular, knowledge of the set of genes that different cells

express allows characterisation of cell state, thus providing a direct

read-out of how dynamic decisions are made. Transcriptional

information can be supplemented with the results of other assays,

such as chromatin accessibility (Buenrostro et al, 2015a), allowing

even deeper insight into the mechanisms by which cell fate is

regulated.

This review focusses on transcriptomic assays, which make up

the large majority of single-cell genomic research published to date.

We first summarise the processes involved in generating and

analysing single-cell expression data. We then identify areas of

developmental biology where these assays have provided unique

insight, as well as outlining future challenges and opportunities.

Generating single-cell transcriptomic data

Quantifying gene expression via microscopy is familiar in contempo-

rary biology, whether using hybridisation techniques or artificially

created fusion proteins. Flow cytometry scales up optical

approaches to hundreds of thousands of cell measurements without
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compromising cellular resolution (Fulwyler, 1965). Historically,

these methods have not been suitable for assaying many genes

simultaneously, due to constraints imposed by fluorophore emission

spectra. Nucleotide-focussed methods pushed beyond this limita-

tion: real-time PCR (Van Gelder et al, 1990) can quantify hundreds

of genes, with cellular throughput improved using microfluidic

systems (White et al, 2011; Sanchez-Freire et al, 2012). The recent

development of sequencing-by-hybridisation (described later in this

review) has addressed the gene-throughput problems of optical

approaches, allowing the quantification of thousands of transcripts

in the same cell.

To achieve truly transcriptome-wide expression coverage,

however, RNA-sequencing-based methods are best suited. Shortly

after the first application of RNA-seq to bulk populations of cells

(Bainbridge et al, 2006), the feasibility of applying RNA-seq to

individual cells was demonstrated (Tang et al, 2009). Over the

past 5 years, single-cell RNA-seq (scRNA-seq) has become the

most commonly used approach for assaying single-cell gene

expression profiles. There are two broad sets of methods for

applying single-cell RNA-seq—“plate-based” and “droplet-based”

(Fig 1).

Initially, most studies used plate-based assays, where library

preparation is performed manually on cells sorted into and lysed in

individual wells of a microwell plate (Jaitin et al, 2014; Picelli et al,

2014). Robotic and microfluidic systems (e.g. Fluidigm C1) have

been developed to automate some of these processes.

Droplet-based methods employ microfluidics to capture individ-

ual cells in nanolitre-sized droplets, each loaded with reagents and

unique labels: reverse transcription and transcript labelling take

place within these small volumes. The droplet suspension is later

broken down for pooling of cell libraries prior to sequencing. These

methods have been developed by academic groups (Klein et al,

2015; Macosko et al, 2015) and commercially, by 10X Genomics

(Zheng et al, 2017).

Each approach has its own advantages and disadvantages. Plate-

based methods tend to provide higher-quality libraries at the cost of

lower cellular throughput, processing hundreds or thousands of cells

compared to the hundreds of thousands that droplet methods can

process. More subtle differences also differentiate the two sets of

methods. To capture rare cell types with known cell-surface markers,

it is generally more efficient to flow-sort and prepare plates of single-

cell libraries rather than to capture more cells using a droplet method.

Additionally, current droplet methods capture gene information

exclusively from the 30 or 50 end of each transcript, while plate

approaches can generate reads from across entire transcripts; the

latter allows splice-variant and allele-specific transcriptional informa-

tion to be retrieved. Finally, droplet methods are more likely to

produce “multiplet” cell transcriptomes, where multiple different
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Figure 1. Single-cell library preparation summary.
There are two primary methods for generating single-cell transcriptomics data: plate-based and droplet-based methods, shown above. In summary, droplet-based
approaches offer high cell throughput, while plate-based approaches provide higher resolution in each individual cell. Note that different implementations of these methods
provide slightly different outputs and that some steps are excluded for clarity (e.g. cDNA amplification).
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cells become labelled with the same barcode. This is largely due to the

lack of user oversight (e.g. it is more difficult to identify attached pairs

of cells) and the possible reuse of cell barcodes from the labelling

beads. The doublet rate in droplet experiments is proportional to the

number of loaded cells (Zheng et al, 2017).

