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Order-preserving submatrices (OPSMs) have been applied in many fields, such as DNA microarray data analysis, automatic
recommendation systems, and target marketing systems, as an important unsupervised learning model. Unfortunately, most
existing methods are heuristic algorithms which are unable to reveal OPSMs entirely in NP-complete problem. In particular, deep
OPSMs, corresponding to long patterns with few supporting sequences, incur explosive computational costs and are completely
pruned by most popular methods. In this paper, we propose an exact method to discover all OPSMs based on frequent sequential
pattern mining. First, an existing algorithm was adjusted to disclose all common subsequence (ACS) between every two row
sequences, and therefore all deep OPSMs will not be missed. Then, an improved data structure for prefix tree was used to store
and traverse ACS, and Apriori principle was employed to efficiently mine the frequent sequential pattern. Finally, experiments
were implemented on gene and synthetic datasets. Results demonstrated the effectiveness and efficiency of this method.

1. Introduction

Recent numerous high-throughput developments in DNA
chips generate massive gene expression results, which are
represented as matrix 𝐷 of real numbers with rows (objects)
to represent the genes and columns (attributes) to represent
the different environmental conditions, different organs, or
even different individuals. Each element or entry represents
the expression level of a gene under a specific condition.

To analyze the gene expression data, clustering is widely
used to gather the objects into different clusters based on
similarity. The objects in the same cluster are as similar as
possible. Genes in the same cluster may show similar cellular
function or expression mode, implying that they are more
likely to be involved in the same cellular process. Similar-
ity measurements are mainly based on distance functions,
including the Euclidean distance and Manhattan distance.
However, these distance functions are not appropriate to
measure the object correlation in the gene matrix [1]. More-
over, only a small subset of genes participate in any cellular
process of interest, and a cellular process occurs only in a
subset of the samples, requiring biclustering or the subspace

clustering to capture clusters formed by a subset of genes
across a subset of samples [2].

Table 1 shows an example of the original 5 × 6 data matrix
and the corresponding graph is shown in Figure 1(a). If all
the rows or columns are considered, then the commonmode
could not be found. However, if the first five columns are
considered, then the 2nd, 3rd, and 4th lines showed the same
trend across these five columns as shown in Figure 1(b).

The problem is particularly true for gene expression anal-
ysis because the gene expression matrix usually has very high
dimension [1]. However, the traditional clustering such as𝐾-
means [3] and hierarchical clustering [4] are difficult to use
to identify these subsets. Given this observation with respect
to the high dimensional data set, those embedded clusters
attract wide concern in recent years [5–7], and many biclus-
tering algorithms have been proposed to solve this problem
[8–11]. Among them, the pattern-based subspace clustering,
which is based on the pattern similarity rather than the
distance similarity, has been widely applied in the analysis of
gene expression, recommender systems, target sales, and so
on.
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Figure 1: (a) Original data matrix: 5 rows and 6 columns; (b) three rows exhibit a coherent pattern.

Table 1: Raw data matrix.

Rows Columns
1 2 3 4 5 6

Row 1 40 27 35 8 27 57
Row 2 7 51 42 13 24 42
Row 3 15 43 37 21 31 27
Row 4 27 55 49 33 42 59
Row 5 20 11 31 37 31 39

The typical microarray data sometimes has high level
noise. Coregulation genes do not necessarily have the same
absolute expression level. So to make a comparison of dif-
ferent genes in different experiments, the relative expression
levels are more meaningful than their absolute values. Inter-
esting biological knowledge is usually concealed in the genes,
which show a similar pattern (rises and falls) in different
experimental conditions.

This paper focuses on pattern-based subspace clustering,
also known as order-preserving submatrix (OPSM) model.
A noncontiguous submatrix is OPSM provided column
permutation exists, such that the values in all the rows
of the submatrix are strictly monotonically increasing. The
tendency among the elements matters more to the model
than the actual values. Figure 2 shows that the sequences
are monotonically increasing under the new column order
given that columns are rearranged. In the field of biology,
OPSMmodel has been accepted as a biologically meaningful
cluster model. In addition, the model can also be used in
business forecasting. For example, the customers are divided
into several categories according to the customer scoring on
the telecom tariff packages. Customers who belong to the
same class have the same needs such as internet connectivity
and surfing speed. The market manager can devise different
market strategies for different customer groups based on the
results.
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Figure 2: Three rows form a coherent ascending pattern under
permutated columns.

