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Methods of the electrocardiography (ECG) signal features extraction are required to detect heart abnormalities and different kinds
of diseases. However, different artefacts and measurement noise often hinder providing accurate features extraction. One of the
standard techniques developed for ECG signals employs linear prediction. Referring to the fact that prediction is not required for
ECG signal processing, smoothing can be more efficient. In this paper, we employ the 𝑝-shift unbiased finite impulse response
(UFIR) filter, which becomes smooth by 𝑝 < 0. We develop this filter to have an adaptive averaging horizon: optimal for slow
ECG behaviours and minimal for fast excursions. It is shown that the adaptive UFIR algorithm developed in such a way provides
better denoising and suboptimal features extraction in terms of the output signal-noise ratio (SNR). The algorithm is developed to
detect durations and amplitudes of the P-wave, QRS-complex, and T-wave in the standard ECG signal map. Better performance of
the algorithm designed is demonstrated in a comparison with the standard linear predictor, UFIR filter, and UFIR predictive filter
based on real ECG data associated with normal heartbeats.

1. Introduction

The electrocardiography (ECG) signals play a key role in
diagnosing diverse kinds of heart diseases. Because the pulses
produced by heart may have subtle differences from each
other and noise affects the decision accuracy, the ECG is
commonly organized using precise electronic equipment
[1]. Accurate measurements are especially required when
data are used to extract features of ECG signals and make
decisions about different kinds of heart diseases employing
special software. However, even very precise measurements
are typically contaminated by artefacts and noise. Artefacts
may result from a variety of internal and external causes,
such as the Parkinsonianmuscle tremors drying electrode gel.
Different kinds of noises may contaminate the ECG signal
during its acquisition and transmission, such as the high
frequency noise (electromyogramnoise, additive whiteGaus-
sian noise, and power line interference) and low frequency
noise (baseline wandering). Because noise may lead to wrong

interpretation, ECG signal denoising is required. Therefore,
significant attention has been paid during the last decades to
develop mathematical methods and computation algorithms
to extract the ECG features from regular (noisy) data with an
accuracy sufficient for medical needs [2–12].

The Fourier transform-based approach has been devel-
oped in [13] to extract ECG signal features in the frequency
domain. But, this method omits the time resolution, which
affects the estimation accuracy. This issue has been circum-
vented in some other works by providing the time-frequency
analysis without significantly affecting the resolution. In [14–
17], the wavelet transform-based algorithms were developed
to find applications in some medical areas. In the wavelet
domain, a compromise between the frequency and time
resolutions is achieved easier and one can select a proper
wavelet to provide a reasonable accuracy. However, a choice
of an optimalwavelet is still challenging [18] and the approach
has low efficiency in smoothing ECG signals. Other algo-
rithms tested for such needs include the principal component
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analysis (PCA) [19], linear discriminant analysis (LDA) [20],
independent component analysis (ICA) [21], support vector
machine [22], and neural networks [23].

One of the widely recognized approaches proposed in
[24] provides noise reduction and features extraction from
ECG data by employing linear prediction based on the
theory developed in [25].The approach suggests that all main
features of ECG signals can be saved and gained using a one-
step linear predictor. Accordingly, features extraction in the
QRS complex (region of fast ECG excursions) is provided
from an analysis of residual errors between the data and
estimates. The approach has manifested itself as useful in
the detection of arrhythmias. In other works employing one-
step prediction [26, 27], automatic classification of the ECG
cardiac abnormalities is provided using Gaussian mixtures.
Later, the prediction-based approach has been recognized as
one of the standard techniques suitable for ECG signals [28].

It has to be remarked now that, from the standpoint of
optimal filtering, prediction is less accurate in noise reduction
than filtering and much less accurate than smoothing. On the
other hand, the ECG signal processing problems do not imply
predicting future values and smoothing with some time-lag
may be a better choice for cardiac analysis. A classic example
is the Savitzky-Golay filter (smoother) [29], which has found
wide applications in diverse areas [30–35].

An optimal approach to provide smoothing and state
estimation in linear models has been proposed in [36] to
minimize themean square error (MSE). A solutionwas found
on a horizon [𝑚 − 𝑝, 𝑛 − 𝑝] of 𝑁 data points, where 𝑛
corresponds to a fixed discrete point of the ECG signal, 𝑚 =
𝑛 − 𝑁 + 1, and 𝑝 is a discrete shift. The derived optimal
FIR (OFIR) filter becomes smoothing with lag 𝑞 = −𝑝 by
𝑝 < 0, provides filtering with 𝑝 = 0, and becomes 𝑝-step
predictive when 𝑝 > 0. However, the 𝑝-shift OFIR filter
requires information about noise, which is not completely
available for ECG signals.

A special case of the 𝑝-shift OFIR filter is the 𝑝-shift
unbiased FIR (UFIR) filter [36–39], which completely ignores
zero mean noise and is thus more suitable for ECG signals.
As being more general, the 𝑝-shift UFIR filter generalizes the
Savitzky-Golay filter by 𝑝 = −(𝑁 − 1)/2 and linear predictor
with 𝑝 > 0. Although such a filter does not require the noise
statistics except for the zero mean assumptions, it provides
nice near optimal estimates if 𝑁 is set optimally as 𝑁opt by
minimizing the MSE [36].

In this paper, we develop an adaptive-horizon UFIR
smoothing filtering algorithm for denoising ECG signals and
features extraction. We also investigate the trade-off between
the UFIR smoothing filter, UFIR filter, and UFIR predictive
filter and compare them to the standard linear predictor
suggested in [24]. We base our investigations on the MIT-
BIH Arrhythmia Database available for free use from [40,
41]. Focused on the design of efficient algorithms, in this
paper we limit our investigations by data associated with
normal heartbeats and postpone an analysis of different kinds
of heart diseases to future investigations. The rest of the
paper is organized as follows. In Section 2, we describe the
database, theory of the algorithms proposed, and validation.
The experimental results are showed in Section 3, where we
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Figure 1: The heartbeat pulse model represented with features
(amplitudes and durations) of the P-wave, QRS complex, T-wave,
U-wave, and ST angle.

provide a comparison between the UFIR, UFIR smoothing,
and UFIR predictive filtering algorithms. A discussion of
the results is provided in Section 4 and generalizations with
concluding remarks are given in Section 5.