For a researcher, the decision about which method to use is typi-

cally driven by the nature of the biological system under considera-

tion—whether the quality or quantity of cells is important. For

example, plate-based methods may be more suitable for young

embryos, given the small number of cells present. For later stages of

development, where there are tens of thousands of cells and a

higher level of heterogeneity in each embryo, a droplet method is

better suited because it is relatively easy to capture a greater number

of cells, which facilitates a more complete sampling and allows

unbiased capture of rare cell types. Additionally, droplet methods

may be preferable for studying continuous systems, as the higher

number of cells sampled can be used to better approximate the

continuous process that is being studied.

Both methods exploit cell-specific DNA barcodes to allow the

pooling of libraries from different cells prior to sequencing. These

barcodes allow different transcriptomic reads to be assigned to indi-

vidual cells. Both can also exploit unique molecular identifiers

(UMIs): small, randomly generated nucleotide sequences that allow

PCR duplicate reads to be collapsed, providing a more precise esti-

mate of the actual number of RNA molecules present in a sample.

For an in-depth discussion of existing approaches, see Svensson

et al (2017).

A new method of library preparation holds much promise for

combining the benefits of both plate and droplet approaches. Here,

pools of cells are repeatedly split and randomly allocated to different

sets of barcodes, combinatorially building up a large diversity of

possible barcode labels. The method’s utility has been demonstrated

for DNA sequencing (Vitak et al, 2017), RNA-seq (Cao et al, 2017)

and chromatin accessability assays (Cusanovich et al, 2015).

Multi-omic assays

The vast majority of single-cell genomics research has focussed on

capturing only RNA. However, several protocols exist that allow

integration of genomic, epigenomic and transcriptional information

from the same cells. For example, G&T-seq (Macaulay et al, 2015)

combines DNA sequencing with RNA-seq and is adept at identifying

how copy-number changes may impact transcription. M&T-seq

(Angermueller et al, 2016) captures DNA methylation and transcrip-

tome data, with NMT-seq (preprint: Clark et al, 2018) further

adding chromatin-accessibility information using a GpC methyl-

transferase (Kelly et al, 2012). While these assays offer unique

advantages, they are typically experimentally challenging to run,

and handle many fewer cells than scRNA-seq.

State-of-the-art analysis techniques

Quality control

After demultiplexing barcodes and alignment of suitably trimmed

reads to the appropriate reference genome, the resulting data from

an scRNA-seq experiment can be represented as an integer matrix of

gene expression levels, with each entry representing the number of

sequenced reads (or molecules, if UMIs were used) assigned to a

particular gene in a specific cell. Notably, barcode decomposition is

not trivial—particularly for the random sequences of UMIs—as

sequencing errors can alter their observed sequences. Methods have

been developed to account for this by predicting which barcodes

have arisen by error and which truly existed within the sample

(Smith et al, 2017).

Subsequently, it is important to assess the quality of the tran-

scriptome for each cell: incomplete cell lysis or failures during

library preparation can provide output that confounds analyses.

There are many parameters that quality control (QC) tests may

focus on, but there are three attributes that may be easily assessed

in all single-cell data sets: the total number of transcripts detected;

the total number of genes found to be expressed; and the fraction of

expression contributed by mitochondrial genes. Cells that show

aberrant behaviour for these characteristics are typically removed

from further analysis, albeit care must be taken when studying a

heterogeneous population of cells as total mRNA content and other

features can vary substantially (Ilicic et al, 2016).

Drop-out is a phenomenon observed in scRNA-seq whereby cells

that are expected to express a certain gene show an observed count

of zero. This is most commonly understood to be driven by stochas-

tic failures of transcripts to be reverse-transcribed or amplified, and

therefore never sequenced. This is of particular importance for data

generated by droplet assays, where capture efficiency varies consid-

erably across cells. In order to recover expression values from

dropped-out genes, it is possible to impute expression values from

other cells that show similar expression patterns (preprint: Dijk

et al, 2017). However, the user should make sure that weak signals

are not being artificially inflated. A researcher must also be aware of

the possibility that doublets can drive technical signal in a data set,

particularly for droplet-based methods. While there are no

published methods for doublet detection at the time of writing, a

number of papers have implemented heuristic approaches for

excluding multiplet libraries. These include rejecting cells express-

ing sets of biologically mutually exclusive markers (e.g. Xist and Y

chromosome genes; Ibarra-Soria et al, 2017), and by identifying

small clusters composed of cells with large library size whose

expression profiles correlate strongly with at least two other clusters

in the data set (Bach et al, 2017).

