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G Protein-Coupled Receptors (GPCRs) are one of the largest membrane protein receptor family in human,
which are also important targets for many drugs. Thence, it’s of great significance to judge whether a pro-
tein is a GPCR or not. However, identifying GPCRs by experimental methods is very expensive and time-
consuming. As more and more GPCR primary sequences are accumulated, it’s feasible to develop a com-
putational model to predict GPCRs precisely and quickly. In this paper, a novel method called EMCBOW-
GPCR has been proposed to improve the accuracy of identifying GPCRs based on natural language pro-
cessing (NLP). For representing GPCRs, three word-embedding models and a bag-of-words model are
used to extract original features. Then, the original features are thrown into a Deep-learning algorithm
to extract features further and reduce the dimension. Finally, the obtained features are fed into
Extreme Gradient Boosting. As shown with the results comparison, the overall prediction metrics of
EMCBOW-GPCR are higher than the state of the arts. In order to be convenient for more researchers to
use EMCBOW-GPCR, the method and source code have been opened in github, which are available at
https://github.com/454170054/EMCBOW-GPCR, and a user-friendly web-server for EMCBOW-GPCR has
been established at http://www.jci-bioinfo.cn/emcbowgpcr.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

G protein coupled receptors (GPCRs) are one of the largest fam-
ily of membrane proteins in mammalian genomes which are
widely distributed among the central nervous system, immune
system, cardiovascular system, retina and other organs and tissues
[1–4]. GPCRs can be divided into six classes [5]: rhodopsin-like
receptors, secretin-like receptors, metabo-tropic glutamate recep-
tors, fungal mating pheromone receptors, cyclic AMP receptors
and frizzled receptors. What’s more, they can regulate a wide range
of physiological processes such as neurotransmission, growth,
immune responses and so on [6–9]. Due to their structural charac-
teristics and key role in signal transduction, GPCRs are the most
important drugs target in modern drug research and development
[10,11]. Therefore, identifying GPCRs accurately is very significant
for drug development.

As more and more public GPCRs data is available, there are
many efficient methods based on extracting features from
sequence that are proposed to predict GPCRs in recent years. These
methods usually consist of two parts: classification algorithm and
feature extraction. The classification algorithms mainly based on
statistics and machine learning methods, including Artificial Neu-
ral Network (ANN) [12,13], Random Forest(RF) [5,14], intimate
sorting [15], K-Nearest Neighbor(KNN) [16,17], etc. The methods
of feature representation for predicting GPCRs contain amino acid
composition (AAC) [16,18], 400D [5], N-gram [5,13,19], SVM-Prot
[14], etc. Zou [14] proposed a novel method in which the GPCRs
were represented by a 188D feature vectors of SVM-Prot and the
synthetic minority oversampling technique (SMOTE) [20–22] algo-
rithm was used to generate some new positive samples to balance
the training datasets. Finally, the prediction method adopted RF
algorithm to be trained with the datasets. Recently, Yu [5] used
the mixed-feature extraction methods to acquire the feature vector
of GPCRs. In the work, three feature engineering methods including
400D, N-Gram and parallel correlation pseudo amino acid compo-
sition (PC-PseAAC) were chosen to extract features of GPCRs,
respectively. Subsequently, these three feature vectors are ran-
domly arranged and combined to form the mixed-feature. Further,
the max relevance max distance (MRMD) [23] was employed to
reduce the dimension of mixed-feature. According to the result,
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the mixed-feature concatenated by 400D and PC-PseAAC can
achieve the best performance with RF algorithm. Although these
methods have achieved positive results on predicting GPCRs, there
is still room for improvement.

As a new research hotspot in artificial intelligence, Deep learn-
ing (DL) [24–28] is more and more widely used in machine learn-
ing. Because of its great help to the interpretation of data such as
text, image and sound, DL has achieved many positive results in
speech machine translation and image recognition far beyond pre-
vious related technologies, and has been successfully applied in
many fields such as bioinformatics [29,30], computer vision
[31,32], natural language processing [33,34], Automatic driving
[35,36]and so on. In this work, we propose a novel method called
EMCBOW-GPCR to predict GPCRs based on word embedding
[37,38], BOW [39] and DL models. Firstly, we split the GPCRs
sequences into segments of different lengths, and train the corre-
sponding word embedding model with the split segments. Further,
the every GPCR sequence is inputted into the word embedding
models to get the word vectors. A BOW model was used to extract
features at the same time. Secondly, the features by extracting
from different methods are concatenated to form the original fea-
ture vectors. Thirdly, the original feature vectors are fed into a DL
model to reduce the dimension and extract features further.
Finally, the processed features are thrown into XGBoost algorithm
to train a predictor. According to the results compared with other
methods tested with the same data and performance measure-
ment, our method can have a better performance.
2. Datasets and methods