2. Material and Methods

2.1. Materials. This work employs the MIT-BIH Arrhythmia
Database as a benchmark. This database contains 48 ECG
recordings applying two leads (e.g., MLII, V1), obtained
from 47 subjects studied. The recordings have a sampled
frequency 360Hz per channel with 11-bit resolution over a
10 mV range. In general, the lead most common in this
database is MLII where the morphology of signal ECG is
seen clearly. For testing process the MLII lead and sinusal
normal rhythm are considered. Moreover, an additional test
with ECG synthetic data is provided by specialized software
ofMATLABdesigned byKarthik Raviprakash.The simulated
ECG signals are based on principle of Fourier series. Here, the
signal is corrupted by different levels of Gaussian white noise.
Below is a brief description of the characteristics of the ECG
signal.

2.1.1. ECG Signal. The morphology of heartbeat is funda-
mental for extracting features of ECG signals, which are
quasiperiodic as sketched in Figure 1. The heartbeat pulse
can be represented with four fundamental features: P-wave
(left slow excursion), QRS-complex (central fast excursion),
T-wave (first right slow excursion), andU-wave (second right
slow excursion).

Several problems arise while processing ECG signals
shown in Figure 1:

(i) Measurement data are commonly contaminated by
noise, which may not be Gaussian and white.
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(ii) Standard features depicted in Figure 1 must be
estimated with highest accuracy to avoid medical
mistakes.

(iii) The ground truth (referencemodel) is not available to
tune an estimator optimally.

Under such conditions, two approaches relying on accurate
identification of heartbeat pulses are commonly considered
to extract ECG signal features: fiducial and nonfiducial.
The fiducial approach refers to the characteristics such as
amplitude and heart rate, which are related to the dura-
tion, amplitude, and wave shape [44–49]. The nonfiducial
approach refers to quasiperiodicity of ECG signals [28] and
all features are separated into three main categories based on
autocorrelation, phase-space, and frequency-domain analy-
sis.

2.2. Methods

2.2.1. 𝑝-Shi� UFIR Smoothing Filtering. Let us suppose that
the ECG signal 𝑥𝑛 (Figure 1) is contaminated by zero mean
additive noise V𝑛 with unknown statistics.Thenmeasurement
𝑠𝑛 of 𝑥𝑛 can be represented in discrete-time index 𝑛 as an
additive sum of

𝑠𝑛 = 𝑥𝑛 + V𝑛. (1)

In view of the fact that noise V𝑛 in (1) may not be white
Gaussian and its statistics are commonly not well-known, the
best way to avoid large estimation errors is using filters that
do not require information about the statistics of noise. The
𝑝-shift UFIR filter, which completely ignores noise and the
initial conditions, can thus be considered as a good candidate.

On a finite horizon [𝑚 − 𝑝, 𝑛 − 𝑝] of 𝑁 points, the ECG
signal can be representedwith a degree polynomial and the𝑝-
shift UFIR filter [37] applied to remove noise. In accordance
with [37], the UFIR estimate 𝑥𝑛|𝑛−𝑝 of 𝑥𝑛 via data 𝑠𝑛 taken
from [𝑚 − 𝑝, 𝑛 − 𝑝] can be found in the convolution-based
form of

𝑥𝑛|𝑛−𝑝 =
𝑁−1+𝑝

∑
𝑖=𝑝

ℎ𝑙𝑖 (𝑝) 𝑠𝑛−𝑖 (2a)

=W𝑇𝑙 (𝑝) S𝑁 (𝑝) , (2b)

where ℎ𝑙𝑛(𝑝) ≜ ℎ𝑙𝑛(𝑁, 𝑝) is the {𝑁, 𝑝}-variant impulse
response of the 𝑙-degree UFIR filter, the extended measure-
ment vector S𝑁 is

S𝑁 (𝑝) = [𝑠𝑛−𝑝 𝑠𝑛−1−𝑝 ⋅ ⋅ ⋅ 𝑠𝑚−𝑝]𝑇 , (3)

and the filter gain matrix is given by

W𝑇𝑙 (𝑝) = [ℎ𝑙𝑝 (𝑝) ℎ𝑙(1+𝑝) (𝑝) ⋅ ⋅ ⋅ ℎ𝑙(𝑁−1+𝑝) (𝑝)] . (4)

To satisfy the unbiasedness condition

𝐸 {𝑥𝑛|𝑛−𝑝} = 𝐸 {𝑥𝑛} , (5)

where 𝐸{𝑧} means an average of 𝑧, then ℎ𝑙𝑛(𝑝) can be
represented as [37, 50]

ℎ𝑙𝑖 (𝑝) =
𝑙

∑
𝑗=0

𝑎𝑗𝑙 (𝑝) 𝑖𝑗, (6)

where 𝑖 ∈ [𝑝,𝑁−1+𝑝] and the coefficients 𝑎𝑗𝑙(𝑝) are defined
by [37]

𝑎𝑗𝑙 (𝑝) = (−1)𝑗
𝑀(𝑗+1)1 (𝑝)󵄨󵄨󵄨󵄨D (𝑝)󵄨󵄨󵄨󵄨 . (7)

Here, |D(𝑝)| is the determinant ofmatrixD(𝑝) = V𝑇(𝑝)V(𝑝),
where V(𝑝) is the𝑁 × (𝑙 + 1) Vandermonde matrix,

V (𝑝)

=

[[[[[[[[[[[
[

1 𝑝 𝑝2 ⋅ ⋅ ⋅ 𝑝𝑙
1 1 + 𝑝 (1 + 𝑝)2 ⋅ ⋅ ⋅ (1 + 𝑝)𝑙
1 2 + 𝑝 (2 + 𝑝)2 ⋅ ⋅ ⋅ (2 + 𝑝)𝑙
... ... ... d

...
1 𝑁 − 1 + 𝑝 (𝑁 − 1 + 𝑝)2 ⋅ ⋅ ⋅ (𝑁 − 1 + 𝑝)𝑙

]]]]]]]]]]]
]

