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Abstract: Water monitoring in households is important to ensure the sustainability of fresh
water reserves on our planet. It provides stakeholders with the statistics required to formulate
optimal strategies in residential water management. However, this should not be prohibitive and
appliance-level water monitoring cannot practically be achieved by deploying sensors on every
faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to
mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine
learning and data mining techniques are promising techniques to analyse monitored data to obtain
non-intrusive water usage disaggregation. This is because they can discern water usage from the
aggregated data acquired from a single point of observation. This paper provides an overview of
water usage disaggregation systems and related techniques adopted for water event classification.
The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a
discussion on the prominent challenges and future research are also included.

Keywords: water usage disaggregation; water monitoring; disaggregation algorithms; machine
learning; water management

1. Introduction

The global use of water is increasing at a rate faster than can be satisfied with current
usable water supplies [1]. While irrigation and electricity generation dominates water usage in
developed countries [2], household water conservation still represents an important factor in ensuring
sustainability of fresh water reserves on our planet. In the US, for example, nearly 10% of fresh
water consumption can be attributed to domestic use [3]. In the UK, each person uses about 142 L
of water each day with the average household using 349 L of water per/day [4]. Even though
domestic water usage only accounts for 10%, achieving efficiencies and understanding this usage is of
particular importance to water utilities. Key reasons for this include [5]; (a) differing the requirement
of construction of expensive capital assets, such as reservoirs or boreholes; (b) problems relating
to efficiently supplying sufficient water quantities in often increasing dense urban area that are at
considerable distance from existing water resources; and (c) achieving a pressure reduction in a given
urban region and thus extending the lifetime of assets. In the UK, urban water systems make up 6% of
CO2 emissions, with 89% coming from heating water and the remaining 11% coming from treating
and pumping water [6]. These figures do not take secondary water usage into consideration; this is
usage that would be attributed to the food or energy production that we as individuals consume in
our daily lives. That is, food production is said to consume 3496 L of water per day per person and,
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within the home, further food preparation consumes 10% of water usage—remarkably, 50% of this is
then wasted [7].

Due to humanity’s dependency on water, its shortage can cause economic downturn and
ultimately civil unrest; it is of no surprise that a considerable amount of research has been conducted
to understand water use and, in particular, water use in a residential setting. Previously, a multitude
of approaches have been utilised, in order to gather and interpret household water usage data.

Understanding water use in residential environments provides considerable value to water
utilities, policy makers, and water users alike. From a water utility perspective, detailed knowledge of
household consumption patterns can enable the predictive management of water supplies, leading
to significant savings in the distribution and storage of water in networks [8]. It also provides the
foundation for new water demand management strategies aiming at increased water conservation or
shifting water usage peaks, and it can even contribute to improving the detection of costly leaks in
water distribution systems. Policy makers can utilise such information for better conservation planning
and to devise more adequate response strategies in periods of water shortage [9]. From a residential
water user perspective, information about their own water usage behaviours can lead to identifying
wasteful water usage habits or water leaks at premises, providing the foundation for a sustainable
behaviour change and cost savings on water bills [10].

In the following sections, we briefly review existing approaches for contextualising water use in
residential settings. Our focus is on techniques for assessing water usage in indoor settings, as this
field of research has reached a critical mass of works that motivates an extended review. We classify
them according to their purpose, underlying technology assumptions, and working principles, and
discuss advantages and disadvantages of these methods. The paper then ends with an identification
of further opportunities to overcome these limitations and identifying further research directions for
work in the field.

2. Understanding Water Usage

For a domestic setting, there are a variety of questions that can be asked, which can lead to insights
about the water use of a household at different levels of granularity:

- How much water is being used?
- What water is being used—is it hot or cold water, fresh water or grey water?
- When is water being used—how does the water use change over the day, week and seasons?
- Why is water being used—what are the activities related to water use?
- Where is water being used—at which fixture or fixture type is water being abstracted from? Are

these indoor or outdoor uses?
- Who is using the water—in a multi-occupancy household or building, how can water use be

attributable to individuals?

When unravelling insights about domestic water use, it is obvious that not all questions may
be relevant for all stakeholders and that different exploitations may require a specific water usage
contextualisation to be obtained.

From a water utility perspective, there are different motivations as to why obtaining insights
into household level information is important. At the most basic level, water usage information on
individual households is important for billing purposes. Aggregate monthly or even yearly water
usage information may be sufficient for water utilities to obtain adequate compensation for their
domestic water supply. Moreover, in order to achieve water distribution network efficiencies and
to understand investment levels, the relative costs and benefits of consumption are required; these
can only be estimated by determining households’ water use [10]. This, in turn, impacts on water
pricing mechanisms. This information is useful to manage resource constraints and future demands.
From end-use analysis, utilities can gain insights into how new generation appliances will positively
affect demand, and can thereby avoid oversupply before it is needed. Having information of water
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usage at higher time resolutions from households in a district metered area (DMA) can be helpful in
identifying water leaks in the distribution network [11], leading to significant savings for the water
utility, such as the water wastage itself and the associated energy required to treat and pump it around
the distribution system. Detailed knowledge of water use across different times of the day, weekday
and weekend demands, as well as seasonal variations facilitates water forecast demand modelling,
which can used to better schedule water availability across the water network, thus saving energy
costs for pumping, and ensuring appropriate supply levels [10].

From a policy maker perspective, a more detailed understanding of residential water use is
required to support the identification of water saving opportunities and to devise effective strategies
and validate their effectiveness. For this, a breakdown of the water use in the home, based on usage
activities or water fixture types is required, as well as an understanding of the temporal change of
domestic water usage behaviour [6]. Quantifying water saving opportunities naturally also applies to
hot water use [12], where additional energy is wasted in heating up the water. A policy maker also
draws upon residential water usage information in order to regulate water prices and to influence how
water use is communicated to end users by the water utilities [13].