Confounding factors

Single-cell RNA-seq experiments are sensitive to confounding

factors. For example, as in any -omics experiment, systematic dif-

ferences between experimental batches must be removed before the

expression profiles of cells can be compared, emphasising the

importance of good experimental design (Lun & Marioni, 2017).

Even when controlling for these effects, true biological differences

may produce signals orthogonal to the experiment’s aim. In particu-

lar, cell size (as reflected by total mRNA content) often manifests

itself in the number of detected genes in each cell (McDavid et al,

2016; Hicks et al, 2017), which can lead to structure in the high-

dimensional expression space. Cell library size differences are

controlled by the critical step of normalisation (reviewed in Vallejos

et al (2017)), which aims to remove differences due to sequencing

depth and total RNA content. The addition of precisely quantified

exogenous RNA species (“spike-in” genes) to each cell’s lysate

allows the estimation of absolute amounts of RNA (Brennecke et al,

2013). However, their use is rare in droplet-based assays: spike-in
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RNA will be present in every droplet, not only those containing

cells. Consequentially, spike-in genes may consume a large amount

of the sequencing read space and would be confounded by repeated

use of the same cell barcode in multiple droplets (resulting in a vari-

able amount of spike per barcode). Other biological factors such as

cell-cycle stage can also lead to structure that can mask the signal of

interest; computational strategies exist to identify and remove these

effects (Buettner et al, 2015).

Cell type identification

A common first step in the analysis of scRNA-seq data is to classify

cells into a number of groups. By identifying these subgroups of

cells, the degree of heterogeneity within the population of interest

can be assessed and comparisons can be performed, even between

potentially small or rare groups of cells (e.g. primordial germ cells).

Cell-type clustering performance can be improved by using only

genes that vary more between cells than would be expected by chance

(Brennecke et al, 2013), or by using “eigengenes” that explain vari-

ability in the data (e.g. derived via principal components analysis).

For additional discussion of these features, see Trapnell (2015).

Developmental trajectories and pseudotime

In many systems, cells display a continuous spectrum of states that

is considered to represent the differentiation process. In these cases,

a discrete classification of cells is not appropriate, and a researcher

may prefer to use a method that summarises the continuity of cell

states in the data.

Such methods are typically referred to as pseudotime methods, a

term first introduced by the software package Monocle (Trapnell

et al, 2014). Pseudotime describes an ordering of cells according to

some characteristic in the data; this may represent developmental

processes occurring over time, or the effects of continuous spatial

heterogeneity in a system. Because pseudotime is an ordering of

cells, it allows identification of the cell types at the beginning and

end states of the trajectory, as well as those cells in intermediate

stages (Fig 2). From the ordering of cells, it is possible to identify

the transcriptional changes that accompany developmental

processes, which can also permit the reconstruction of gene regula-

tory networks (Moignard et al, 2015). Additionally, recent develop-

ments allow detection of branching points in trajectories (Haghverdi

et al, 2016), which serve to identify critical points of cellular deci-

sion-making. Note that caution must be exercised when applying

classification and pseudotime methods, as they are guaranteed to

generate output irrespective of the quality of data supplied. There is

rarely any quantification of uncertainty, and results typically depend

on specific parameter choices. For proper interpretation, it is impor-

tant to ensure that input data are of high quality and not

confounded by, for example, batch effects. Moreover, it should be

stressed that scRNA-seq’s static “snapshot” data possess intrinsic

limitations for the study of dynamic processes, which are common

throughout developmental biology (preprint: Weinreb et al, 2017).

The contribution of single-cell expression data to
developmental biology

In this section, we highlight examples from developmental biology

where the application of single-cell gene expression assays has

played a key role in providing new biological insights.

Understanding cellular heterogeneity

There are two ways to look at scRNA-seq data: how the expression

profiles of individual cells differ from each other, and what structure

in the data drives this; or how different genes behave across the

population of cells and with respect to other genes’ expression. In

this section, we describe how cultured mouse embryonic stem cells

have been used as a model for understanding the role of dynamic

gene expression patterns, before discussing how expression variabil-

ity observed between cells in mouse embryos defines cell fate

choices in early development.