If each row vector is sorted in an ascending order with the
column indices replacing the original value, then the original
matrix is transformed into data set of sequences and OPSM
mining problem is simplified as a special case of frequent
sequential pattern mining [12]. A frequent sequential pat-
tern is uniquely defined as OPSM with all the supporting
sequences as rows. The length of a sequential pattern is
the number of columns included. Supporting count is the
number of rows containing the sequence. A sequential pat-
tern whose supporting count is beyond a minimum support
threshold, min sup, is also known as frequent sequential
pattern. Therefore, the problem of mining significant OPSM
is equivalent to the search for the complete set of frequent
sequential patterns.

Most existing sequential pattern mining methods rely on
setting minimum support threshold to narrow the search
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Table 2: Transformed sequence data sets.

Rows Columns
1 2 3 4 5 6

Row 1 4 2 5 3 1 6
Row 2 1 4 5 3 6 2
Row 3 1 4 6 5 3 2
Row 4 1 4 5 3 2 6
Row 5 2 1 3 5 4 6

space. Given that the small support threshold will cause
the explosive growth of the calculation cost, most of the
existing methods improve the efficiency of the algorithm
by setting a comparatively larger threshold. However, the
large supporting threshold could not find the deep OPSM.
The concept of deep OPSM with long patterns and small
supporting row count was first proposed by Gao et al. [12].
Deep OPSMs are significant to biologists because they may
represent small groups of genes that are tightly coregulated
under some conditions. In some important biological pro-
cesses, such as protein-protein interactions, and biological
pathway membership, only a limited number of genes are
involved in these processes. However, the general algorithms
for frequent sequential pattern mining usually ignore this
type of OPSMs.

To solve the above problems, this paper transforms
OPSM into frequent sequential pattern first, and then an
exact algorithm is proposed to search OPSMs based on
frequent common subsequence mining. It can mine all
OPSMs embedded in a given matrix and provide flexibility
for row and column supports, which allows the discovery of
deep OPSMs.

An algorithm calACS proposed byWang and Lin [13] was
improved to determine all common subsequences between
two sequences. Then, the Apriori rules were introduced to
narrow the search space, and the prefix tree was constructed
to store and traverse the sequence modes to reduce time
and space complexity. Finally, all OPSMs satisfied the defined
threshold. In our algorithm, the computation cost would not
increase enormously even if the value of the threshold was
very small.

The rest of this paper is organized as follows. In Section 2,
we review some related works. Section 3 defines OPSM. Sec-
tion 4 describes the algorithm and the data structure. Section
5 reports the experimental results. Section 6 concludes the
paper.

2. Related Work

Subspace clustering determines the embedded clusters in
high dimensional data set. Hartigan [14] first proposed to
cluster rows and columns simultaneously. Cheng and Church
[15] applied it for knowledge discovery in the expression of
gene data. The method overcame the weakness of traditional
clustering methods, allowing for the simultaneous clustering
of genes and conditions. If themean square error of submatrix
𝐴 is less than 𝛿, then submatrix 𝐴 is a bicluster. A greedy

algorithm is proposed to search submatrices with low mean
square error in a gene expressionmatrix, which are consistent
biclusters. These submatrices performed well to determine
coregulation patterns in genes and attributes [15].

Ben-Dor et al. [16] first proposed OPSM mining model,
which pertained to the relative value of entry rather than the
actual value. OPSM is essentially a pattern-based subspace
clustering. The subset of a matrix is OPSM when the value
of each row is strictly increasing or decreasing under column
permutation. They proved that the problem is NP-hard and
presented a greedy heuristic algorithm forminingOPSM.The
algorithm can mine some OPSMs with large row support but
cannot guarantee that all OPSMs could be found.