2.1. Experimental datasets and performance measurement

The benchmark dataset used for evaluating the proposed
method is the same as that used in literatures [5,14] and is avail-
able at https://github.com/454170054/EMCBOW-GPCR/blob/-
main/files. The dataset sequences were download from UniProt
[40] database and CD-Hit [41,42] program was used to reduce
the sequence homology [14]. The sequence identity threshold
was 0.8. The evaluation indicators used to test the performance
of the methods in the work are Accuracy (Acc), Precision (Pre), Sen-
sitivity (Sn), Specificity (Sp) and Matthews correlation coefficient
(MCC) [43–45], which are listed in formula (1) explicitly.

Accuracy ¼ TPþTN
TPþTNþFPþFN

Precision ¼ TP
TPþFP

Sensitiv ity ¼ TP
TPþFN

Specificity ¼ TN
TNþFP

Strength ¼ Sensitiv ityþSpecificity
2

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þþ TNþFPð Þ TNþFNð Þ

p

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

where TP is the number of sequences that are GPCRs in fact and pre-
dicted as GPCRs,TN is the number of sequences that are non-GPCRs
in fact and predicted as non-GPCRs, FPis the number of sequences
that are non-GPCRs predicted as GPCRs,FNis the number of
sequences that are GPCRs predicted as non-GPCRs. Further, we also
apply Area Under ROC Curve (AUC) metric to evaluate the methods.

2.2. Feature extraction methods

In this study, two technologies are applied to extract features
from GPCRs respectively. One of them is BOW [39,46] model which
has been confirmed to be powerful in extracting GPCRs features
based on sequences, and the other is Word Embedding which is
very popular and important concept in natural language processing
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(NLP). The detailed process of the two feature extraction methods
is listed as follows:

2.3. Word embedding

Word Embedding is a method of converting words into number
vectors. The process of word embedding is to embed a high-
dimensional space with all the number of words into a much lower
dimensional and continuous vector space and each word or phrase
is mapped to a vector in the real number field, and the result of
word embedding generates a word vector which is the important
technology of the task. In this paper, we trained three kinds of
word embedding models and utilized them to generate corre-
sponding feature vectors. The explicit training process is showed
as follows:

2.3.1. Step 1: Splitting GPCRs sequences into fragments and create
wordbooks

In order to satisfy the input data shape of the three word-
embedding models, the GPCRs sequences are broken into different
length fragments which are considered as words in wordbooks. In
this paper, we designed three kinds fragments, and the length l of
them can be set as 2, 3 or 4, respectively, and the wordbooks were
denoted as Ql¼2, Ql¼3 and Ql¼4. For example, in order to obtain Ql¼2,
the original sequences are broken into words whose lengths are 2,
i.e., the window size is set 2 and the stride of moving window is 1.
After all of this work, the words broken from each sequence would
be collected, removed duplicate(s) and then form wordbook Ql¼2 of
which the number of words is v . For example, the process of split-
ting GPCRs sequences into words of Ql¼2 is shown in Fig. 1. The
processes of creating Ql¼3 and Ql¼4 are similar to Ql¼2. In detail,
the window sizes of Ql¼3 and Ql¼4 should be set as 3 and 4, respec-
tively. What’s more, the strides of moving window of Ql¼3 and Ql¼4

are equal to 1.

2.3.2. Step 2: Training CBOW models
There are a lot of methods in word embedding. Here, the

Word2vec [37] method is selected as the default word embedding
method in this paper for the reason that Word2vec whose models
are simple. Actually, a double layer neural networks have two
widely used models to generate word vectors including continuous
bag of words (CBOW) and Skip-gram. CBOW is applied to predict
target words based on consecutive words before and after target
word. Conversely, Skip-gram is applied to predict context words
based on a word. In this work, CBOW model is chosen as the
default model for word embedding. The structure of CBOW is
shown in Fig. 2. The training of artificial neural network (ANN)
[19,47,48] usually includes two parts: forward propagation and
back propagation. The forward propagation calculation of the pro-
posed model is listed as follows:

1). Encoding the GPCRs primary sequence with characters
string. Since the original GPCRs sequences can not be
directly fed into the CBOW model, a GPCR sequence can be
represented with formula (2), where L is the length of the
protein sequence.