Observing heterogeneity in cultured cells Embryonic stem cells are

a foundational tool of developmental biology research, offering a

platform to investigate specific cell fate choices by signal-induced

differentiation. Early work on mouse embryonic stem cells (mESCs)

identified archetypal gene expression patterns across cells, high-

lighting bimodal and lognormally expressed genes (which were typi-

cally pluripotency regulators) as well as sporadically expressed

transcripts (mostly differentiation markers; Kumar et al, 2014). It is

difficult to address the dynamics of cellular gene expression from

scRNA-seq data alone, as it captures only snapshots of cells’ gene

expression (preprint: Weinreb et al, 2017). To address this, Kumar

et al allowed individual cells to grow into colonies over 3 days and

quantified the expression levels of key pluripotency genes in indi-

vidual cells of each colony. A higher level of inter-colony variance

than intra-colony variance was observed, demonstrating that the

initial gene expression differences that existed within the originating

cells had not been overcome by gene expression pattern changes

over the course of several cell cycles. The rate of change of pluripo-

tency markers was therefore shown to be relatively slow.

Further work in mESCs focussed on identifying differences

between cell culture conditions: a foetal calf serum + LIF environ-

ment promotes self-renewal in stem cells, while adding additional

inhibitors (“2i”) further prevents differentiation. Cells treated

in each of these conditions were profiled using scRNA-seq

(Kołodziejczyk et al, 2015). Although global levels of gene expres-

sion variability were equivalent between environments, specific

functional groups of genes were more or less variable in each condi-

tion. Gene ontology terms such as “organ development” were more

variably expressed in the serum condition, where differentiation is

less repressed, while 2i-treated cells showed greater variability in

the expression of cell-cycle genes. Whole-transcriptome compar-

isons additionally revealed that the different treatments produce

distinct transcriptome profiles, suggesting no overlap between

subpopulations of serum-treated and 2i-treated cells, as was previ-

ously thought to be the case.

Heterogeneity in vivo To form the axes that define embryonic struc-

ture, an embryo must break the initial symmetry of the zygote. The

degree to which stochastic fluctuations in gene expression bias

cell fate in symmetry breaking is controversial (Hadjantonakis &

Arias, 2016), so application of single-cell approaches is particularly

appropriate.

An analysis of mouse embryonic cells (from the zygote to 16-cell

stage) explored expression heterogeneity between cells in each

embryo. Cell expression profiles become increasingly diverse imme-

diately following the first zygotic division, driven by both transcript

partitioning error during mitosis and stochastic gene expression (Shi
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et al, 2015). Different groups of genes showed different behaviours,

with some showing transiently or progressively increased variabil-

ity. Few already variable genes become more variable after the

8-cell stage: it is possible that transcriptional differences between cells

in an embryo begin to become fixed at this time. Finally, the authors

highlighted how the ratio of two genes’ expression may display

particularly large amounts of heterogeneity due to asymmetric RNA

distribution at mitosis, particularly if one or both of the initial tran-

scripts is expressed at a low level. Given that many developmental

decisions are specified by opposing lineage specifiers, stochastically

driven heterogeneity in the expression of lineage specifiers seems a

reasonable explanation for how symmetry can be broken.

Another study applied scRNA-seq to mouse embryonic cells from

the 2-cell to 16-cell stage of development (Goolam et al, 2016), iden-

tifying highly heterogeneous expression of Sox2 and Oct4 (master

pluripotency regulators) gene targets at the 4-cell stage. Sox21 was

identified as a gene of potential importance due to particularly

heterogeneous expression across cells within an embryo and its

joint regulation by Sox2 and Oct4. Moreover, Sox21 knockdown was

shown to subtly bias cells towards an extraembryonic fate. Coupling

the observed heterogeneity in Sox21 expression with its fate-biasing

effect, it was suggested that this heterogeneity may be responsible

for pushing cells towards specific lineages during early develop-

ment. However, definitively identifying the origin of these hetero-

geneities remains a challenge.

As development proceeds, cells become specialised into differen-

tiated cell types through processes that are often summarised as a

set of binary decisions. Single-cell approaches are especially useful

in this context, because they capture cells before, during and after

lineage commitment, unlike the discrete population averages of bulk

sequencing (Fig 3).

One study has analysed gastrulation in the mouse, capturing

epiblast cells at embryonic day (E) 6.5 along with mesodermal cells

(marked using the cell-surface marker Flk1) at E7.0, E7.5 and E7.75

(Scialdone et al, 2016). Different cell types were readily identified,

with pseudotime constructed over the blood precursor lineage reca-

pitulating known gene expression changes and facilitating identifi-

cation of new marker genes.