Domestic water end users are primarily interested in cutting their water bill or to contribute to
personal sustainability targets [14]. Therefore, they require more detailed knowledge on water usage
activities to understand what water savings opportunities exist and how they can adapt their water
usage habits. End-use studies [6] provide simple guidance on how water use can, on average, be broken
down into usage categories and activities at home. These insights can be combined with actionable
advice given by water companies and environmental organizations. While such end-use studies
provide a good view on a national average, there are considerable variations in water usage behaviour
across households in different regions, even within similar communities [15]. More personalised
information is thus required in order to make water demand management more effective within
individual households.

Feedback systems have recently emerged as a more promising alternative to support sustainable
behaviour change in domestic settings. While the initial bodies of work focused primarily on energy,
in addition, water related eco-feedback systems are beginning to emerge [16,17]. These works indicate
increased water saving potential where end users are provided with more personalised and timely
feedback about their water consumption. Froehlich et al. suggest that a detailed breakdown of water
use to fixture types or even the attribution of water use to individual persons in a household could
be effective [16]. Kuznetsov et al. propose the use of “live” in situ feedback during water use at the
fixture to influence a user’s consumption behaviour [17]. An understanding of detailed water usage in
a home can also highlight existing water wastage due to leaks in the domestic water infrastructure
and inefficiency of fixtures, leading to longer term cost savings for the resident if appropriate actions
are taken. While the above discussion is non-exhaustive, it highlights the benefits and potentials of
obtaining more detailed insight into domestic water use of different stakeholders, and shows the
spectrum of types and granularity of information that are required to obtain these.

However, it is worth mentioning that the increasing adoption of eco-friendly appliances is
fortunately driving towards theoretical lows for indoor water use. Even if users can be educated to
use water wisely, it is hard to change personal habits in a way that can yield a significant impact on
water resources. Regarding outdoor residential usages, some efforts have been made at the regulatory
level to improve landscape water management. For instance, a Model Water Efficient Landscape
Ordinance [18], has been developed and updated by the Department of Water Resources in California.
Industry and research should refocus on the conservation of outdoor water use, which has not received
as much attention. Across different study sites, more than 50% [19] of residential water use is outdoor,
and outdoor use reaches the peak in the hot season, when pools and gardens require water [20]. This
suggests that, in terms of disaggregation, outdoor usages involve large volumes of water but are easier
to identify because it is limited to the two usages mentioned above. For these reasons, this paper will
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focus on indoor settings, which have much larger variability and the disaggregation of activities is,
therefore, more challenging.

The rest of the paper is structured as follows: Section 3 introduces the approaches to contextualize
domestic water usage analysing the current panorama of metering, introducing the concept of
disaggregation and then a short taxonomy of the sensing possibilities adopted so far in scientific
literature. The Section 4 is focused on the statistical learning and classification of water events and
reports a number of existing works in the field. Finally, Section 5 contains a discussion of issues and
challenges that still narrow the applicability of water disaggregation in real world scenario.

3. Approaches for Contextualizing Domestic Water Use

In the following we examine the state-of-the-art approaches that are used to contextualise domestic
water use.

3.1. Assessing Individual Water Consumption

An effective way of measuring household level water consumption is through metering the
water supply at the premises of a customer. Only about half of UK households currently have a
water meter installed [21]. The vast majority of these meters are not Internet-connected, and require
a manual readout by the water company or the customer. Meter readouts often take place on an
annual or monthly basis, in order to estimate the domestic water bill. Non-metered customers are
charged an amount that is proportionate to the rateable value of the property [22]. This results in
an annual flat rate that does not take into consideration the size of the household [23]. Automated
meter reading (AMR) or smart meter reading provides the ability to automatically capture water
usage information at more regular intervals. In their most basic form, such meters do not require a
connectivity infrastructure. They act as standalone meters that can be read through some wireless
channel in a walk-by (e.g., handheld devices) or drive-by fashion (e.g., utility service vehicle). A more
effective way is connecting AMR/smart meter devices via a dedicated metering infrastructure to the
utility company, or via existing communication networks available at the household (e.g., phone line,
Internet router). While this comes at increased costs and complexity, it removes the burden of relying
on physical proximity for retrieving the meter readout, theoretically allowing near real-time reporting
of metering information. In practice, meters are typically monitored on a daily, hourly basis or 15 min
basis [24], as dictated by the costs for data communication and data storage, respectively.

In contrast to AMR devices, which provide only simple reporting functionality, smart meters can
provide bi-directional communications. Depending on their extended capabilities, smart meters can
provide some configuration options to the utility company, such as the configuration of the reading
interval or other system settings. Some smart meters can be even interfaced to in-home displays or
smart home platforms, providing residents with information on their current or historic water use [25].

Despite their advanced metering capabilities, current smart meters are only capable of answering
how much water is being used and when. Breaking down the residential water use to more fine-grained
levels, e.g., fixture level use, requires higher resolution readings combined with external data analytics
and possible additional instrumentation. Recent work in the field of energy metering calls for an
evolution of smart meters to become “cognitive meters” [26] that are able to disaggregate the water use
within the metering device. While basic features, such as household leak detection on smart meters, is
already feasible [27], this vision still requires some further advances in the field.

Interestingly, the scientific community has been working since the 1990s on approaches for water
use disaggregation at the household level. In the following, we will examine these works and identify
strengths and weaknesses of these and current gaps.