Cheung et al. [1] proposed a maximal OPSM model,
converting OPSM problem into a sequential pattern mining
problem. To mine all maximal OPSMs with a candidate
generation-and-test framework, a new data structure head-
tail tree was introduced. However, their algorithm is based
on the Apriori principle, and thus the number of maximal
OPSMs was affected by supporting row threshold, which
increases in proportion with database size.

Gao et al. [12] proposed a new model also known as
deep OPSM, referring to long patterns with a few support-
ing sequences. Deep OPSMs have biological significance.
A framework KiWi was proposed to mine deep OPSMs
in massive data sets effectively. Two parameters 𝑘 and 𝑤

were exploited to bound existing computing resources and
determine as many deep OPSMs as possible. However, the
algorithm was heuristic, which cannot guarantee the finding
of all deep OPSMs.

3. OPSM Problem

In this section, we defined OPSM and detailed the process
of transforming OPSM into the problem of mining frequent
common subsequences.

Consider 𝑛×𝑚 data matrix𝐷, where 𝑅 is the row set and
𝐶 is the column set in 𝐷. 𝑑

𝑖𝑗
is the entry whose row label is

𝑖 and column label is 𝑗. A cluster 𝑆 = (𝑅
𝑆
, 𝐶
𝑆
) is a submatrix

of 𝐷, where 𝑅
𝑆
is a subset of 𝑛 rows and 𝐶

𝑆
is a subset of 𝑚

columns.The rows and columns do not need to be contiguous
in𝐷.

Definition 1. Submatrix 𝑆 is OPSM if there exists a per-
mutation of 𝐶

𝑆
. The entries of each row in 𝑅

𝑆
are strictly

monotonically increasing. For example, Table 1 displays a 5 ×
6matrix. If rows 2, 3, and 4 are increasing from𝐶

1
to𝐶
2
, then

({2, 3, 4}, ⟨1, 2⟩) is OPSM. The fundamental goal is to find all
the significant OPSMs in a given data matrix𝐷.

In the data preprocess, each row is sorted in an ascending
order, and the values are replaced by the original column
label. Then, the original matrix is transformed into data set
of sequences. The original data matrix of Table 1 is modified
into the data set of sequences shown in Table 2. If the values
of two entries in a row are the same, then the one that
appears earlier is placed in front. A sequential pattern is
frequent when the support of the sequence is greater than a
predefined minimum support threshold, min sup. Therefore,
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OPSM mining problem can be simplified as a special case
of frequent sequential pattern mining. A frequent sequential
pattern uniquely defines OPSM, in which the sequential
pattern is composed of OPSM columns, and the support
sequence comprises the rows of OPSM.

Most existing sequential pattern mining methods search
OPSMs by finding all the sequences whose support is greater
than a given minimum support threshold. The efficiency
of the mining algorithm is very sensitive to the minimum
support threshold. A larger threshold is adopted to narrow
the search space and reduce the complexity of the algorithm
because a small threshold results in the high cost of compu-
tation. However, this method ignores some statistically and
biologically significant OPSMs, deep OPSMs. Deep OPSMs
areOPSMswith comparativelymore columns and fewer rows
that cannot be efficiently discovered by traditional methods
[12].

To solve this problem, a new exact algorithm is proposed
in this paper. The first step is to determine all common
sequences from each two rows in the data set to form the
candidate patterns with arbitrary length whose support is at
least 2. Then, the database is scanned to calculate the row
support for the candidate patterns whose length is 2 to find
all the frequent sequential patterns with length 2. The third
step is to construct the prefix tree and store the frequent
sequential patterns (with length 2). The fourth step is to
traverse the prefix tree and insert the node in the branch
based on theApriori principle and calculate the support again
to obtain the frequent sequential patterns whose length is 3.
The algorithm runs iteratively until all OPSMs satisfying the
minimum support threshold could be found. In this process,
if larger support threshold is not used to prune, then the
results will contain all the deep OPSMs.

4. Algorithm

4.1. All Common Subsequences. All common subsequence
(ACS) [17] is a variation from the traditional longest common
subsequence (LCS). LCS is a classical problem with a goal
to determine LCS from a set of sequences (generally two
sequences).Wang [17] proposed this newmethod to calculate
the similarity between two sequences. Different from the
previous LCS method, this method calculates the similarity
based on the number of all common sequences between the
two sequences. calACS [13] is a new method to calculate the
number of ACS between sequences 𝐴 and 𝐵. We improved
calACS to obtain all common subsequences between two
sequences. The pseudocode of the improved calACS algo-
rithm is shown as Algorithm 1.