(8)

and𝑀(𝑗+1)1(𝑝) is the minor of D(𝑝). Function ℎ𝑙𝑖(𝑁, 𝑝) has
the following fundamental properties [37, 50]:

ℎ𝑙𝑖 (𝑁, 𝑝) = {{
{
nontrivial, 𝑝 ⩽ 𝑖 ⩽ 𝑁 − 1 + 𝑝
0, otherwise

, (9)

𝑁−1+𝑝

∑
𝑖=𝑝

ℎ𝑙𝑖 (𝑁, 𝑝) = 1, (10)

𝑁−1+𝑝

∑
𝑖=𝑝

ℎ𝑙𝑖 (𝑁, 𝑝) 𝑖𝑢 = 0, 1 ≤ 𝑢 ≤ 𝑙. (11)

For low-degrees, 𝑙 = 1 and 𝑙 = 2, one can find ℎ𝑙𝑖(𝑁, 𝑝) in
Appendix A. For higher degrees, ℎ𝑙𝑖(𝑁, 0) can be computed
using a recurrence relation [51, 52] and then ℎ𝑙𝑖(𝑁, 𝑝) is
obtained by a projection. Of importance is that the UFIR
estimate (2b) does not require the noise statistics and initial
values. The zero mean noise V𝑛 is allowed to have any
distribution and covariance [53, 54] that is a fundamental
difference with optimal estimates.

2.2.2. ECG Signal Denoising on Adaptive Horizons. The
determination of optimal horizon 𝑁opt is critical in UFIR
filtering and smoothing [42]. Because a reference signal is
unavailable for ECG data, 𝑁opt can be found following [55]
via the mean square value (MSV) 𝑉(𝑁, 𝑝) = 𝐸{𝜀𝑛(𝑁, 𝑝)2}
of the measurement residual 𝜀𝑛(𝑁, 𝑝) = 𝑠𝑛 − 𝑥𝑛|𝑛−𝑝(𝑁). It
has been shown in [55] that 𝑁opt(𝑝) can be estimated by
minimizing the derivative 𝜕𝑉(𝑁, 𝑝)/𝜕𝑁 as

𝑁̂opt (𝑝) = argmin
𝑁

𝜕𝑉 (𝑁, 𝑝)
𝜕𝑁 + 1. (12)
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Figure 2: An original single ECG pulse corrupted by measurement
noise (dashed) and the denoised pulse (sold). Slow parts of the ECG
pulse require denoising with 𝑁opt and a fast excursion requires a
minimum horizon length of 𝑁min = 𝑙 + 1 points. Here, Q and S
are the morphology features of ECG signal; Qint and Sint represent
the window width allowed for the adaptation. The adaptive horizon
𝑁apt ranges from𝑁opt to𝑁min. (Figure 2 is reproduced from Carlos
Lastre-Dominguez et al. (2017) [42, 43], (Copyright 2017, IEEE).)

To optimize the horizon, let us consider a single ECG pulse
shown in Figure 2. As can be seen, the ECG pulse is slowly
changing, except for a fast excursion in the QRS region. The
slow background requires an optimal horizon𝑁opt ≜ 𝑁opt(𝑝)
in order to provide best denoising with no essential bias. On
the contrary, the QRS region requires a minimum horizon
𝑁min ≜ 𝑁min(𝑝) of 𝑙 + 1 points to track the behaviour exactly.
The horizon𝑁must thus be adaptive.

2.2.3. General UFIR Smoothing Algorithm. The general UFIR
smoothing algorithm is represented with a pseudocode listed
as Algorithm 1. It requires values of S𝑁, 𝑁, and 𝑙 described
in Section 2.1.1. Function CalculateG provides a vector G =
[1 0 ⋅ ⋅ ⋅ 0]𝑇 and CalculateV calculates matrix V given by (8).
Vector B contains the UFIR filter coefficients (6). Provided
there are V and B, the 𝑙-degree matrix W𝑙 is computed and
estimate 𝑥𝑛|𝑛−𝑝(𝑁) is provided by (2b). We will use this
algorithm at different horizons as smoothingUFIR function.

2.2.4. Computing 𝑁𝑜𝑝𝑡 for ECG Data. Optimal horizon 𝑁opt
is provided by the algorithm designed, with a pseudocode
listed as Algorithm 2. This algorithm requires the following
variables: heartbeats data 𝑠𝑖, filter degree 𝑙, a set of heartbeats𝑏𝑒𝑎𝑡𝑠, the number of heartbeats 𝑁𝑏𝑒𝑎𝑡𝑠, and the window
width 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙.

By defining (8) and (9) and then analysing (12), the filter
coefficients specified by (13) are obtained for given 𝑙, 𝑁, and
𝑝. Next, coefficients are computed for (11) and estimate (1) is
provided as 𝑥𝑛|𝑛−𝑝(𝑁). Function IntervalQRS is introduced
to detect Q and S via data 𝑠𝑖 and a value called 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙, which
is related to the window width.

Data: S𝑁, 𝑙,𝑁,
Result: 𝑥𝑛|𝑛−𝑝(𝑁)
1: Begin:
2: G = CalculateG (𝑙)
3: 𝑝 = −(𝑁 − 2)

2
4: V=CalculateV (𝑝, 𝑙,𝑁)
5: B=(VV𝑇)G
6:W𝑙(𝑝)=V𝑇 B
7: 𝑥𝑛|𝑛−𝑝(𝑁) =W𝑙(𝑝) S𝑁(𝑝)

Algorithm 1: General UFIR smoothing algorithm for estimating
𝑥𝑛|𝑛−𝑝(𝑁).