3.2. Non-Intrusive Disaggregation of Domestic Water Use

Disaggregation of water use represents an active field of research as it provides important insights
for the contextualisation of domestic water use, which simple metering cannot answer.
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On a high level, disaggregation allows domestic water use to be broken down into fixture
categories, which identify the amount of water consumption of individual fixture types in a household.
Typical fixture categories for indoor use are shower, bathtub, toilet, and faucet, as well appliances,
such as washing machines and dishwashers. Typical outdoor fixture categories are exterior hose bib,
swimming pools and irrigation systems. Most current end use studies provide insights on residential
water use at the level of the fixture category. Sometimes, however, it is necessary to distinguish
between hot and cold water use, and the location (room, indoor or outdoor) where the water is being
used. Such water usage break down requires knowledge of water use at individual fixtures or even
valves (in the case of hot and cold water).

A further level of contextualisation is the attribution of water use to individual residents in a
multi-party home or the mapping of water use to individual activities (e.g., washing hands, cleaning
teeth, watering the garden, etc.). The latter contextualisations are particularly hard to obtain.

One of the most common methods for deriving a breakdown of domestic water end use
information is through manual data collection acquired by consumer surveys, diaries/self-reports
and in situ observations in domestic living environments. Such studies are able to capture a diversity
of information, even detailed information that is sometimes very difficult to capture, such as water
usage activities. However they tend to be very labour intensive and do not scale well for longitudinal
analysis (over longer periods of time for larger populations). Online survey tools, such as the Water
Energy Calculator [28], have made it easier to reach wider audiences [6], however, such studies rely on
the truthfulness of the persons participating in the studies. Despite their best attempts at being honest,
users often reflect perceptual bias or may accidentally misreport relevant information [29]. Furthermore,
self-reports and surveys are not able to capture the exact amount of water use and represent only
estimates that have to be complemented by more detailed metered water use. Researchers in the
field have therefore looked into instrumenting households and applying data analytics solutions to
measured data traces in order to gain a better insight into water usage patterns.

A very accurate but inefficient way to obtain such insights is through extensive instrumentation
of a household. Each individual fixture or even valve can be instrumented with a flow meter. Such
deployments are mainly limited to testbed settings [30–32], in order to establish a ground truth for
other experiments with less intrusive techniques. It is not difficult to see that such an approach is, not
only cumbersome and costly in terms of deployment, but highly intrusive. Such a case can be seen as
analogous to intrusive load monitoring in the energy domain [33].

In order to overcome the above limitations, a variety of non-intrusive monitoring approaches have
been proposed, which are able to perform water disaggregation based on data obtained from a single
sensing point or from a limited set of sensing points deployed at strategic locations of a residential
water pipe infrastructure and/or rooms of a residences.

Non-intrusive water use disaggregation approaches differ in terms of the underlying sensing
process and the classification techniques that they utilise to discern water usage patterns from the
sensed signals.

In the following, we first discuss commonly used sensing processes, and highlight key features
and differences of these. Based on the knowledge of these processes, we subsequently structure our
discussion on the classification approaches and cover the main challenges, strengths, and weaknesses
of these.

3.3. Sensing

The sensing process for non-intrusive water use disaggregation approaches is determined by a
variety of factors. A first key discriminator is whether a single or multiple sensing points are required
for a residential setting.

While single-point sensing solutions are typically based on a single modality, multi-point
approaches can utilise one or more different sensing modalities. Approaches that utilise a single
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sensing modality are referred to as mono-modal sensing approaches, while approaches that utilise
multiple sensing modalities for water use disaggregation are referred to as multi-modal.

Depending on the nature of sensing modality the sampling frequency may greatly vary. Low
frequency approaches typically operate in sub-Hz regions, while high frequency approaches can
require up to several kHz sampling of the sensing signal. The sampling frequency determines the data
rate, which has an impact on processing, storage, and communication requirements.

The sensing process also typically determines whether associated water volumes of water usage
events can be determined.

Figure 1 shows an overview of the different sensing modalities utilised in current approaches that
can be found in literature.
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Passive Infra-Red).

Flow meters are the most commonly-used sensing modality [34–36], as they can be fitted outside of
the premises of a customer and are, thus, the least intrusive instrumentation option from an occupier’s
perspective. They directly measure the volume of utilised water usage activities, which forms the basis
of customer billing. Approaches based on flow meters require relatively low sampling rates, e.g., one
sample every 5 s.

If instrumentation inside of a customer premises is acceptable by both: By users (in terms of
privacy, wiring and radio emissions), and by water suppliers (in terms of cost/benefits), and more
sensing options do exist. One of the most promising alternatives for single point sensing is water
pressure [31,37,38]. A pressure sensor is typically attached to the residential water pipe infrastructure
(e.g., hose bib, bigot, etc.) and is able to measure changes to pressure caused by water usage at
different fixtures. Compared to flow meters, approaches based on pressure sensing require higher
frequency sampling (500–1000 Hz) in order to reliably detect signatures of water usage events. While
they cannot directly measure the volume of water usage activities, the volume can be estimated with
additional techniques.

Both water flow and water pressure are modalities obtained by inline measuring of the water
piping infrastructure. As they are directly in contact with water, such sensors require a thorough
approval process to be authorised for deployment by water authorities [39]. Furthermore, the
installation of such sensors proves to be more complicated.
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Acoustic based sensing [30] does not require the insertion of sensors into the piping infrastructure.
Instead, acoustic sensors are simply placed on top of the pipes at a few strategic locations. In contrast to
flow and pressure based sensing, which require only a single sensing point, multiple acoustic sensing
points are required to be deployed for reliable disaggregation. Acoustic event detection algorithms
are able to determine water usage events; however, they are unable to infer the volume of the utilised
water data. Like pressure based sensing approaches, acoustic sensing approaches require higher
frequency sampling (around 4 kHz).