As shown in the pseudocode, 𝑁
𝐴
[𝑖] stores the common

subsequences whose end is element 𝐴
𝑖
[line 6]. Provided

that any two items in the common sequence remained in
the same order in sequences 𝐴 and 𝐵, for any 𝑗 < 𝑖, if
item 𝐴

𝑗
in 𝐵 sequence is arranged before item 𝐴

𝑖
, the same

order in sequence𝐴 is retained [line 17]. Hence, the common
subsequence ending with 𝐴

𝑖
must contain the common

subsequence ending with𝐴
𝑗
. They are combined to form the

new common sequences and all common subsequence of 𝐴
and 𝐵 is the union of𝑁

𝐴
[𝑖] [line 18].

We use a prefix tree to store and traverse all common
sequences. Different from the traditional method to solve
OPSM problem, frequent common subsequences can be
obtained by traversing frequent prefix tree rather than by the
columns joint.

The prefix tree, also known as trie, is an ordered tree
used to store strings or associative arrays, in which the nodes
from the root to the leaf form a path. The root node is null
corresponding to an empty sequence. The common nodes
store the column indices and the leaf nodes retain the row
indices, which support the branch (a branch is a common
subsequence). The sequence is composed of 𝐾 nodes known
as𝐾 sequence as shown in Figure 4. A right path (5, 4) in the
tree and the leaf node preserves the number (3, 4, 5). That is,
rows 3, 4, and 5 have common subsequence (5, 4).

Suppose a complete set of ACS is obtained, such as 𝑆 =
(𝑅
𝑖𝑗
, ⟨𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
⟩). 𝑅
𝑖𝑗
represents the labels of rows 𝑖 and

𝑗. 𝐶
𝑖
is the element and 𝑘 is the length of the common subse-

quence, indicating that ⟨𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
⟩ is ordered. We insert

sequence 𝑆 into the prefix tree whose path is ⟨𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
⟩

and record 𝑅
𝑖𝑗
in leaf nodes, which support the sequence.

The traditional method to construct a prefix tree is des-
cribed in the subsequent paragraphs.

First, we traverse the prefix tree by preorder. If the first 𝑘
prefix of length 𝐾 + 1 sequence is the same as length 𝐾 path
in the prefix tree, then (𝐾 + 1)th node will be added to the
path tail before the leaf node. As the length 𝐾 + 1 sequence
is different from length 𝐾 sequence, the corresponding leaf
node will be revised, and the rows will be recounted to obtain
the support of length𝐾 + 1 path.

However, if data sets are high dimensional and very dense
[12], then the prefix tree will become enormous and occupy
a huge space when new sequences are added. Traversing
and intersection operations are also time-consuming. Hence,
reducing the computational complexity is necessary. In this
paper, we develop two kinds of prefix trees, namely, candidate
and frequent trees, to save the candidate and frequent sequen-
tial patterns, and use the Apriori principle to narrow the
search space of patterns.

According to the Apriori principle, if a length𝐾 sequence
is frequent, then all of its subsequences must be frequent;
in other words, if a length 𝐾 sequence has length 𝐾 − 1

subsequence which is not frequent, then length 𝐾 sequence
must not be frequent either.Thus, if length𝐾−1 subsequence
which is formed by the first𝐾−1 items of length𝐾 sequence
is not a branch in the frequent tree, the length 𝐾 sequence
should not be inserted into the candidate tree.

In Section 4.1, calACS is introduced to obtain ACS
between any two sequences.The common subsequences with
length 2 are employed to generate the 2-candidate prefix
tree. The 2-candidate tree is constructed via traversing and
inserting with each path retaining the column indices, and all
the leaf nodes store the corresponding support row indices,
as well as the number of the support rows. Furthermore, we
use the number of the support rows to determine whether
a branch (i.e., a path) is frequent. If the branch satisfies the
support threshold (min sup), it is preserved; otherwise, it is
pruned. After all the prune operation is performed, the 2-
frequent tree is obtained, which is the first iteration.
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Data: Two sequences 𝐴 and 𝐵
Output: acs—the set of all common subsequences of 𝐴 and 𝐵.
(1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Begin of Initialization ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(2) ind[0] = 0,𝑁

𝐴
[0] = 𝜙;

(3) acs+ =𝑁
𝐴
[0]; //acs is the set of ACS between 𝐴 and 𝐵.