Data: 𝑠𝑖, 𝑙, 𝑏𝑒𝑎𝑡𝑠,𝑁𝑏𝑒𝑎𝑡𝑠, 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙
Result: 𝑁̂opt
1: Begin:
2: for 𝑖 = 1 to𝑁𝑏𝑒𝑎𝑡𝑠 do
3: 𝑠𝑖 = 𝑏𝑒𝑎𝑡𝑠(𝑖)
4: T=length(𝑠𝑖)
5: for 𝑁 = 𝑙 + 1 to𝑁𝑚𝑎𝑥 do
6: 𝑥𝑛|𝑛−𝑝(𝑁) = SmoothingUfir(𝑠𝑖,𝑁,𝑙)
7: [Q𝑖𝑛𝑡 S𝑖𝑛𝑡] =IntervalQRS(𝑠𝑖, 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙)
8: 𝑥𝑛|𝑛−𝑝(𝑁)1 = 𝑥𝑛|𝑛−𝑝(𝑁)(1 : Q𝑖𝑛𝑡 − 1)
9: 𝑥𝑛|𝑛−𝑝(𝑁)2 = 𝑥𝑛|𝑛−𝑝(𝑁𝑚𝑖𝑛)(Q𝑖𝑛𝑡 : S𝑖𝑛𝑡)
10: 𝑥𝑛|𝑛−𝑝(𝑁)3 = 𝑥𝑛|𝑛−𝑝(𝑁)(S𝑖𝑛𝑡 + 1 : T)
11: 𝑥𝑛|𝑛−𝑝(𝑁)=Cat(𝑥𝑛|𝑛−𝑝(𝑁)1, 𝑥𝑛|𝑛−𝑝(𝑁)2, 𝑥𝑛|𝑛−𝑝(𝑁)3)
12: 𝑉𝑛(𝑁) = 𝐸{[𝑠𝑖 − 𝑥𝑛|𝑛−𝑝(𝑁)]2}
13: end for
14: 𝑉𝑖(𝑁) = 𝑉𝑛(𝑁)
15: end for
16: 𝑉𝑎V𝑔(𝑁) =Average(𝑉𝑖(𝑁))
17: 𝑉(𝑁) =CubicFit(𝑉𝑎V𝑔(𝑁))
18: 𝑁̂opt = argmin

𝑁

𝜕𝑉(𝑁)
𝜕𝑁 + 1

Algorithm 2: Algorithm for estimating 𝑁̂opt using measurements.

Thewindow covers a region includingQ and S and is used
as 𝑁min. Because 𝑁opt will produce highly biased estimates
around Q and S, the window is split into three parts:

𝑥𝑛|𝑛−𝑝 (𝑁)1 = 𝑥𝑛|𝑛−𝑝 (𝑁) (1 : Qint − 1) , (13)

𝑥𝑛|𝑛−𝑝 (𝑁)2 = 𝑥𝑛|𝑛−𝑝 (𝑁min) (Qint : Sint) , (14)

𝑥𝑛|𝑛−𝑝 (𝑁)3 = 𝑥𝑛|𝑛−𝑝 (𝑁) (Qint : T) , (15)

where points Qint and Sint determinate the window width for
𝐼𝑛𝑡𝑒V𝑎𝑙. The horizon𝑁opt is applied to the first part (13) and
third part (15). In the second part (14), estimation is provided
with𝑁min.

Function Cat is used to concatenate estimates (13)–(15)
and compute the final estimate 𝑥𝑛|𝑛−𝑝(𝑁). Provided we
have 𝑥𝑛|𝑛−𝑝(𝑁), function 𝑉𝑛(𝑁) is calculated for 𝑠𝑖 in the 𝑁
scale. This variable is saved as 𝑉𝑖(𝑁) to represent a whole
set of data 𝑉𝑛(𝑁) for different heartbeats. Provided there are
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Data: S𝑁, 𝑙,𝑁𝑚𝑖𝑛,𝑁𝑜𝑝𝑡
Result: 𝑥𝑛|𝑛−𝑝
1: 𝑝 = −(𝑁 − 1)

2
2: for 𝑁 = 𝑁𝑚𝑖𝑛 to𝑁𝑜𝑝𝑡 do
3: 𝑥𝑛|𝑛−𝑝(𝑁) = smoothingUFIR (S𝑁,𝑁, 𝑙)
4: end for
5: [Q𝑖𝑛𝑡 S𝑖𝑛𝑡 Q S] =IntervalQRS(S𝑁, 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙)
6: 𝑥𝑛|𝑛−𝑝(𝑁)1 = 𝑥𝑛|𝑛−𝑝(𝑁𝑜𝑝𝑡)(1 : Q𝑖𝑛𝑡 − 1)
7: 𝑥𝑛|𝑛−𝑝(𝑁)2 = 𝑥𝑛|𝑛−𝑝(𝑁𝑎𝑝𝑡)(Q𝑖𝑛𝑡 : Q − 1)
8: 𝑥𝑛|𝑛−𝑝(𝑁)3 = 𝑥𝑛|𝑛−𝑝(𝑁𝑚𝑖𝑛)(Q : S)
9: 𝑥𝑛|𝑛−𝑝(𝑁)4 = 𝑥𝑛|𝑛−𝑝(𝑁𝑎𝑝𝑡)(S + 1 : S𝑖𝑛𝑡)
10: 𝑥𝑛|𝑛−𝑝(𝑁)5 = 𝑥𝑛|𝑛−𝑝(𝑁𝑜𝑝𝑡)(S𝑖𝑛𝑡 + 1 : 𝑇)
11: 𝑥𝑛|𝑛−𝑝 = Cat ((𝑥𝑛|𝑛−𝑝(𝑁)1, 𝑥𝑛|𝑛−𝑝(𝑁)2, 𝑥𝑛|𝑛−𝑝(𝑁)3), 𝑥𝑛|𝑛−𝑝(𝑁)4), 𝑥𝑛|𝑛−𝑝(𝑁)5))

Algorithm 3: Algorithm for estimating 𝑥𝑛|𝑛−𝑝 in ECG signals.

various values of MSV for each 𝑠𝑖, an average of 𝑉𝑖(𝑁) is
computed as 𝑉avg. Because 𝑉avg is accompanied with ripples
causing ambiguities, it is further approximated with a cubic
polynomial using function CubicFit. The derivative applied
to smoothed𝑉avg while solving the optimization problem (12)
yields𝑁opt.