Finally, several multi-modal sensing approaches have emerged that aim to improve the
disaggregation accuracy of flow meter based sensing. Kim et al., in their non-intrusive autonomous
water monitoring system (NAWMS) [40], utilises a flow meter at the main supply and accelerometers
deployed at individual pipes leading to fixtures to disaggregate water use to individual fixtures
and performs flow rate estimation for each fixture. It uses lower sensing frequencies for the flow
meter, but requires a 100-Hz sample rate for the accelerometer signal. WaterSense [41] utilises passive
infrared-based motion sensors deployed in rooms with fixtures to improve fixture level classification
of flow meter based disaggregation. It also can determine the volume of water used during each
classified usage event. WaterSense requires a sample every 2 s for flow and one every seven seconds
for the motion sensor. The latter is only processed when motion is detected.

4. Classification of Water Events

As previously discussed, the approaches for water use disaggregation make use of a variety
of different sensing modalities. The sensed signals are then subject to pattern analysis by applying
classification techniques in order to identify the corresponding water usage events. Depending on
the nature of the sensing modalities, different classifiers are utilised. These classifiers can be further
divided into discriminative and generative ones. In the following, we structure our discussion on the
classification techniques according to the utilised sensing modality.

4.1. Water Flow Based Methods

A key assumption of non-intrusive monitoring approaches based on flow meters is that the
use of a particular water fixture or fixture type causes a distinct flow pattern in the residential pipe
infrastructure, which can be observed by a single sensor point. By applying pattern recognition
algorithms to the recorded time series data, water usage events for the specific water fixture or fixture
type can be identified.

Water flow in households is typically modelled with Poisson rectangular pulse as described in [42].
Figure 2 shows a 24-h dataset generated from the aforementioned model. The number of events in a
unit of time follows a Poisson distribution, while duration and intensity have their own mean and
variance. All the parameters should be adjusted by time of the day with diurnal multipliers. The
observed flows are directly related to the volumes. Reported figures about water volumes and flows
are shown in Table 1 [34,43].

Non-intrusive monitoring techniques based on flow meters face the following difficulties:

‚ Irregularities of flow patterns for some fixture types. Some mechanically driven water valves,
such as in a washing machine or dishwasher, usually exhibit more regular water usage patterns,
unlike faucets or showers where human users have the ability to vary the amount of flow and
duration significantly. Even the more regular flow patterns of washers can show variation
based on a diversity of different water saving programs and washing cycles that are available in
modern-day devices.

‚ Similarity of flow patterns among instances of the same fixture type. Many homes have multiple
toilets and/or faucets, which may be located in different rooms. This makes it challenging to
identify an individual fixture if multiple instances of the same type exist [34,38].
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‚ Overlapping of flow patterns. Often, fixture use can occur concurrently, resulting in overlapping
patterns in the observed water flow that are difficult to disassemble [34,36]. A typical example is a
person washing their hands after a toilet flush, while the water tank refills. In multi-occupancy
homes, such events are even more frequent. This superposition of patterns causes additional
challenges for pattern recognition techniques, and this becomes more severe with an increasing
number of overlapping water usage events. Some of these challenges can be overcome by adopting
different sensing modalities.
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Table 1. Average flow and average volume for the most common water usages and water events.

Usage/Event Average Flow (L/min) Average Volume (L)

Toilet flush 1–10 9–16
Shower 6–19 -

Dishwasher 5–7 15–40
Washing machine - 45–170

Faucet (general usage) 7 -
Hand washing 5

Tooth brushing no saving 20
Tooth brushing water saving 1.5

Manual dish washing 40
Car washing 400

Faucet dripping 5 lt per day
Irrigation 30–70

Bath 19–30 70–170

In terms of volumes consumed inside homes, Table 2 reports indoor household use by fixture
based on a large study involving more than 23,000 homes in North America [44]. The statistics and
figures in the report are affected by regional factors, and cannot be considered representative of
all Western countries, or of all the United States, but the breakdown of indoor usage, expressed in
percentage, is not expected to differ substantially.
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Table 2. Indoor household use by fixture based on a large study involving more than 23,000 homes in
North America.

Usage Volume%

Toilet flush 24%
Shower 20%

Dishwasher 2%
Washing machine 16%

Faucet (general usage) 20%
Bath 3%
Leak 13%
Other 2%

4.1.1. Discriminative Classifiers

Flow trace analysis is one of the first automated techniques to infer water usage from single
flow meter readings. It was initially proposed by Dziegielewski et al. [45], and is currently the most
widely-used technique for identifying water usage events in the water industry due to its maturity
and the availability of commercial service offerings based on it. Flow trace analysis relies on the fact
that domestic water use exhibits common patterns that are distinctive enough to discriminate water
usage events of different fixture types. Through analysis of aggregate data flows captured by a single
flow meter by visual comparison with a database of water event signatures, or by the use of simple
decision-tree based classifiers, the current water source for these water usage events can be determined.

A first extensive study that utilised flow trace analysis was presented by DeOreo et al. [34]. The
authors performed a collection of signature flow traces for each fixture inside of 16 homes at a rate
of one sample every 10 s using a flow meter. The signatures encompassed nine distinct example
categories and where stored into a database as reference signatures for later analysis. Then the 16
houses were monitored over a period of three weeks each. Using the signatures, data-flow traces were
determined based on visual analysis. When a type of flow was identified, it was isolated in a window
and the integral of the flow rate over this window provided the volume of water used for the event.
Overall, 10,000 water usage events were identified.

In order to simplify the analysis, a signal-processing algorithm was devised that utilised different
feature sets derived from the flow meter measurements. The algorithm parameters were derived from
the labelled empirical database and included features, such as peak flow, duration, volume, flow rate
change over time and time of the day cues. The authors however did not provide any assessment of
the performance of their solution.

The two market leading commercial tools, TraceWizard [46] and Identiflow [47], are also based on
the principle of flow trace analysis. According to a previous review by Nguyen et al. [48] for these two
systems, both use decision tree based classifiers and require a time-consuming and labour-intensive
process to perform offline fixture disaggregation.