(4) for (𝑖 = 1; 𝑖 ≤ |𝐴|; 𝑖++) do
(5) ind[𝑖] = −1;
(6) 𝑁

𝐴
[𝑖] = null;

(7) for (𝑗 = 1; 𝑗 ≤ |𝐵|; 𝑗++) do
(8) if 𝐴

𝑖
= 𝐵
𝑗
then

(9) ind[𝑖] = 𝑗; //ind[𝑖] represents the index of celement 𝑖 of 𝐴 in 𝐵.
(10) end
(11) end
(12) end
(13) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ End of Initialization ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(14) for (𝑖 = 1; 𝑖 ≤ |𝐴|; 𝑖++) do
(15) if ind[𝑖] ̸= −1 then
(16) for (𝑗 = 0; 𝑗 < 𝑖; 𝑗++) do
(17) if ind[𝑖] > ind[𝑗] then //if 𝑖, 𝑗 stay the same order.
(18) 𝑁

𝐴
[𝑖] = 𝑁

𝐴
[𝑖] ∪ (𝑁

𝐴
[𝑗] + 𝐴

𝑖
);

(19) end
(20) end
(21) acs = acs ∪ 𝑁

𝐴
[𝑖];

(22) end

Algorithm 1

The next step is to add the common subsequences with
length 3 to the 2-frequent tree. The process is as follows.

Preorder traverses the 2-frequent tree. If the first two
prefixes of the length 3 common subsequence are the same as
a branch in 2-frequent tree, then the third node is added to the
tail of the branch and the leaf node is simultaneously updated,
restoring the support row indices and recounting the number
of rows.

By contrast, if the first two prefixes of the length 3
common subsequence do not match any path in 2-frequent
tree, according to the Apriori principle, then the length
3 common subsequence must not be frequent either and
should not be added as a path to the prefix tree. This pro-
cess reduced the unnecessary traversal and the comparison
between sequences, which are very time-consuming in a large
prefix tree. Thereafter, we obtain the 3-candidate tree. After
pruning infrequent branches, the 3-frequent tree is acquired.

The above process is repeated to generate 𝐾-candidate
tree from𝐾−1 frequent tree. Prune the brancheswhich donot
meet the minimum support threshold to obtain 𝐾-frequent
tree, in which each path or branch is a frequent sequence.The
program is not terminated until the common subsequences
with the longest length are visited. The final result is a tree
with the longest path to satisfy the support.The nodes in each
path represent the column indices, and the leaf node of each
path stores the corresponding row indices. Thus, all OPSMs
can be found.

The flowchart of our algorithm is as Figure 3.

4.2. An Example to Find ACS. Given an original𝑀×𝑁 data
matrix𝐷, where𝑑

𝑖𝑗
represents the expression level of the gene

Table 3: A microarray data matrix𝐷.

Rows Columns
1 2 3 4 5

Row 1 120 110 119 100
Row 2 999 128 80 115 810
Row 3 676 300 77 287 264
Row 4 197 107 99 587 101
Row 5 154 78 20 10

Table 4: An example of column permutated matrix 𝐶.

Rows Columns
1 2 3 4 5

Row 1 5 2 3 1
Row 2 3 4 2 5 1
Row 3 3 5 4 2 1
Row 4 3 5 2 1 4
Row 5 5 4 2 1

𝑖 under the condition 𝑗, a matrix is shown in Table 3. When
each row in the matrix 𝐷 is sorted in an ascending order
and their values are replaced by the corresponding column
indices, the matrix is replaced with a new matrix 𝐶 as shown
in Table 4. ACS could be obtained by applying the improved
calACS algorithm for matrix 𝐶.