2.2.5. Denoising Algorithm for ECG Signals. Provided there
are 𝑁min and 𝑁opt, the UFIR smoothing algorithm can
be designed for ECG signals with a pseudocode listed as
Algorithm 3. In this algorithm, function smoothingUFIR is
applied to different ECG signals parts with different horizons.

Five parts of the ECG signal are recognized by function
smoothingUFIR over points Qint, Sint, S, and Q:

𝑥𝑛|𝑛−𝑝 (𝑁)1 = 𝑥𝑛|𝑛−𝑝 (𝑁𝑜𝑝𝑡) (1 : Q𝑖𝑛𝑡 − 1) , (16)

𝑥𝑛|𝑛−𝑝 (𝑁)2 = 𝑥𝑛|𝑛−𝑝 (𝑁𝑎𝑝𝑡) (Q𝑖𝑛𝑡 : Q − 1) , (17)

𝑥𝑛|𝑛−𝑝 (𝑁)3 = 𝑥𝑛|𝑛−𝑝 (𝑁𝑚𝑖𝑛) (Q : S) , (18)

𝑥𝑛|𝑛−𝑝 (𝑁)4 = 𝑥𝑛|𝑛−𝑝 (𝑁𝑎𝑝𝑡) (S + 1 : S𝑖𝑛𝑡) , (19)

𝑥𝑛|𝑛−𝑝 (𝑁)5 = 𝑥𝑛|𝑛−𝑝 (𝑁𝑜𝑝𝑡) (S𝑖𝑛𝑡 + 1 : 𝑇) . (20)

In Figure 2, the first and fifth parts are defined by (16) and
(20), respectively, to apply𝑁opt. The third part represents an
estimate, which is equal to the original ECG signal without
noise reduction on [Q, S]. The adaptive horizon 𝑁apt is
applied to (17) and (19). Here, 𝑁 is decreased from 𝑁opt to
with a one-time step in the QRS complex region. Beyond the
QRS complex, 𝑁 is gradually increased from 𝑁min to 𝑁opt
with a one-time step. Finally, function Cat provides the ECG
signal estimate at the last fifth part.

2.2.6. UFIR-Based Algorithm for Features Extraction. Pro-
vided there is denoising by Algorithm 3, in this section we
develop an efficient computation algorithm for ECG signal
features extraction. To this end, we first localize special points
on the ECG heartbeat pulse and then compute relevant
amplitudes, durations, and an angle. Unlike the approaches

developed in [15, 56, 57], this algorithm is based on the 𝑝-
shift and 𝑙-order UFIR smoothing filter exploited with 𝑙 = 2
and𝑝 < 0. It was found out for data used that𝑁opt = 21 suites
smooth parts of the discrete ECG signal and𝑁min = 3 fits the
QRS complex. Note that𝑁opt and𝑁min must be specified for
each of the measured ECG signals.

Step-by-step events representing the strategy of ECG sig-
nal denoising and features extraction are shown in Figure 3.
The original discrete-time ECG signal (a) is smoothed as (b)
usingAlgorithm3.Then the ECG signal features are extracted
as in the following:

(i) Figure 3(c): the peak value R (ECG signal maximum)
is estimated as R̂ and awindow is introducedwith two
points, Q󸀠 and S󸀠. The estimate Q̂ of Q is found as the
least in the interval between Q󸀠 and R̂. The estimate Ŝ
of S is found as the least between R̂ and S󸀠.

(ii) Figure 3(d): provided there are Q̂, R̂, and Ŝ, the QRS
complex is suppressed to save only P and T waves.
Then the estimates P̂ of P and T̂ of T are obtained
similarly by suppressing one of the waves.

(iii) Figure 3(e): provided there is P̂, the P wave is split
into two segments, P1 and P2, where P1 is extended
from the initial point to P2. In segment P1, we apply
the derivative. Next, we consider a small section of
the resulting signal and find a global maximum. We
consider it as a start point of P wave and call it Ponset.
In segment P2, we also apply the derivative, consider a
small portion of the resulting signal, and find a global
minimum. This minimum, which corresponds to the
end of P wave, is called Poffset. Values of Ponset and
Poffset are located at points (Although Pon

p and Poff
p

are omitted in Figure 3, their values represent the
temporal line in the ECG signal. These points can be
used to compute features of the duration and applied
to Rp, Qp Sp, Pp, Tp, T

on
p , Toff

p , and S∗p , which are
described in Algorithm 4.) Pon

p and Poff
p , respectively.

Then, the duration of P wave is computed as Pdur =
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Figure 3: Step-by-step events representing the strategy of the ECG signal denoising and features extraction: (a) original ECG signal, (b)
smoothed ECG signal, (c) peak-value R, Q, and S, (d) P and T points, (e) P wave, (f) duration of QRS complex, (g) T wave, and (h) ST-angle.

Poff
p − Pon

p . A distance between P̂ and the baseline is
calculated and called the wave amplitude.

(iv) Figure 3(f): the QRS complex duration is obtained
by the distance between points Q̂ and Ŝ. The QRS
complex amplitude is provided by a distance between
the baseline and R̂.

(v) Figure 3(g): similarly, points Tonset and Toffset are
obtained for the Twave by splitting this wave into two
segments, T1 and T2.

(vi) Figure 3(h): the ST-angle 𝜃 is computed by

a.b
|a| |b| = cos 𝜃, (21)

where a and b are vectors created from Ŝ and S∗.
These values are localized in Sp and S∗p . Vectors a
and b have two components dependent on Ŝ and S∗.
We consider a flat part, where Sp and Ŝ represent the
origin zero point. We sum a temporal unity from the
origin, obtain S∗ and S∗p , and rename S∗ as S∗y and S∗p
as S∗x from xy plane.We then compute a = S∗x +S∗y and
b = 0𝑥 + S∗y and estimate 𝜃 via (18).