TraceWizard is reported to apply an algorithm that interprets data based on simple boundary
conditions. Examples of these boundary conditions include start time, stop time, duration, volume,
peak flow rate, the most common flow rate, and how often this most common flow rate occurs during
the duration of the event. However, the performance drops very quickly to 24% when two water
fixtures are used at the same time or 0% when three or more were used. Similarly, Identiflow has the
same deficiencies. It uses a decision tree algorithm to deconstruct a flow trace data series into water end
use events and achieves an accuracy of 74.8% in terms of the correctly-classified volume. As it relies on
fixed physical features of various water-using devices, such as volume and flow rate for disaggregation,
the final classification accuracy is greatly dependent on the existing types of water devices.

In recent work, Dong et al. [49] propose a Deep Sparse Coding based Recursive Disaggregation
Model (DSCRDM), which is particularly suited for low sample rate water consumption disaggregation.
Their algorithm is inspired by work in the energy disaggregation domain on Discriminative
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Disaggregation Sparse Coding [50], which the authors extend using a recursive decomposition
structure to perform the disaggregation task. Starting from the total measured consumption, the
consumption of each fixture type is disaggregated in a step-wise approach during which a current
device is distinguished from other residual devices through a discriminative dictionary. It utilizes
only one sample every 15 min. It achieves an average accuracy of about 52% and a normalized
Disaggregation Error of 74% for classifying fixture type usage events, such as faucet, dishwasher,
toilet, humidifier, cooler, hot tub, shower, bath, irrigation, and swimming pool. While the accuracy is
lower than comparable state of the art flow trace solutions, the approach works at much lower data
rates. Piga et al. propose a novel algorithm [51] based on sparse optimization, which the authors
claim can be used to disaggregate both water and energy consumption data. The approach is based
on the assumption that the power/water consumption profiles of each appliance are piece-wise
constant over the time and it exploits the information regarding time-of-day probabilities whereby
a specific appliance/fixture is likely to be used. The algorithm treats the disaggregation problem
as a least-square error minimization problem, with an additional (convex) penalty term aiming at
enforcing the disaggregate signals to be piece-wise constant over the time. The proposed algorithm is
able to reconstruct the consumption trajectories over time and has shown excellent disaggregation
performance using an energy data set with four overlapping household appliances. While the
algorithm is likely to perform well on water use patterns of household appliances, it is unclear
how well it will do on more irregular water usage patterns, such as tap use or showers.

4.1.2. Generative Classifiers

The work of Fontdecaba et al. [36] assumes flow meter data at a rate of a reading every 5 s. It
considers a common generative model for all households, which models water usage classes (toilets,
washing machine, kitchen sinks, bathroom sink, dish washer, shower) as probabilistic models with
multivariate Gaussian distribution. A maximum likelihood estimator is utilised to select the right water
usage class based on 10 indicators derived from the flow meter data. The algorithm achieved an overall
classification accuracy of 70% for water usage classes and 68% for water volume, considering sample
data obtained from eight households over a period of three months. The algorithm was assed only for
non-overlapping usage events and had difficulties in accurately classifying water using appliances,
such washing machines and dishwashers.

In Reference [48], Nguyen et al. investigated the use of a Hidden Markov Model (HMM) based
classifier for water end-use event classification. They found that HMM alone did not provide sufficient
classification accuracy and added extensive context information to fine-tune the classifiers, based
on time of day, likelihood of occurrences of events, and assumptions of event durations and flow
boundaries and volumes per event. The resulting approach was a hybrid analytical method employing
an HMM with over 100 states with a Dynamic Time Warping algorithm and event probability
techniques, resulting in a multi-layer classifier. The classifier was able to disaggregate water usage
events for tap, dishwasher, washing machine, shower, bathtub, toilet and irrigation. The classification
for most events was nearly 90% for non-overlapping events, apart from irrigation and bathtub, which
the algorithm had difficulties recognising accurately. A bathtub was often confused with a long shower;
likewise, irrigation difficulties were due to irregular patterns.

The same team performed analysis of overlapping water events. In order to deal with concurrent
events, they proposed a new filtering method [52], which smoothens a combined event to any desired
level based on examination of gradient change along the sample, in order to make different dissection
decisions. The filtering determines a base samples and subsamples. Both base event and subsamples
are classified by an HMM, based on their likelihood. Subsamples require an additional threshold or
are broken into further subsamples using the same filtering technique. The base event is classified
based on likelihood without a threshold. The evaluation looked only at the fairly small number of
20 combined events (between two and three concurrent occurring events) and was able to perform
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with a classification accuracy of 88%. While the results look promising, the sample size was too small
for it to be considered significant.

4.2. Water Pressure Based Methods

Water pressure based disaggregation approaches exploit the fact that a building’s piping
infrastructure forms a closed loop pressure system with water held at a stable pressure throughout the
infrastructure when no water is flowing. In the case where no pressure regulator exists at a household’s
mains supply, this pressure may be subject to minor variations depending on the water neighbourhood
water demand.

The opening and closing of valves along this pressurized piping infrastructure leads to the
generation of pressure waves, which result from the rapid change of velocity of the water in the pipes.
The magnitude of the surge in pressure waves is independent of, and much greater than, the operating
pressure and the resulting transients can have a positive or negative rate of change depending on
whether a valve is being opened or closed. The signatures of these transients depend on the valve
type and its location in the home pipe network, providing excellent discrimination capabilities to
even distinguish among two fixtures of the exact same model. To a lesser extent, the signature is
also influenced by the way the valve is opened. The magnitude of the pressure drop and resulting
shockwave is dependent on the relative location of the sensor’s deployment point to the source of the
event and the speed that the valve is opened or closed, but the shape of the signature does not change.

Non-intrusive monitoring techniques based on flow meters face the following challenges:

‚ Overlapping of flow valve events: The magnitude and shape of the transients are altered by
the overlapping water use events. This has an impact on the ability to perform accurate event
segmentation, especially for events that occur very close together.