Using these data as an “atlas” of normal embryonic development

allowed the authors to investigate how perturbations to develop-

mental mechanisms affect cells’ expression patterns and the cell

types that they can differentiate into. A common hypothesis, driven

by work in embryonic stem cell systems, states that cell fate

commitment follows a path of binary choices. In the mesodermal

lineage analysed here, Tal1 is a transcription factor essential for

specification of the blood lineage through an unknown mechanism

of action. Under a binary decision model, Tal1�/� cells would

necessarily differentiate to a cardiac lineage in the absence of this

key transcription factor, as supported by in vitro studies (Org et al,

2015).

The authors generated Tal1 knockout embryos, applied scRNA-

seq to the mesodermal lineage and computationally mapped cells

from the Tal1�/� embryos on to the clusters identified from wild-

type cells. This allowed proper comparison between similar cell

types between the two sets of embryos while controlling for compo-

sitional changes.

Cells from the mutant embryos did not map to the blood progeni-

tor or erythroid clusters, consistent with the absence of Tal1.

However, cardiac markers were not upregulated in the Tal1�/�

cells, unlike observations in vitro (Van Handel et al, 2012). Because

the cells were not committing towards the cardiac fate, the findings

called into question whether binary cell fate choices previously

reported from Tal1 knockout cells are an in vitro artefact, or instead

occur at a later stage in vivo (Van Handel et al, 2012).

Developmental trajectories

A particular advantage of single-cell methods is the ability to capture

cells at various developmental stages in a single experiment. It is

possible to reconstruct developmental pathways using the variety of

cell states assayed using techniques motivated by the concept of

pseudotime (see Fig 2 and section “State-of-the-art analysis tech-

niques”, above). Using this cell ordering, it is possible to inspect how

cells change over the course of development, and which genes are

critical for driving progression. This approach has been applied very

widely and here we discuss some examples of how it has provided

insight from different gene expression measurement technologies.

Cultured embryonic stem cells offer a versatile platform for

following developmental pathways, as different morphogens can

guide their development into a number of different tissues. One

example is a study of the development of human definitive endo-

derm cells (Chu et al, 2016). In this study, cells were ordered along

the developmental pathway, successfully reconstructing the beha-

viour of known markers. This ordering allowed the discovery of

novel candidate regulators; for example, a driver of definitive
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Figure 2. Pseudotime recapitulates developmental trajectories.
(A) By observing similarities between the expression profiles of cells, it is possible to order cells along an axis of pseudotime that recapitulates developmental processes. (B)
Having established this ordering, genes that show significant changes in expression along the developmental pathway may be identified.
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endoderm differentiation (KLF8) was identified and validated by

testing for changes in the fraction of differentiated cells post-KLF8

knockdown.

Trajectory inference is not limited to transcriptome data.

Single-cell protein expression data (acquired by mass cytometry)

have been used to identify the developmental progression of B

cells in human bone marrow (Bendall et al, 2014). In addition

to identifying a developmental progression consistent with

known marker proteins, rapid changes in protein expression

along pseudotime were used to identify points of cellular coordi-

nation—these correspond to the checkpoints that define progres-

sion between developmental stages. Additionally, changes in the

structure of the regulatory network of STAT5 along B-cell devel-

opment were noted.

Mesodermal cells from 7- to 8-day-old mouse embryos were anal-

ysed using single-cell qPCR to understand the early development of

blood lineages (Moignard et al, 2015). Here, diffusion maps were

used to identify developmental pseudotime trajectories (Haghverdi

et al, 2015), recovering correctly the ordering of known markers.

Cell states were defined via binarisation of the expression data, and

a network was constructed that linked cells through changes in a

single gene’s expression state. This facilitated a mechanistic inter-

pretation of the data, where predicted gene regulators were

supported by motif searches and, for Erg1, validated in reporter

systems.

Finally, it has also been shown that developmental trajectories

inferred from chromatin-accessibility assays correspond closely to

those inferred from expression information (preprint: Pliner et al,

2017).

Coupling information from different expression modalities along

developmental trajectories offers potential for improved experimen-

tal design. For example, rare but important cell types could be iden-

tified using very high-throughput proteomic or flow cytometry

techniques, before using identified markers to sort cells for tran-

scriptome-wide analysis with scRNA-seq.

Allele-specific expression

Biases of expression of different alleles is a difficult problem to

dissect in bulk populations: Is it driven by subpopulations of cells

that express only one allele at a time, or by a consistent but small

bias across all cells? How much does the noisy process of transcrip-

tion affect the way individual alleles are expressed?