Common subsequences from arbitrary two rows are
shown in Table 5. However, the relatively large space com-
plexity results in great inconvenience for later traversal,
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tree empty?

Get ACS between any two rows

Get column permutated matrix

Start

No

Yes

K = K + 1

Is K-frequent

Build K-frequent tree

Build K-candidate tree

Set K = 2

Output OPSMs with K columns

Input raw matrix

End

Figure 3: Flowchart of our algorithm.

storage, and support calculations. Hence, a prefix tree is
adopted for faster operation to reduce the space complexity.

4.3. Construct 𝜁-Frequent Prefix Tree. Firstly, 𝜁-candidate
prefix tree would be generated by the candidate 𝜁-
subsequences matrix. Figure 4 illustrates the 2-candidate
prefix tree for 𝜁 = 2 after finding ACS operation. The leaf
nodes of the prefix tree store the labels of the rows of a
common subsequence (a branch). For example, the leaf node
of the right branch in Figure 4 records (3, 4, 5), implying that
rows 3, 4, and 5 have common subsequence whose column
heads are 5 and 4.

The sequences in the leaf nodes of 𝜁-candidate prefix
tree do not necessarily have to be frequent because the 𝜁-
candidate prefix treewould be used to generate the 𝜁-frequent

Table 5: Results of ACS discovery of column permutated matrix 𝐶.

(a) Candidate 2-subsequences matrix

Sequences Common 2-subsequences
1, 2 5, 1; 2, 1; 3, 1
1, 3 5, 2; 5, 1; 2, 1; 3, 1
1, 4 5, 2; 5, 1; 2, 1; 3, 1
1, 5 5, 2; 5, 1; 2, 1
2, 3 3, 4; 3, 2; 3, 5; 3, 1; 4, 1; 4, 2; 2, 1; 5, 1
2, 4 3, 4; 3, 2; 3, 5; 3, 1; 2, 1; 5, 1
2, 5 4, 2; 4, 1; 2, 1
3, 4 3, 5; 3, 4; 3, 2; 3, 1; 5, 4; 5, 2; 5, 1; 2, 1
3, 5 5, 4; 5, 2; 5, 1; 4, 2; 4, 1; 2, 1
4, 5 5, 2; 5, 1; 5, 4; 2, 1

(b) Candidate 3-subsequences matrix

Sequences Common 3-subsequences
1, 3 5, 2, 1
1, 4 5, 2, 1
1, 5 5, 2, 1
2, 3 3, 4, 2; 3, 4, 1; 3, 2, 1; 3, 5, 1; 4, 2, 1
2, 4 3, 5, 1; 3, 2, 1
2, 5 4, 2, 1
3, 4 3, 2, 1; 3, 5, 4; 3, 5, 1; 3, 5, 2; 5, 2, 1
3, 5 5, 4, 2; 5, 4, 1; 5, 2, 1
4, 5 5, 2, 1

(c) Candidate 4-subsequences matrix

Sequences Common 4-subsequences
2, 3 3, 4, 2, 1
3, 4 3, 5, 2, 1

prefix tree whose leaf nodes are frequent subsequences with
length 𝑘.

𝜁-frequent prefix tree is constructed by deleting the infre-
quent subsequences that dissatisfy the minimum support 𝛿.
Figure 5 is an example of 𝜁-frequent prefix tree (𝜁 = 2).

4.4. Build the (𝜁+1)-Frequent Prefix Tree. Specific steps are
detailed to construct (𝜁 + 1)-candidate prefix tree. Based on
Apriori principle, if a sequence is frequent, then all of its
subsequences must be frequent. Only the frequent sequences
can generate the supersequence.

To build (𝜁 + 1)-frequent prefix tree, first the (𝜁 + 1)th
element of the common (𝜁 + 1) subsequences is inserted into
(𝜁 + 2)th layer of 𝜁-frequent prefix tree. At the same time,
the leaf nodes of 𝜁-frequent prefix tree are revised. Second,
the infrequent subsequences of (𝜁 + 1)-candidate prefix tree
are rejected, and (𝜁 + 1)-frequent prefix tree is established in
this way. Moreover, (𝜁 + 1)-candidate prefix tree and (𝜁 + 1)-
frequent prefix tree of the example are shown in Figure 6.