‚ Generalisation: Due to the dependency of the sensing system on the piping infrastructure
topology, sensor placement and fixture types, a calibrations phase for each valve during
installation may be needed. This makes the deployment of the solution more difficult without
auto-calibration methods.

‚ Accuracy of flow estimation: The amount of water flow cannot be directly determined, and
requires and estimation to be performed based on changes to the pressure. For this to work,
additional calibration steps are required to approximate the behaviour of the piping infrastructure.

HydroSense [38] is the first approach to propose non-intrusive water use disaggregation based on
pressure sensors. HydroSense requires a pressure sensor to be installed on an available water hose bib,
utility sink faucet, or water heater drain valve. In their work, Froehlich et al. collected samples of valve
open and close events of all fixtures in the home at a 1 kHz sampling frequency with a pressure sensor
from 10 test homes, in order to extract signatures for these water usage events. Based on the collected
data set, they developed an approach that allows the classification of fixture open and close events in
a three-step approach: (1) valve event segmentation is based on a FIR low pass filter over a 1-s time
window and determined based on a threshold over the derivate of the filtered signal; (2) valve event
segmentation determines valve open and valve close events using a hierarchical classifier; (3) fixture
classification, which maps valve open/close events to an individual fixture with a template based
hierarchical classifier with different distance metrics. Flow estimation is based on an equation that can
approximate the flow with a change in pressure by measuring the difference between the pressures at
the onset of a detected valve open event to the stabilized pressure at the end of the segmented valve
open pressure wave impulse. In their experimental setup, they achieved 97.9% aggregate accuracy for
identification of individual fixtures, and flow rate estimation errors between 5% and 22%. Their work
only performed offline classification of isolated fixture usage events and considered valves that were
fully opened/closed.

In later work [37], HydroSense is further extended by Larson et al. to be able to, not only to perform
valve fixture level classification, but also determine the valve at a fixture responsible for the water
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use, e.g., discriminate between a hot and cold water tap. Their work assessed two different classifiers
during the third step of HydroSense, which maps identified valve events to individual fixtures/valves:
(1) a template based classifier from their earlier work and (2) an HMM based classifier. A two-state
HMM with four diagonal covariance Gaussian mixtures per state was found to provide the highest
accuracy due to the sparse training set available. The study showed no notable different between the
two classifiers with fixture level (template based 96.4%, HMM 95.2%) and valve level (template: 94.1%,
HMM: 92.3%) with the template classifier having a slight edge. The authors, however, suspect that the
HMM, being a more stochastic classifier, may be more robust in dealing with partially-turned fixtures
under realistic conditions.

The authors use a sparse data set of fixture trials collected under idealistic conditions at
10 households (775 fixture events collected from 76 valves/51 fixtures) for training and assessing
their classifiers. This made it difficult to draw conclusions on how HydroSense operates under realistic
conditions. A study [31] with a more robust data set was carried out with HydroSense where the
authors collected 15,000 annotated ground truth events from five homes in period of five weeks;
however, to achieve this result, the authors needed to build a data collection toolkit, which took three
months before being deployed. This toolkit comprises visible and invasive sensors, together with
off-the-shelf meters, which have been hacked to fit the experiment requirements.

Their algorithm used ground truth labels for event segmentation, and focused on a probabilistic
approach for valve event classification using Bayesian estimation, which is an approach that is inspired
by the dynamic Bayesian models used in speech recognition (where instead of recognizing words,
valve events are recognised). It consists of the following parts: (1) template matching using similarity
matching algorithms; (2) a language model to determine likelihood of a sequence of valve open/close
events to identify event pairs; (3) extract features from paired tuples and compare them to a probability
distribution; and (4) combine probabilities to select the most likely sequence. Using a single pressure
sensor per home, their algorithm was able to disaggregate valve, fixture, and fixture type at 70%,
90% and 96% percent accuracy with a single sensor, which rose to 82%, 93% and 97% if a second
sensor was deployed on the hot water piping infrastructure. The algorithm also showed acceptable
performance in the presence of two overlapping usage events. To be practically deployed and usable,
the algorithm requires some staged training data for each fixture and automatic segmentation of
events. While previous work in HydroSense showed that automatic segmentation was possible with
non-overlapping events, classification accuracy is likely to be worse due to segmentation errors in
overlapping situations.

4.3. Acoustic Based Methods

Acoustic event detection provides another alternative for disaggregating water use in a residential
environment (Figure 3). The assumption of such methods is that water usage events can be derived
from audio signals captured by microphones that are placed at strategic locations along the water
piping infrastructure of a home.

An approach based on acoustic sensing is presented by Fogarty et al. [30]. Four acoustic sensing
units are placed in the basement of the home, one on the cold water pipe, one on the hot water
pipe from the heater, and two sensors on the waste water pipes. The sensing units were Mote class
devices equipped with microphones and performed intermittent high frequency audio sampling
(1000 samples in 0.25 s, every 2 s). From these 1000 sample windows, features are extracted in the form
of zero-crossing rate and the root mean square. These features are fed into a hand-crafted hierarchical
classifier that exploits knowledge of activity patterns and interdependencies across the two supply
and two drainage pipes for classifying water usage activities into the categories of washing machine,
dishwasher, shower, toilet, kitchen sink, and bathroom sink use. While not able to determine the water
volume or duration of the water usage events, the proposed classifier was able to determine the usage
of a particular fixture with an accuracy between 70%–100%, depending in the fixture type. As only
performance data for isolated usage activities were presented, it is unclear how the classifier performs
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for overlapping usage events. The proposed approach faces further two limitations: Short usage
activities below 10 s, such as shot sink events, cannot be accurately determined; and the approach is
prone to error introduced by systematic noise sources in the home, such air-conditioning units. The
authors suggest placing the sensors far away from the noise sources to mitigate these issues. This
initial work demonstrates the viability of acoustic based sensing for water disaggregation; however,
the limited assessment leaves questions as to how the approach can scale to different environments.
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4.4. Multi-Modal Methods