2.2.7. AlgorithmDesign for Features Extraction of ECG Signals.
Apseudocode of the algorithmdesigned to extract features of
ECG signal is shown asAlgorithm4.Here, 𝑠𝑠𝑖 is the smoothed
ECG signal represented as x̃ in Figure 3; 𝑁b is the number

of heartbeats; 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is a variable, which represents the
reference line; 𝑓𝑠 is the data sample frequency; 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙 is a
value, which determines the window width to cover Q and S
points (Figure 3). The algorithm output consists of estimates
of the ECG signal features such as P̂ of P, Pamp of the P
amplitude, Pdur of the P duration,QRS𝑒 of theQRS amplitude,
QRSdur of the QRS duration, T̂ of T, Tamp of the T amplitude,
Tdur of the T duration, and 𝜃 of the ST angle 𝜃. All these
features are extracted from the smoothed signal 𝑠𝑠𝑖.

The algorithm starts by computing R̂ as the ECG signal
maximum, using function max. Function IntervalQRS is
applied to compute points Q󸀠 and S󸀠. The 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙 variable
determines the window width to cover the QRS complex and
obtain Q̂ and Ŝ as two minima between points Q󸀠 and S󸀠.
Function min is used to find the above-mentioned points.
The supress function is used to suppress the QRS complex.
Function max is used to estimate P and T. Function diff is
introduced to compute the derivatives in the P1, P2, T1, and
T2 intervals. Functions max and min with function diff are
used to find Ponset, P

on
p , Poffset, P

off
p , Tonset T

on
p , and Toffset T

off
p .

Provided the above-mentioned values are considered, the
duration is estimated of P and T features. Function length
is introduced to compute the signal length. The 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
variable determines the reference line for computing the
amplitude features. This variable is equal to Poffset. Function
vector is used to provide vectors a and b based on Sp, Ŝ, S

∗
p,

and S∗. Finally, function arcos is used to compute an angle
between vectors a and b. Note that all the above introduced
functions are available from the authors by request.
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Data: 𝑠𝑠𝑖,𝑁b, 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑓𝑠, 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙
Result: P̂, Pamp, Pdur, R̂, QRS𝑒, QRSdur, T̂, Tamp, Tdur, 𝜃
1: Begin:
2: for 𝑖 = 1 to𝑁b do
3: 𝑠𝑠𝑖= 𝑏𝑒𝑎𝑡𝑠𝑠(𝑖)
4: [R̂,Rp] = max(𝑠𝑠𝑖)
5: [Q󸀠 S󸀠] =IntervalQRS(𝑠𝑖, 𝐼𝑛𝑡𝑒𝑟V𝑎𝑙)
6: [Q̂,Qp] = min(𝑠𝑠𝑖(Q󸀠 : Rp))
7: [Ŝ, Sp] = min(𝑠𝑠𝑖(Rp : S󸀠))
8: 𝑠𝑠𝑛𝑒𝑤 = suppress(𝑠𝑠𝑖(Q󸀠 : S󸀠))
9: [P̂,Pp] = max(𝑠𝑠𝑛𝑒𝑤(1 : Q󸀠))
10: [T̂,Tp] = max(𝑠𝑠𝑛𝑒𝑤(S󸀠: length(𝑠𝑠𝑛𝑒𝑤)))
11: P1 = 𝑠𝑠𝑖(1 : Pp)
12: P2 = 𝑠𝑠𝑖(Pp : Q󸀠)
13: [Ponset,Pon

p ] =max(diff(P1))
14: [Poffset,Poff

p ] = min(diff(P2))
15: T1=𝑠𝑠𝑖(𝑆󸀠 : Tp)
16: T2=𝑠𝑠𝑖(Tp:length(𝑠𝑠𝑖))
17: [Tonset,Ton

p ] = max(diff(T1))
18: [Toffset,Toff

p ] = min(diff(T2))
19: 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1:length(𝑠𝑠𝑖)) = Poffset(𝑖)
20: Pamp(𝑖)= P̂ − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑖)
21: QRSamp(𝑖)= R̂ − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑖)
22: Tamp(𝑖)= T̂ − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑖)
23: Pdur(𝑖) =

(Poff
p − Pon

p )
𝑓𝑠

24: QRSdur(𝑖) = (Sp −Qp)
𝑓𝑠

25: Tdur(𝑖) =
(Toff

p − Ton
p )

𝑓𝑠
26: S∗p = Sp + 1
27: S∗ = 𝑠𝑠𝑖(S∗p)
28: [a,b] = kector(Sp, Ŝ, S∗p, S∗)
29: 𝜃(𝑖) = arcos(a,b)
30: end for

Algorithm 4: A pseudocode of the algorithm to extract morpho-
logical features of ECG signals.

2.3. Validation. Several methods have been proposed during
decades for ECG signal features extraction. Among these
methods, the Linear Predict approach proposed in [25] and
developed by Martis [28] has been recognized as one of most
efficient. The method employs the following model:

𝜆̂ (𝑛) =
𝑞

∑
𝑖=1

𝛿 (𝑖) 𝜆 (𝑛 − 𝑖) , (22)

in which 𝜆(𝑛) is the original ECG pulse, 𝑞 is the estimator
order, and 𝛿(𝑖) is the linear prediction coefficient. The
estimate 𝜆̂(𝑛) is provided as a linear weighted combination
of 𝜆(𝑛 − 𝑖), 𝑖 = [1, 𝑞]. The residual error

𝜖 (𝑛) = 𝜆 (𝑛) − 𝜆̂ (𝑛) , (23)

is considered as the ECG signal fraction, which cannot be
predicted. To compare with the UFIR filter, we will assign
𝑞 = 2 as suggested by Lin et al. [24].

The UFIR filter predicts estimates with 𝑝 > 0 and both
the prediction estimator (17) and theUFIR predictive filter (1)
employ discrete linear prediction of the undergoing process
via its noisy data. Even so, there are some zones in the ECG
picture where linear predictors are unsuccessful in extracting
ECG features. Therefore, a comparative analysis of different
methods developed in [36–39] is required.

The real ECG data has unknown model and noise. A
suitable metric is the concentration of error which is the
difference between the estimate and measurement for differ-
ent parts of ECG signals. The box plot allows giving indices
related to the error dispersion and concentration. Moreover,
a critical measure of denoising efficiency in any estimator is
theMSE at its output.We provide the relevant study based on
synthetic ECG signals generated using MATLAB. The ECG
signal is contaminated by zero mean additive white Gaussian
noise (AWGN) providing different SNR values.