5. Experiments and Results

5.1. The Experiment on Gene Data Set. The algorithm was
implemented on the platform of MATLAB R2011b with i3



Computational and Mathematical Methods in Medicine 7

Null

3

33

4

44

2, 3, 4 2, 3, 4 2, 3, 4 2, 3, 5 2, 3, 5

2

2 2 21 1 1

11

1

1, 2, 3, 4, 5 1, 3, 4, 5 3, 4, 51, 2, 3, 4, 51, 2, 3, 4

5

5

Figure 4: Example of two-candidate prefix tree.
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5

5

235 235

Figure 5: Example of 2-frequent prefix tree with “𝛿 = 3.”

380CPU and 4G memory, and the operating system was
Windows Server 2007. The real data set was yeast galactose
data of [18, 19], which was 205 × 80 real microarray data
set obtained from a study of gene response to the knockout
of various genes in galactose utilization (GAL) pathway of
baker’s yeast, with columns corresponding to the knockout
conditions and rows corresponding to genes that exhibit
responses to the knockouts.The experimental data set is 160×
40microarray data set by deleting 45 contiguous rows and 40
columns from the original matrix.

5.1.1. Overlap. BicAT software and MATLAB were used in
our experiments [20], and overlap is defined as follows [21].

Let 𝐺
1
, 𝐺
2
be two gene sets in biclusters. The overlap of

𝐺
1
and 𝐺

2
is their intersection divided by their union, and 1

means module identity and 0 means no overlap. Consider

𝑆
𝐺
(𝐺
1
, 𝐺
2
) =

󵄨󵄨󵄨󵄨𝐺1 ∩ 𝐺2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐺1 ∪ 𝐺2
󵄨󵄨󵄨󵄨

. (1)

The experimental results are filtered in two steps.

(1) If a bicluster contains another, then the smaller
bicluster will be abandoned.

(2) The column threshold is set. For example, if the
threshold is six, then the biclusters whose column
numbers are less than six will be discarded.

Finally, we obtained all the biclusters corresponding to
column threshold six. The total number of OPSMs obtained
is shown in Table 6. We can mine all OPSMs that meet the

Table 6: Number of OPSMs of different row thresholds.

The row threshold 3 5 8 10
Number of biclusters 9248 2791 1350 771

row threshold because our algorithm is exact. The number of
OPSMs decreases as the number of row threshold increases.

Furthermore, Figure 7 shows the statistical chart on the
overlap distribution of 771 biclusters whose row threshold is
10 and column threshold is 6.

Figure 7 shows that no-overlap biclusters accounted for
60.42% of the total, and the degree of overlap between 0 and
0.1 (excluding 0) accounted for 35.54% of the total.Therefore,
the biclusters whose overlap was between 0 and 0.1 (including
0) accounted for 95.96%. That is, the biclusters have no
overlap or very small overlap.

5.1.2. An Example of Mined OPSMs. Figures 8(a) and 8(b)
show OPSMs that contain the maximal number of columns
when the row threshold was set to five and eight. Figure 8(a)
shows five genes whose expression values exhibit simultane-
ous rise and fall across 10 different experiments. Figure 8(b)
shows the maximum number of columns that identify OPSM
when the row threshold is eight.

5.1.3. Enrichment. The experimental data set is 160 × 40

yeast data set. We first use CC, HCl, 𝐾-means, OPSM, and
xMotif model in the BicAT toolbox to obtain the results.
Then, we run our program to obtain the corresponding result.
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Figure 6: Results of (𝜁 + 1)-frequent prefix tree mining.
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Figure 8: Two examples of mined OPSMs on gene data set.
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Figure 9: Percentage of significant enriched biclusters/clusters by
GO Biological Process category for the five selected biclustering
methods and our algorithm at different significance levels 𝑃.

The results obtained are packaged, respectively, in GO analy-
sis tool (http://go.princeton.edu/cgi-bin/GOTermFinder) to
obtain their 𝑃 values. Finally, all the results are sorted and
analyzed. Figure 9 compares the enrichment results [22, 23].