G ¼ g1g2g3g4 � � � gL ð2Þ

2). Partitioning the sequence into word set.

R Bð Þ ¼ g1 � � � gl; g2 � � � glþ1; gL�lþ1 � � � gL

� � ¼ R1;R2; � � � ;RBf g ð3Þ
where B means the number of words in the set. Obviously, Bequals

https://github.com/454170054/EMCBOW-GPCR/blob/main/files
https://github.com/454170054/EMCBOW-GPCR/blob/main/files


Fig. 1. The process of splitting GPCRs sequences and forming wordbook of Ql¼2.

Fig. 2. The structure of CBOW.
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L� lþ 1, and l is the length of fragments.

3). Inputting the encoded words to CBOW and calculating the
output of the hidden layer. Select the target word from
R Bð Þ, mark it as wt and choose its context
wt�s; � � � ;wt�1;wtþ1;wtþs, i.e. s words from the upstream and
s words from downstream of the target word in the protein
sequences respectively. According to the corresponding
wordbook created in Step 1, encoding the selected context
words by using One-Hot and mark as
xt�s; � � � ; xt�1; xtþ1; � � � ; xtþs. Then feed them as the input data
into Input Layer of CBOW. Calculation process from input
layer to hidden layer is shown in formula (4).

h ¼ 1
2s

Xs

i¼�s
i–0

xtþi �W1 ð4Þ

whereW1 is the weight matrix between Input Layer and Hidden
Layer, whose shape is v � N. N is a hyperparameter.h is the out-
put of Hidden Layer, whose shape is 1� N.

4). Designing the object function based on the propagation pro-
cess from Hidden Layer to Output Layer. The formula (5) was
utilized to compute the score matrix for the wordbook.
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U ¼ h �W2 ¼ ðu1;u2; � � � ;uj; � � � ;uvÞ ð5Þ

where W2 is the weight matrix between Hidden Layer and Output
Layer, whose shape is N � v . Then Softmax function is used to obtain
the probability distribution of output units.

p wj
� � ¼ eujPv

i¼1eui
ð6Þ

where uj is the jth value of U and wj means the jth word in
wordbook.

To maximize the probability of the target word wt , formula (7)
was used at this step.

maxðp wtð Þ ¼ eutPv
i¼1eui

Þ ð7Þ

Take logarithm of formula (7) to get the objective function, and
then maximize the objective function with formula (8).

loss ¼ ut � log
Xv
i¼1

eui ð8Þ

However, the above process usually needs a lot of time to train
the model. Here, we adopt a more efficient technology called Nega-
tive Sampling [49] to accelerate the training process. By using
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Negative Sampling can convert the above optimization problem to
a series of binary problems and speed up training better word vec-
tors. The detail of Negative Sampling and back propagation algo-
rithm please see to reference [50,51]. In this step, we choose the
value of N as 128, 256 and 512 on the basis of the number of words
in relevant wordbook.

2.3.3. Step 3: Extracting features with CBOW models

In Step 2, we got three kinds of word vector matrixes W1 by
training CBOW models. In this step, each sequence was converted
into feature vector. The detailed process is as follows:

1). Utilize formula (2) and (3) to process the GPCR sequence and
get R Bð Þ ¼ R1;R2; � � � ;RBf g.

2). According to the relevant wordbook, encode R Bð Þ by using

One-Hot and then we can get RO ¼
r1
r2
..
.

rb

2
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3
7775: Where ri is a

1� v vector which represents the word Ri (see to formula
(3)), i ¼ 1;2;3; � � � ;B, and thus RO is a B� v matrix.

3). Calculate the feature vector matrixes by using formula (9)

MEF lð Þ ¼ RO �W1 ð9Þ
where MEF lð Þ means matrix embedding features and is a B� N
matrix.

4). Represent the GPCR sequence with formula (10).

EF lð Þ ¼ 1
B
sum MEF lð Þð Þ ð10Þ

where summeans to sum the values along the first dimension of the
matrix and EF lð Þ means embedding features.