The assessing performance for the features extraction is
to analyse the concentration of the features seeing the effect
of noise in the estimated features.

3. Results

3.1. Testing of Algorithms for Estimating 𝑁𝑜𝑝𝑡 and Denoising
Algorithm. To test Algorithm 2 experimentally, we selected
healthy heartbeats with 301 samples and estimated errors by
allowing 𝑁min ≤ 𝑁 ≤ 103 for 𝑙 = 1 (Figure 4(a)), 𝑙 = 2
(Figure 4(b)), 𝑙 = 3 (Figure 4(c)), and 𝑙 = 4 (Figure 4(d)).

As can be seen, 𝑉𝑛 behaves similarly for different degrees
𝑙. It can also be observed that𝑁opt generally grows with 𝑙 and
elevates to𝑁opt = 27 when 𝑙 = 4. Particularly in Algorithm 3,
an analysis of estimation errors produced by the 2-degree
and 3-degree UFIR filters reveals no significant differences,
except for the horizon length, which inherently grows with
𝑙. This is explained by the fact that 𝑝 = −(𝑁 − 1)/2 makes
the noise power gain (NPG) of both filters equal [37]. The
role of 𝑝 on the smoothing filter NPG has been studied by
Shmaliy et al. in [37]. However, choosing 𝑙 = 2 reduces
the computational complexity, while saving the estimation
accuracy, and we accept 𝑙 = 2 as near optimal. Effect of 𝑙 on
the estimation accuracy is illustrated in Figure 5.

3.2. Critical Evaluation of Denoising Algorithms. In Fig-
ure 6(a), we illustrate typical denoising errors produced by
the predictive filter, filter, and smoothing filter, all having
batch structures. A part of the ECG signal taken from
[120:200] is zoomed in Figure 6(b). The denoising errors are
sketched in Figure 7.

As can be seen, all UFIR filters are successful in denoising
with consistent errors. Even so, the UFIR smoothing filter
does it more precisely while the predictive filter produces
more errors. The medians of errors produced by the algo-
rithms and represented with the dispersion are listed in
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Figure 4: Effect of 𝑁 on the MSV with (a) 𝑙 = 1, (b) 𝑙 = 2, (c) 𝑙 = 3, and (d) 𝑙 = 4: the MSV is circled, √𝑉𝑁 is a cubic approximation
of the MSV, and (𝜕/𝜕𝑁)√𝑉𝑁 and √(𝜕/𝜕𝑁)𝑉𝑁 are the derivatives of √𝑉𝑁. The optimal horizon 𝑁opt = 19 corresponds to the minimum of
√(𝜕/𝜕𝑁)𝑉𝑁. (Figure 4 is reproduced from Carlos Lastre-Dominguez et al. (2017), [42], (Copyright 2017, IEEE)).

Figure 7. This figure suggests that the UFIR smoothing filter
outperforms both the UFIR filter and the standard linear
predictor developed in [28] for ECG signals. An analysis of
the signal-to-noise rations (SNRs) at the filters outputs will
be provided next.

3.3. Effect of SNR on the Estimator MSE. The root MSEs
(RMSEs) are shown in Figure 8 as functions of the SNR
depicted in decibels (dB) at 18 discrete points with a step of
5dB. It follows that the UFIR smoothing filter outperforms
other solutions in a wide range of SNR values. For 0 ⩽ SNR <
15 dB, higher accuracy is achieved with a constant𝑁 and, for
SNR > 15 dB, with an adaptive𝑁.

3.4. Applications to ECG Signals. Based upon the above
developed UFIR-based approach, we now apply Algorithm 3
to the ECG signal database and extract special features
depicted in Figure 1. The results obtained using the designed
UFIR smoothingAlgorithm 2 (UfirSmooth), UFIR predictive

algorithm (Predictor UFIR), and basic linear predictor (Lin-
ear Predict) [25] are sketched in Figures 9 and 10. In these
figures, 100 synthetic heartbeats are processed at each time
index. This synthetic ECG signal is contaminated by AWGN
at 35 dB with properties similar to the original data.

In Figure 11, we show dispersions and concentrations of
the estimated features about their means. Shadowed areas
represent features extracted by smoothing and it follows
that the outputs of the filter and linear predictor are more
vulnerable. Furthermore, noise dominates in the predictive
filters outputs.This experiment was based on healthy records
of MIT-Arrhythmia database (lead MLII) analysing 1000
heartbeats. Overall, theUFIR smoothing approach developed
in this paper always produced better estimates than other
linear methods considered.

4. Discussion
The purpose of this study is denoising the attached noise
in ECG signals using a UFIR smoothing filter for features
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Figure 7: Errors produced by different estimators: (a) error in the T-wave, (b) error boxplot in the T-wave, (c) error in the QRS-complex, (d)
error boxplot in the QRS-complex, (e) error in the P-wave, and (f) error boxplot in the P-wave.

extraction. This work is focused on the morphological
features extraction individual ECG signal processing with
normal rhythm. A principal finding in applying the proposed
method is the considerable reduction of noise with an opti-
mum and adaptive horizon for real ECG data.This reduction
contributes determining with better precision the features
associated with the heartbeat.

From analysis of errors variability in real ECG signals and
SNRs based on ECG synthetic data in different estimators has
shown that the UFIR smoothing filter with adaptive horizon
outperforms the linear predictor [25–28] and other UFIR
solutions such as the UFIR filter and UFIR predictive filter
on MIT-BIH arrhythmia dataset. Let us notice again that
the approaches based on linear prediction were recognized
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Figure 11: Boxplot of features of the ECG signal extracted using the UFIR adaptive-smoothing filter (Estimator 1: ASmooth-UFIR), UFIR
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as standard for the ECG signal features extraction [28]. In
this regard, better performance of the smoothing algorithm
developed in this paper opens new horizons in achieving
higher accuracy and reliability in detecting different kinds of
heart diseases.

The UFIR smoothing filter performance was optimized
by making the averaging horizon adaptive. Note that such an
opportunity has not been used in the design of known linear
predictors for ECG data. As a result, we have achieved the
following improvements:
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(1) Suboptimal denoising of ECGsignalswith no require-
ments to noise, except for the zero mean assumption.