To assay allele-specific expression (ASE) at the single-cell level,

experiments must be designed carefully. Library preparation should

ideally follow a protocol that allows reads to be generated across

the whole length of the transcript [e.g. Smart-Seq2 (Picelli et al,

2014)], to maximise the number of inter-allele polymorphisms that

can be assayed. Additionally, a system with the greatest possible

number of allelic sequence differences is preferred. A frequently

used system is the F1 hybrid mouse, that is the offspring of two dif-

ferent inbred lines.

The first single-cell RNA-seq study of ASE used early-stage

mouse embryos (up to the blastocyst stage) and adult tissues (Deng

et al, 2014), observing a high rate of monoallelic expression (12–

25%) for even highly expressed autosomal genes. Cells in the same

embryo expressed different genes monoallelically, implicating

chance in deciding which alleles are expressed in individual cells.

Similar behaviour has been observed in primary human fibroblasts

(Borel et al, 2015), suggesting that stochastic monoallelic expression

is common across many species and cell types.

While certain genes are known to produce predictable allele-

specific expression patterns (i.e. imprinted and sex-biased genes),

many genes display expression from a specific allele chosen appar-

ently at random. This type of allele-specific expression is referred

to as autosomal random monoallelic expression (aRME). aRME

describes a heritable attribute of gene expression, for which single-

cell analysis provides a particularly useful experimental tool.

Reinius et al (2016) applied single-cell RNA-seq to clonal cell

populations, showing that less than 1% of genes demonstrating

aRME had conserved behaviour; this is in contrast to previous

bulk RNA-seq work that observed aRME for over 7% of assayed

genes (Gimelbrant et al, 2007). This single-cell work hints at the

very dynamic nature of transcription (as expressed alleles change

at least as fast as the cell cycle) and a lack of coordination

between expression of different alleles.

Allele-specific expression is a useful tool for studying X chromo-

some inactivation (XCI), the process by which the dosage of X chro-

mosome genes is controlled between sexes in mammals (Fig 4).
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Figure 3. scRNA-seq resolves cellular heterogeneity.
(A) While bulk gene expression assays provide an average read-out of transcription over many cells, single-cell RNA-seq allows the assaying of gene expression in individual
cells. (B) Single-cell approaches facilitate working with complex systems such as embryos, where groups of cells with radically different expression profiles can be analysed
without contamination from neighbouring tissues.
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Experiments in both mice (Chen et al, 2016) and humans

(Petropoulos et al, 2016) showed that the process is asynchronous

across cells and that gene expression from the silenced X chromosome

is gradually and uniformly reduced. One interesting difference

between the two is that Xist is biallelically expressed during XCI in

humans and monoallelically expressed in mice.

Lineage tracing

Nearly all measurements of gene expression kill the cell, providing a

snapshot of cellular development but losing information about a

cell’s lineage. As a cell’s lineage represents a history of the decisions

that cells have made during development, it is closely intertwined

with cell fate choice. Assays have now been developed to recon-

struct cell lineage alongside the capturing of expression data.

The most direct approach for identifying lineage relationships

between cells using sequencing technologies lies in the genome. The

pattern of mutations that individual cells acquire over time is passed

on to their daughter cells upon division—a lineage tree can there-

fore be constructed from the distributions of these mutations across

cells. However, single-cell whole-genome sequencing is expensive

and presents many technical challenges (Gawad et al, 2016).

In particular, the relative infrequency of neutral mutations per

cell cycle makes lineage determination over short timescales diffi-

cult. Given this, two techniques have been designed to implement

CRISPR/Cas9 genome editing via a synthetic construct within a cell,

which can accumulate mutations in a rapid manner. One of these

methods provides output via imaging (Frieda et al, 2017) and the

other via transcriptome or genome sequencing (McKenna et al,

2016). Both rely on the editing of a DNA-inserted barcode: endoge-

nously expressed Cas9 (with an appropriate guide RNA) progres-

sively and randomly alters this barcode, leaving permanent

sequence changes that are inherited by daughter cells. The cell may

transcribe the barcode, amplifying its presence within the cell, from

where the sequence can be read out by probe labelling (Frieda et al,

2017), by RNA-seq (preprint: Raj et al, 2017) or simply by DNA

sequencing (McKenna et al, 2016). The similarities and differences

between cells’ barcodes catalogue the mutational history of the

assayed cells, and therefore the lineage relationship between them

(Fig 5).