With the samemethod, we can obtain EF 2ð Þ, EF 3ð Þ and EF 4ð Þ, i.e.
let l equals to 2, 3 or 4 for above formulas. And then the word
embedding features (WEF) of each GPCR sequence can be com-
bined into an 896-D vector by using the formula (11).
WEF ¼ EF 2ð Þ � EF 3ð Þ � EF 4ð Þ ð11Þ
where � means concatenating the two vectors.

2.3.3.1. Bow. The brief steps of BOW features extraction from
GPCRs are listed as follows:

(1). Encoding GPCRs sequences by using AAindex [52]which is a
database containing more than 500 amino acid indices. The
symbol ‘X’ existed in some sequences are represent with the
mean of AAindex.

(2). Splitting GPCRs sequences into fragments with different
sizes.

(3). Creating wordbooks and determining the number of words
in each wordbook with weighted Silhouette Coefficient.

(4). Extracting 115-D BOW features denoted as BF based on
wordbooks.

The specific process of BOW features extraction can be found in
reference [46].

Finally, the above feature vectors are concatenated into a 1011-
D vector by using formula (12) denoted as F GPCR.

F GPCR ¼ WEF � BF ð12Þ
2.4. Feature extraction by Deep learning

In this work, we built a simple DL model which contains three
fully connected layers and two Batch Normalization (BN) [53] lay-
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ers to reduce the dimensions of the feature vector F GPCR. In fact,
the structure of DL model is very flexible. In order to simplify the
problem, the number of neurons of each hidden layer is about half
less than the previous layer. The detailed structure is shown in
Fig. 3. What’s more, we choose Focal loss [32] as the default loss
function. Compared with other loss functions, Focal loss can handle
the imbalance problem of datasets better [32].In this paper, the DL
model is built by Tensorflow which is a very popular machine
learning package. The hyperparameters of the DL model including
epochs, batch size, loss function and optimizer are 20 and 32, bin-
ary cross-entropy and Adam [54]. The activation function of hidden
layers is chosen Leaky Relu [55]. And the initial learning rate is
0.01. What’s more, we used Early Stopping method to decide when
to stop training. The strategy of Early Stopping could monitor the
training loss and would stop the training process if the training loss
did not decrease in the next 3 epochs. The model would be trained
with the training dataset. Then the 1011-D features vector
F GPCRwould be input into the optimized model and the output
of Layer 1 would be intercepted as the final features. From Fig. 3,
we can see that the final features are 505-D obviously after using
DL model to reduce dimension.
2.5. Algorithm selection

2.5.1. Gradient boosting decision tree
Gradient Boosting Decision Tree (GBDT) is an effective machine

learning algorithm in industry [56] and scientific research [46,57].
In practical research and application, classification and Regression
Trees (CART) [58] is usually served as weak classifier for GBDT, and
GBDT algorithm is trained through multiple iterations, each itera-
tion produces a weak classifier which is trained on the basis of
the residual of the previous round. The final total classifier (GBDT)
is the weighted sum of the weak classifiers from each iteration of
training.
2.5.2. Random forest
Random Forest (RF) [59] is a classical ensemble algorithm in

machine learning. Because of its flexibility and generalization abil-
ity, this algorithm has been applied in many fields, such as bioin-
formatics, data mining and marketing management. The base
learners of RF are usually CART. When a new sample is needed to
be classified, each decision tree in the forest will be judged and
classified separately. RF depends on a vote of their predictions to
decide the final classification result.
2.5.3. CatBoost
CatBoost [60] is a kind of boosting algorithm based on symmet-

ric Trees, which is universal and can be applied to a wide range of
fields and various problems. Compared with other machine learn-
ing algorithms, the algorithm has three advantages. First of all, it
can automatically handle categorical features. Further, CatBoost
uses combined category features to make use of the relationship
between features, which greatly enriches the feature dimension.
Last but not least, the time of model training and predicting is very
short.
2.5.4. XGBoost
XGBoost [61] is a well-known boosting algorithm in machine

learning, which is mainly used to solve supervised learning prob-
lems. It can handle many tasks such as regression, classification
and sorting and is widely used in machine learning competitions,
and has achieved good results. XGBoost is generally regarded as
an improvement of GBDT algorithm and can be more flexible and
efficient [62,63]. The base learner of XGBoost is CART.