Multi-modal methods exploit multiple sensing modalities in order to perform water usage
disaggregation. They are able to exploit a richer set of features derived from independent sensing
streams to perform classification of water end usage events. Figure 4 shows a lab setting with multiple
sensors (pressure and vibration) deployed on a pipe and wired to a gateway.
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One of the first multi-modal methods was NAWMS [40], which was proposed by Kim et al. It
exploits the fact that water flow along the piping infrastructure leading to a fixture causes vibrations
of the pipe that can be measured by an accelerometer attached to the piping infrastructure. NAWMS
utilises a flow meter at the main supply of the home to measure the total volume, and performs
disaggregation based on signals derived from accelerometers placed on the pipes leading to individual
fixtures. It assumes that an accelerometer per fixture is needed. More specifically, NAWMS samples at
a frequency of 100 Hz, and considers the variance of an accelerometer over 50 samples as a feature.
It proposes an adaptive auto-calibration procedure, which attempts to solve a two-phase linear
programming and mixed linear geometric programming problem for estimating parameters necessary
to translate the detected vibrations to actual water flow. It achieves an accuracy of about 90% for
volume disaggregation, and claims to be independent of the fixture attached to the pipe. NAWMS has
only been tested on a three-pipe lab testbed. Deployment in a real environment appears to be more
challenging, as it requires one accelerometer per pipe. The optimisation problem to solve using an
algorithm needs to be configured to a specific pipe structure, as the fitting model requires tuning to the
pipe material and diameter.

WaterSense [41] represents a more recent work by Srinivasan et al. Their main idea was to utilise
knowledge about human presence near water fixtures as additional insight to perform fixture level
classification. It exploits that fact that fixtures with similar flow signatures are in different rooms and
that fixtures in same room have different flow signatures. WaterSense requires PIR sensors in each
room where water fixtures are installed, and a flow meter at the main water supply of the home. It
samples the flow meter at a frequency of 2 Hz and draws presence events from PIR once every 7 s if a
presence is detected. It employs a 3 tier unsupervised inference algorithm, where tier 1 detects water
flow events based on edge detection of the flow meter signal, tier 2 performs clustering based on rooms
using a Bayes Network clustering approach, and tier 3 performs fixture determination based on event
duration and frequency. Fixture disaggregation is limited to sinks and toilets. It shows an accuracy of
86% for fixture event classification, and 80%–90% accuracy for individual fixtures. Unlike all previous
approaches, WaterSense is unsupervised and does not require any training data. However, it has
difficulties in classifying overlapping usage events if the same fixture type is used in different rooms
simultaneously. It also cannot discriminate between multiple fixtures of same type in the same room.
Unlike all of the previously-discussed work, Ranjian et al. were the first to consider disaggregating
water use, not on the fixture level, but to attribute water use to individual users in a household [32]. In
their research, the authors explored whether room-level tracking of individuals is accurate enough for
user attribution of fixture use of both for water fixtures and energy. They instrumented a test home
with underfloor Radio Frequency Identification (RFID) readers embedded in each doorway for house-
and room-level tracking, and 15 RFID readers at individual fixtures for high accuracy, which were able
to track individuals that wore an RFID ankle bracelet. Fixture level use was directly inferred by flow
meters attached to each individual fixture. The home examined different house, room, and fixture
level tracking, and assessed the use of simple heuristics based on people history of fixture usage to
resolve ambiguous situations. Performance of house-level tracking could be improved to 60% with
heuristics, room-level up to 87%, and coordinate-level up to 97%. The work showed that room-level
tracking of users in homes can provide a good accuracy for user attribution of water usage activities in
the home. However, the approach using RFID tracking with ankle tags and underfloor readers is very
intrusive for everyday deployment contexts.

4.5. Summary of Approaches

To give a picture of the pros and cons for the different approaches, and starting from a
subset of selected works listed in the previous sections, Table 3 reports a summary in terms of
output/performances, resilience and installation.
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Table 3. Summary of approaches and their characteristics in terms of output, resilience and installation.

Work Approach Installation Output Resilience

FlowTrace [34],
Fondebaca et al. [36] Water Flow

on top of regular water
meter plus flow

switches for
ground truth

event type (accuracy
70%–88%) and volume

(error ~30%)

issues in
overlapping events

NAWMS [40] Water flow +
acceleration

smart meter on main
supply, accelerometer

per sub-pipe

flow rate estimation
(error <10%)

suffers noise
(external vibration)

Watersense [41] Water flow + PIR
flow meter at house
supply and motion

sensors in each room

water flow
(error 10%–20%) and
fixture identification

(accuracy 80%)

fails if 2 fixture
same type used
simultaneously

Ranjan et al. [32] Water flow + RFID

flow meters at each
fixture, two RFID

readers in each door
way, 15 RFID readers at

fixture level.

event type and
user mapping

issues if more users
in proximity

Fogarty et al. [30] Acoustic

4 sensors: 1 on cold
water pipe, 1 on hot

water pipe from heater,
2 on wastewater

event type
(accuracy >90%)

works for
overlapping events
but with decreased

accuracy

HydroSense [37,38] Pressure any accessible location
under pressure

event type (accuracy
95%), fixture identity

(accuracy >90%) &
volume (error 5%–22%)