The sequencing approach was applied to zebrafish embryos by

McKenna et al (2016), showing that adult organs were derived

from only a small number of progenitor cells and that individual

ancestral progenitor cells contributed to multiple organs and germ

layers. The imaging approach has been demonstrated by a proof-

of-concept study in mouse embryonic stem cells (Frieda et al,

2017).

Such a scarring system may be made inducible by some signal

provided experimentally or naturally within a biological system.

This adaptation allows for improved lineage resolution at particu-

larly important time points.

Spatial transcriptomics

Cellular decision-making is heavily influenced by a cell’s environ-

ment and the signals it receives from its neighbours. However, exist-

ing scRNA-seq techniques require tissue dissociation, thereby

discarding spatial information. Recovering this information has been

the subject of several computational investigations.

Several groups have utilised gene expression atlases onto which

cellular expression profiles can be remapped (Fig 6B). One

approach used existing in situ hybridisation maps of spatially

restricted genes as a “barcode” to which the complete expression

profiles of individual cells can be matched. This was applied by two

groups to reconstruct expression patterns in zebrafish embryos

(Satija et al, 2015), and to the brain of the marine annelid
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Figure 4. Allele-specific expression at single-cell resolution.
By exploiting single nucleotide polymorphisms in single-cell RNA-seq reads, it is
possible to quantify how much individual alleles contribute to a gene’s total
expression. For developmental biology, this can be applied to study, for example,
when monoallelic expression patterns become set during embryonic
development and how they relate to fate decision, as in the case of X
chromosome inactivation (Chen et al, 2016).

Cas9

Shared lineage Shared lineage

Synthetic
DNA insert

©
 E

M
B

O

Figure 5. Lineage tracing.
Understanding how cells are related to each other is central to understanding
how developmental processes work. However, comparison of transcriptomic
profiles does not allow the reconstruction of these lineage relationships. Recent
approaches used CRISPR/Cas9 to mutate a synthetic DNA construct, providing a
genomic or transcriptional read-out containing cell lineage information.
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Platynereis dumerilii (Achim et al, 2015). This type of approach is

particularly useful where the biological structure is robust between

samples, or where many high-quality reference data sets exist.

Where the system considered is known to have a robust or

invariant structure, it is possible to reconstruct pseudospatial infor-

mation from scRNA-seq expression data alone. Scialdone et al

(2016) used an unsupervised approach to position cells along the

anterior–posterior axis of the primitive streak during gastrulation,

identifying genes expressed posteriorly (biasing cells towards, e.g.,

blood fate) and those expressed anteriorly (biasing cells towards,

e.g., endoderm). Despite successes with post hoc reconstruction,

methods that preserve spatial information experimentally will likely

prove more accurate and generalisable, particularly to tissues with

complex structure. Consequently, several groups have worked to

develop such techniques.

The recently developed methods of merFISH (Chen et al, 2015)

and seqFISH (Shah et al, 2016b) use sequencing-by-hybridisation

techniques for transcriptomic quantification. In these assays, fixed

cells are subject to repeated washes of fluorescently labelled DNA

probes coupled with matched rounds of imaging; careful design of

the probes allows individual RNA species to be identified by dif-

ferent sequences of fluorescence across washes, building up a

unique barcode for each transcript (Fig 6A). The accuracy and reso-

lution of these techniques have been improved by sample back-

ground clearing (Moffitt et al, 2016; Shah et al, 2016a), but the

number of genes that can be reliably assayed has remained much

lower than can be achieved with scRNA-seq (e.g. 249 genes in Shah

et al, 2016b). However, recent efforts have reported the quan-

tification of over 10,000 different transcripts in the same cells (Eng

et al, 2017).

Locational information in these FISH assays is encoded at the

individual transcript level, allowing the examination of intra-cellular

effects (e.g. organelle localisation) as well as inter-cellular influ-

ences. These imaging techniques offer vast potential in

developmental biology, particularly with regard to understanding

signalling processes in complex systems such as embryos.

The importance of perturbations in single-cell analyses

High-throughput -omics techniques have found their forte in

hypothesis generation: because they quantify vast amounts of infor-

mation, they offer considerable scope for identifying differences

between samples that can form the basis of future targeted studies.