Fig. 3. The structure of deep learning model.
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3. Results

3.1. Train the better CBOW models

From the mathematical derivation of CBOW, it is clear that get-
ting a best CBOWmodel through training is to maximize the objec-
tive function. Here, a large value of iterations was set for the
training of CBOW models and the best iterations were chosen by
observing the change of objective function in the training process.
In this paper, the all CBOW models were built and trained by using
the software package of Python called Gensim. The code of training
CBOW models is shown at https://github.com/454170054/EMC
BOW-GPCR/blob/main/code/GetCBO

WFeatures.py, which contains the values of hyperparameters.
Increment curves of objective functions of the three built models
are shown in Fig. 4. From the picture, we can see when the objective
functions of the models start to converge. From the left one in the
picture, it is clear that when iterations of Ql¼2 is bigger than 74, the
increment of objective function is close to 0. Therefore, we choose
the result after the 74th training as the default CBOW model of
Fig. 4. Increment curves of objectiv
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Ql¼2. Similarly, the default CBOW models of Ql¼3 and Ql¼3 are the
result after the 100th training and 280th training, respectively.
3.2. Effect of different feature representations of GPCR

In this work, we used two feature extraction methods, i.e., BOW
features and Word Embedding features, to represent GPCRs
sequences. In this section, the performances are compared based
on mentioned-above single kind of features and combined features
which are generated by concatenating BOW features and Word
Embedding features by 5-fold cross-validation with 20 times on
benchmark dataset. In this section, CatBoost algorithm are selected
as the default algorithm to build classifiers. The experimental
results about AUC values of different features are shown in Fig. 5.
From the figure, we can see that the combined features whose
AUC is 0.9423 which is better than CBOW features
(AUC = 0.9391) and BOW features (AUC = 0.9344). According to
the results, the combined features are selected as the default fea-
tures to represent GPCRs sequences.
e functions of training CBOW.



Fig. 6. AUC values of CatBoost algorithm combined with features generated by
different layers.

Fig. 5. AUC values of CatBoost algorithm combined with different features.

Table 4
The results of the proposed method and literature [5].

Method AUC Acc Precision

Proposed method 95.29 88.11 89.28
400D + PC-PseAAC 94.13 86.28 86.62
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3.3. Effect of different features generated by Deep-learning model

In this paper, a simple fully connected DL model was built with
one input layer, three hidden layers, two BN layers and one output
Table 1
Performance of different algorithms.

Algorithm Acc Sp

CatBoost 92.87�0.14 97.06�0.13
RF 92.85�0:10 98.40�0.07
GBDT 92.61�0.13 96.77�0.12
XGBoost 92.91�0.10 97.34�0.11
DL 92.23�0.30 97.56�0.47

Notice: digits are mean� std and the bold means the best values.

Table 2
The hyperparameters used for the classifiers.

Algorithm n_estimators

CatBoost 190
RF 110
GBDT 100
XGBoost 110

Notice: slash means algorithm do not have the hyperparameter.

Table 3
The results of the proposed method and Liao [14].

Method Acc Sp

Proposed method 92.91�0.10 97.34�0.11
Liao 83.33�7:26 97.24�0:87
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layer. Because of the model having three hidden layers and two BN
layers, there are 5 kinds of features generated by the DL model. In
this section, we evaluate the effectiveness of above features by 5-
fold cross-validation with 20 times on benchmark dataset and
the results are shown in Fig. 6. The details about the DL model
are exhibited at https://github.com/454170054/EMCBOW-GPCR/
blob/main/code/GetResults.py. CatBoost is chosen as the default
algorithm to build predictive model to get AUC values in this sec-
tion. From the figure, we can find that the AUC value of original
features is the smallest. This result can demonstrate the fact that
the processed features by DL have better performance. What’s
more, the features generated by Layer 1 of DL model achieved
the biggest value of AUC so that it was chosen as the default
features.
3.4. Determination of the optimal algorithm

Up to now, there are many effective algorithms developed in
the field of machine learning. Ensemble learning often performs
better than the best single algorithm since it would construct a cer-
tain number of weak classifiers and then classifies a new sample by
taking a (weighted) vote of their predictions. The all learning algo-
rithms mentioned in section 3 belong to ensemble learning, in
which the random forest is part of Bagging method and the rest
is part of Boosting method [64]. In this section, the above four algo-
rithms are tested on the benchmark dataset by 5-fold cross-
validation with 20 times and the performance of them is listed in
Table 1 and the input features used there is the features generated
by Layer 1 of the DL model. As shown in the table, the performance
of DL model is worse than other algorithms which are using the
features generated by DL model. What’s more, The RF algorithm
Sn MCC AUC