(2) Unbiased filtering in the QRS region, in which the
ECG signal demonstrates rapid excursions.

Such abilities of the UFIR smoothing filter have resulted
in higher estimation accuracy, namely, in smaller variability
of the estimated features around their mean values. In this
regard, let us notice that larger variability in the standard
linear predictor is due to larger errors and instability caused
by unknown future data and errors in the determination
of the predictor coefficients determined by the correlation
method. Accordingly, errors in the determination of the
prediction function lead to larger prediction errors (random
and regular).

This has appeared to be particularly true for the Pamp
and Tamp values, which are estimated by other methods with
much larger errors. Estimates of QRSe and QRSdur by differ-
ent methods have appeared to be consistent, because these
values are not affected by noise as much as other features.
Nevertheless, the UFIR smoothing filter has demonstrated
smaller errors even for QRSamp. In the cases of both Tdur and
angle 𝜃, one watches for highly unstable estimates provided
by the prediction-based filters, while the proposed UFIR
smoothing filter has produced acceptable estimates. Also,
it is important to clarify that the evaluation of features is
analysed from the consistence of data near the average of the
measurement.This is shown analysing the number of outliers.
However, in this scenario, the quality features are not strictly
analysed because the ECG signal used is just under normal
conditions.

5. Conclusions

The UFIR smoothing filtering approach developed in this
paper for ECG signals denoising and features extraction has
demonstrated an ability to outperform the linear predictor-
based one [25], which is recognized as one of the standard

techniques for ECG signals. That has become possible by
optimizing the order and averaging horizon for the UFIR
smoothing filter in a way such that the horizon has become
adaptive to different parts of ECG signals. A comparison of
the UFIR predictive, filtering, and smoothing estimates has
revealed a considerable difference in denoising in favor of the
smoothing one. The results have also indicated that features
extracted using the smoothing filter are more reliable and
less prone to large deviations from average values. This is
definitely an important advantage for medical needs. As a
future work, we consider extracting features of ECG signals
in discrete-time state-space by developing the fast iterative
UFIR smoothing filtering algorithm and optimize it for
different orders and kinds of heart diseases.

Appendix

A. Low-Degree UFIR Functions ℎ𝑙𝑖(𝑁,𝑝) [37]
A.1. Ramp, 𝑙=1.

ℎ1𝑖 (𝑝) = 𝑎01 (𝑁, 𝑝) + 𝑎11 (𝑁, 𝑝) 𝑖, (A.1)
where

𝑎01 (𝑁, 𝑝) = 2 (2𝑁 − 1) (𝑁 − 1) + 12𝑝 (𝑁 − 1 + 𝑝)
𝑁 (𝑁2 − 1) , (A.2)

𝑎11 (𝑁, 𝑝) = 6 (𝑁 − 1 + 2𝑝)
𝑁 (𝑁2 − 1) . (A.3)

A.2. Quadratic, 𝑙=2.

ℎ2𝑖 (𝑝) = 𝑎02 (𝑁, 𝑝) + 𝑎12 (𝑁, 𝑝) 𝑖 + 𝑎22 (𝑁, 𝑝) 𝑖2, (A.4)

where

𝑎02 (𝑁, 𝑝)
= 3 3𝑁

4 − 12𝑁3 + 17𝑁2 − 12𝑁 + 4 + 12 (𝑁 − 1) (2𝑁2 − 5𝑁 + 2) 𝑝 + 12 (7𝑁2 − 15𝑁 + 7) 𝑝2 + 120 (𝑁 − 1) 𝑝3 + 60𝑝4
𝑁(𝑁2 − 1) (𝑁2 − 4) , (A.5)

𝑎12 (𝑁, 𝑝) = −18
2𝑁3 − 7𝑁2 + 7𝑁 − 2 + 2 (7𝑁2 − 15𝑁 + 7) 𝑝 + 30 (𝑁 − 1) 𝑝2 + 20𝑝3

𝑁(𝑁2 − 1) (𝑁2 − 4) , (A.6)

𝑎22 (𝑁, 𝑝) = 30𝑁
2 − 3𝑁 + 2 + 6 (𝑁 − 1) 𝑝 + 6𝑝2

𝑁(𝑁2 − 1) (𝑁2 − 4) . (A.7)
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C. Viramontes, “Numerical comparison between three finite
impulse response (FIR) filters in the heart rate estimation
problem in an ECG signal corrupted by additive white gaussian
noise,” in Proceedings of the First International Congess On
Instrumentation and Applied Sciences, pp. 1–7, Cancun, Mexico,
2010.

[6] W. Lu, H. Hou, and J. Chu, “Feature fusion for imbalanced ECG
data analysis,” Biomedical Signal Processing and Control, vol. 41,
pp. 152–160, 2018.

[7] T. Yousefi Rezaii, S. Beheshti, M. Shamsi, and S. Eftekharifar,
“ECG signal compression and denoising via optimum sparsity
order selection in compressed sensing framework,” Biomedical
Signal Processing and Control, vol. 41, pp. 1–27, 2018.

[8] K. N. V. P. S. Rajesh and R. Dhuli, “Classification of ECG
heartbeats using nonlinear decomposition methods and sup-
port vector machine,” Computers in Biology and Medicine, vol.
87, pp. 271–284, 2017.

[9] Y. Sun, K. L. Chan, and S. M. Krishnan, “ECG signal condi-
tioning by morphological filtering,” Computers in Biology and
Medicine, vol. 32, no. 6, pp. 465–479, 2002.

[10] M. Akhbari, M. B. Shamsollahi, O. Sayadi, A. A. Armoundas,
and C. Jutten, “ECG segmentation and fiducial point extraction
using multi hidden Markov model,” Computers in Biology and
Medicine, vol. 79, pp. 21–29, 2016.

[11] J. Rodrigues, D. Belo, andH.Gamboa, “Noise detection on ECG
based on agglomerative clustering of morphological features,”
Computers in Biology and Medicine, vol. 87, pp. 322–334, 2017.
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