However, in and of themselves, changes in gene expression levels

do not provide conclusive evidence for hypotheses: Are cellular

phenomena driving or being driven by the expression change? Is the

expression change a function of some orthogonal effect? Have

apparently significant changes arisen by chance? Follow-up experi-

ments are therefore critical—by inducing over- or underexpression

of a gene, strong signals should be detectable from further -omic

assays, or through cellular behaviour alone. An appealing alterna-

tive exists for single-cell transcriptomics: natural variation in expres-

sion levels. As cells stochastically express more or less of individual

genes than other cells in a population, differences in overall gene

expression should propagate through gene regulatory networks,

forming a large set of “micro-perturbations”. However, such small

differences can be readily confounded by technical artefacts (e.g.

batch effects), and inference of gene regulatory networks from

scRNA-seq data has been challenging to date. For instance, the

SCENIC package utilises cis-regulatory information to reinforce tran-

scriptional gene network learning (Aibar et al, 2017).

One possible solution to this problem is the combination of

single-cell RNA-seq with targeted CRISPR screens to produce more

impactful perturbations at high throughput (Adamson et al, 2016;

Dixit et al, 2016; Jaitin et al, 2016; Datlinger et al, 2017). Implemen-

tations of this approach are Perturb-seq and CROP-seq. Specifically,

these methods infect pools of cells with viral constructs containing
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Figure 6. Spatial gene expression data.
(A) Most single-cell gene expression assays require dissociation of tissues, destroying locational information. New in situ hybridisation methods, however, offer high-
throughput transcriptomic quantification captured alongside intra- and inter-cellular localisation. (B) In the absence of such techniques, others have used reference “atlases”
to map back sequenced cells onto structures with known expression patterns.
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guide RNAs, which together with endogenously expressed Cas9

protein can target specific areas of the genome. Single-cell RNA-seq

can then be applied to profile the transcriptome of each cell in

addition to the specific guide RNAs that were transduced, linking a

holistic view of gene expression with the knowledge of which

perturbations have caused these transcriptional changes. Because of

the pooled nature of such experiments and the ability to tune the

multiplicity of infection, it is possible to load a large assortment of

guide RNAs into a single experiment, allowing the investigation of a

complex set of interacting perturbations without needing to

massively increase the experiment’s scale.

The future of single-cell transcriptomics in
developmental biology

Already single-cell transcriptomics has had a transformative effect

in developmental biology: the ability to assay individual cells has

facilitated the study of highly heterogeneous but small cell popula-

tions from the earliest stages of development. Moving forward, there

are several areas where new developments will lead to even deeper

insights than have already been obtained.

Perhaps most obviously, the vast majority of single-cell experi-

ments performed to date divorce the spatial location of a cell from

its transcriptional profile. Especially in early development, where

spatial location affects the signals that a cell receives and thus its

eventual fate, marrying these two sources of information will be

extremely powerful. New approaches that increase the throughput

of multiplexed RNA FISH, and other in situ sequencing technolo-

gies, promise to make this a reality. One important challenge will be

to computationally record the location of individual cells within the

embryo using a common coordinate framework—this will facilitate

cross-sample comparisons. Interestingly, such a framework has

already begun to be developed within the context of the Allen Brain

Atlas (Sunkin et al, 2013) and will be an important challenge for the

nascent Human Cell Atlas project (Regev et al, 2017). Extending this

to early development will be critical, with effective work in the fly

having already begun (Karaiskos et al, 2017).

Once generated, these spatially resolved maps of expression

within the embryo will facilitate computational inference of signal-

ling gradients, enabling both known and novel morphogen patterns

to be found. This will play a key role in understanding how cells

incorporate signalling information to make decisions about their

downstream fate. While interesting, such new hypotheses will have

to be complemented by additional experiments, for example involv-

ing the use of conditional knockout models.

Another key area where technology is driving biological discov-

ery is the ability to assay multiple molecular layers within the same

cell. Recent advances have allowed the epigenome, transcriptome

and chromatin accessibility of the same cell to be profiled (preprint:

Clark et al, 2018), therefore allowing insight into the mechanisms

driving changes in gene expression. When coupled with information

about a cell’s location in the embryo (and the associated signalling

gradients introduced above), we will begin to move towards a holis-

tic model of cell fate choice and, indeed, of embryogenesis itself.

Underpinning all of these advances will be developments in

computational methods. It is critically important that computa-

tional methods are developed in parallel with new technologies

and that computational biologists work in close partnership with

the experimental laboratories generating the data. Together, the

potential for transforming our understanding of development is

tremendous.
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