75.43�0.54 76.29�0.48 95.25�0.14
69.78�0.44 75.85�0.38 95.38�0.09
75.27�0:52 75.48�0.58 94.82�0.13
74.45�0.41 76.32�0.34 95.56�0.13
70.03�2.65 73.77�1.14 93.80�0.35

Learning rate Max depth

0.4 None
None

0.1 3
0.12 3

Sn MCC AUC

74.45�0.41 76.32�0.34 95.56�0.13
69.42�14:91 69.24�12:96 92.80�3:8
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Fig. 7. The framework of proposed method EMCBOW-GPCR.
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has the largest Sp but having the smallest Sn and CatBoost algo-
rithm has the best Sn. Furthermore, the Acc, Mcc and AUC value
of XGBoost is the highest. Therefore, XGBoost algorithm is selected
as the final algorithm to build classifier in this work. The hyperpa-
rameters used for the classifiers are included in Table 2 and the
software packages can be found in https://github.com/
454170054/EMCBOW-GPCR/blob/main/requirements.txt.

3.5. Comparison of other methods

In this work, the benchmark dataset is same as the one used in
[5,14]. In order to prove the effectiveness of our method, the per-
formance is compared between the proposed method and the
other state-of-the-art method. Because the data segmentation
methods in the literature are different, the same segmentation
strategy was test here. In the literature [14], the state-of-the-art
method was tested on the benchmark dataset by 5-fold cross-
validation. Further, SMOTE algorithm was used to balance the
training dataset and change the positive samples from 100 percent
into 300 percent. We also take the strategy to handle the bench-
mark dataset and test our proposed method. The results are shown
in Table 3. It is clear that all the metrics of the proposed method are
better than those of Liao. In the literature [5], the negative samples
in the benchmark dataset were randomly divided into 4 groups
and 2495 sequences were extracted from these 4 groups, respec-
tively. Then, the final result is an average of the four experiment
by using the four negative experiments. According to the strategy,
we test our proposed method and the result is shown in Table 4.
From the table, we can find that the AUC, Acc and Precision value
of our method are higher than the other. The results of comparing
with other methods show that the proposed method is a good
method for identifying GPCRs.

4. Conclusion

In this work, CatBoost was chosen as the initial algorithm to
build classifier for the reason that the time of training CatBoost is
much shorter than other mentioned algorithms. Firstly, we
selected the best CBOW models by optimizing the objective func-
tion. Secondly, BOW and CBOW models were employed to extract
features separately and the metrics listed in formula (1) were used
to evaluate the effectiveness of different feature representations
for GPCRs. According to the experiment results, the combined fea-
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tures by concatenating BOW and Word Embedding features were
better than any single features. Therefore, we determined to
choose the combined features as the default features to represent
GPCRs sequences. Then, a simple DL model was built and CatBoost
was employed to fit the processed features generated by different
layers of DL model and generate corresponding classifier. Accord-
ing to the performance of different classifiers, the outputs of Layer
1 were chosen as the final features. Further, XGBoost was selected
as the default algorithm because of its best performance compared
with other algorithms. Finally, according to results compared with
other state-of-the-art methods, the proposed method called
EMCBOW-GPCR got a better performance in the problem of identi-
fying GPCRs.
5. Discussion

G protein coupled receptors (GPCRs) family is one of the largest
membrane protein family in human beings, and is also an impor-
tant target of many drugs. In this work, a novel method for identi-
fying GPCRs was developed. In terms of representation GPCRs, we
used two extraction methods which are BOW and Word Embed-
ding to extract features from GPCRs sequences. Then we concate-
nated the above two kinds of features as the input of DL which
can automatically extract better features by learning from the
input features. Further, we intercepted the output of Layer 1 as
the input features of XGBoost which is a fairly powerful, flexible
and efficient algorithm. According to the results of compared with
other methods, the proposed method called EMCBOW-GPCR has a
better performance for identifying GPCRs. By the way, the hyperpa-
rameter N which is used in Word Embedding is flexible and hard to
determine the best value. What’s more, it may be influenced the
quality of features significantly. At the same time, the DL model
is also very flexible and difficult to find the best structure which
contains how many layers and units in each layer. Finally, the
framework of EMCBOW-GPCR can be concluded as Fig. 7.
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