Figure 9 shows that the enrichment of our algorithm is
significantly higher than the enrichment of CC, HCl, 𝐾-
means, andOPSM. In particular, the smaller𝑃 value can show
our advantage. The results of xMotif algorithm were close to
ours, but slightly less.

5.2. Experiments on Synthetic Data Set

5.2.1. The Influence of Noise. The generation of the simulated
data is as follows. First, we generated 30×15 standard normal

distribution matrix as the initial matrix with five embedded
nonoverlapping 5×3OPSMswhose row and column setswere
recorded. Then, we generated different levels of noise whose
meanswere 0 and varianceswere 0, 0.002, 0.004, 0.006, 0.008,
and 0.01, respectively. The noise will be added to the initial
matrix. Finally, we obtained six input matrices with different
noise levels.

We introduced match score to evaluate the algorithm
[22]. Let 𝑀

1
and 𝑀

2
be two bicluster sets. Then, the gene

match score of𝑀
1
with respect to𝑀

2
is defined as

𝑆
∗

𝐺
(𝑀
1
,𝑀
2
) =

∑
(𝐺
1
,𝐶
1
)∈𝑀
1

max
(𝐺
2
,𝐶
2
)∈𝑀
2

𝑆
𝐺
(𝐺
1
, 𝐺
2
)

󵄨󵄨󵄨󵄨𝑀1
󵄨󵄨󵄨󵄨

.

(2)

It shows the average of the maximum gene match scores
for all biclusters in 𝑀

1
with respect to the biclusters in 𝑀

2
.

An overall match score can be interpreted as 𝑆∗(𝑀
1
,𝑀
2
) =

√𝑆
∗

𝐺
(𝑀
1
,𝑀
2
) ⋅ 𝑆
∗

𝐶
(𝑀
1
,𝑀
2
), where 𝑆∗

𝐶
(𝑀
1
,𝑀
2
) is the corre-

sponding condition match score.
We calculated the match score of different bicluster

results, and the comparison was as shown in Figure 10 [22].
Thematch score of our algorithm is better than others. As

the level of noise increases, the total match score decreases
slowly.

5.2.2. Overlap. First, we generated 30 × 15 standard normal
distribution matrix with five embedded 5 × 4 OPSMs whose
row and column sets were recorded. Similarly, we obtained
five input matrices with different overlap levels. The levels
of overlap were 𝐿

1
, 𝐿
2
, 𝐿
3
, 𝐿
4
, and 𝐿

5
corresponding to 0,

0.087, 0.1905, 0.3158, and 0.4706, respectively. The synthetic
data were tested by different algorithms, and the match score
of all the results was calculated.The performance comparison
is shown as in Figure 11 [22].

Figure 11 shows that thematch score of our algorithmwas
better than other algorithms.The parameter settings of other
algorithms were based on the best experimental results.



10 Computational and Mathematical Methods in Medicine

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

Noise level

Av
g.

 m
at

ch
 sc

or
e

OPSM
CC
xMotif

HCL

Our algorithm
K-means

Figure 10: Effect of noise.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap degree

Av
g.

 m
at

ch
 sc

or
e

CC
HCL

OPSM
xMotif
Our algorithm

L1 L2 L3 L4 L5

K-means

Figure 11: Effect of overlap.

6. Conclusion

OPSMs have been accepted as a biologically meaningful
biclustermodel. DeepOPSMs consisting of a small number of
genes sharing expression patterns over many conditions are
very interesting to biologists.

In this paper, an exact algorithm was proposed based on
frequent sequential patterns to mine not only all OPSMs,
but also the deep OPSMs. The experiment on the gene data
set showed that this approach can discover the biological
significant OPSMs and deep OPSMs exhaustively. Moreover,
the experimental results for synthetic data sets proved that
our method can effectively mine the implanted biclusters
under different noise and overlap levels.
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“BicAT: a biclustering analysis toolbox,” Bioinformatics, vol. 22,
no. 10, pp. 1282–1283, 2006.

[21] J. Supper, M. Strauch, D. Wanke, K. Harter, and A. Zell,
“EDISA: extracting biclusters frommultiple time-series of gene
expression profiles,” BMC Bioinformatics, vol. 8, article 334,
2007.
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