-

5. Discussion on Issues and Future Challenges

Water usage disaggregation is the equivalent of non-intrusive electricity load monitoring, applied
in the water domain, but with an important difference: While electricity outlets can be monitored with
non-invasive, out-of-the-box meters, water fixtures are, in general, unpowered and more difficult to
wire to a data communication infrastructure. This entails battery-operated instrumentation and, in
turn, constrained communication capabilities. Moreover, when dealing with supervised classifiers, a
necessary step is fitting the model with labelled data. In the case of water, this may require special
purpose sensors, plumbing, and battery-operated equipment to be installed. Unfortunately, in real
houses, it is not viable to install a flow switch in every fixture or a Closed Circuit Television (CCTV)
camera in every room just to fit the classification model because plumbing is expensive and invasive.
Any viable approach should then comply with the principle of minimal installation requirements, and,
further, any sensors or equipment installed should already be an off-the-shelf product with a high
degree of acceptance among the general public. In summary, we can identify three requirements for
instrumenting a house with sensors:

‚ High acceptance (design, shape, part of shopping trends, identification of a user need)
‚ Low cost to buy and install
‚ Minimal or zero maintenance

All the works described in this survey challenges the previous state-of-the-art against classification
accuracy and are thus built on some hi-tech lab-level setup that requires continuous manual
intervention to ensure a reliable collection and processing of water data and ground truth.
To summarize:

Flow traces analysis [34] requires a data logger to be installed and then data should be manually
collected every 14 days, the data collected are then manually analysed and added to a database. It
seems a feasible solution to analyse a given period of time, but is not practical to perform online
disaggregation. HydroSense [38] reaches an accuracy of 80%, but needs at least two days of ground
truth collection. Their current approach trains the language model using data from the home where it
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is deployed, but it is still an open issue as to how to leverage usage patterns across different homes to
reduce the calibration phase of algorithms. The work in NAWMS [40] seems to be tested on only a lab
testbed without any real world assessment. However, the use of low-energy wireless sensors deployed
in a house seems promising. In Reference [30], the authors proposed a setup based on acoustic sensors
on board of a wireless kit that is claimed to last longer than one year.

The summary above raises the following research questions: How likely are models fitted with
labelled data from a training house “predictive” in another house? Or, in general, how can we assess
the significance of a model trained on a subset of ground truth instrumented homes with respect to the
general population of homes in a city or district? For each home, there are so many different variables,
such as sizes, pipes lengths, fixtures, appliances, demographics, etc., thus, we should consider the
hypothesis that each house is a phenomena modelled by a set of completely different parameters.
This diversity may narrow the applicability of disaggregation based on supervised machine learning
because it is not feasible to instrument a massive number of houses with the necessary ground truth to
build a training set, taking into account all the possible independent variables.

5.1. Acceptance of Smart Metering and Cognitive Metering

The topic of smart metering is not new and has already triggered many discussions and criticisms
thus far. There are at least three types of issues identified by smart metering detractors. The first
is in respect to health. Many movements and local communities [53] express concerns about the
installation of a plethora of new wireless devices at home, which may cause an unexpected and
unnecessary amount of radio pollution, which is, in turn, is blamed as a potential cancer cause. The
second one is with respect to violations of citizens’ rights. Detractors accuse governments of being
driven by the interest of suppliers and that the smart metering roadmap has been laid out without
public consultation, in violation of the spirit of shared consensus and democracy [54]. The last concern,
and probably the one with a proven impact, is that of privacy. There are many examples of how
high-resolution metering could be used to identify personal habits and retrieve personal information.
Notable proof of this concept is shown in Reference [55], where TV programs actually watched by
home occupants is inferred by correlating features such as the luminosity of scenes to high-resolution
energy consumption data. An approach to increase acceptance of industrial-level smart and cognitive
meters a viable solution is twofold:

‚ Give control to end users (they must be able to switch on/off the metering; to set up the resolution;
to control the amount of radio messaging inside the property, etc.)

‚ Locally process most of the data and locally reveal the insights needed by end users to monitor
and improve their water demand. Powerful insight, such as usage disaggregation, could occur
in-home rather than being inferred remotely. This allows to send, to the supplier, only the
strictly-necessary data for operation (for instance daily average consumption over a week).

However, the above-mentioned approach does not take into full account the detailed needs of
water suppliers, as the focus is mainly on user privacy. Thus, as explained in Reference [56], developing
a context-specific framework for assessing how the collection and processing of detailed water usage
impacts the user’s privacy, and identifying a set of best practices to mitigate the impact is of paramount
importance. We expect that this issue will be addressed as soon as smart metering and cognitive
metering become ubiquitously available for the adaptive management of urban water resources.

5.2. A Few Promising Research Directions towards Real World Adoption

In this section, some promising directions of further investigation are described. The general
rationale is not to encourage competition in classification techniques to achieve 100% accuracy, but
rather to bridge the gaps for water disaggregation to become a viable tool in real world environments.
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5.2.1. Pattern Mining and Unsupervised Approaches

In supervised approaches, building labelled data sets usually involves invasive lab-level
equipment to be designed ad hoc, and manufactured for that purpose. If the problem is fitting models
with labelled data, then the immediate alternative is using unsupervised learning techniques. In this
respect, an unsupervised approach could be validated in a few houses and then scaled; in this field,
some recent works have been proposed in the field of energy disaggregation [57], and it is likely that
these may apply to the water domain as well. If we relax the goal of disaggregating load at the fixture
level and with the highest accuracy, we can also consider the approach of detecting water signatures,
as in Reference [58], where the objective was to define and identify a set of patterns (e.g., low but
continuous flow over 48 h or more), which are quantitative and disaggregated assessment of water
usages without precisely detecting which human activity is behind what usage. Bridging the gap
between the aforementioned water signatures and the underlying human activities is a promising
direction to investigate.

5.2.2. Data Fusion

In general, the classification of fused data can yield better results than the classification over
single data sources [59]. A promising direction of investigation is given by the nexus between energy
consumption, water consumption, and human presence in a house (also gas metering could be an
additional data source). In an extreme example, a 50% classification between laundry and gardening
could be better disambiguated by the analysis of instant energy consumption given that one of the
two activities uses energy and water at the same time. An example of the nexus between energy and
water is presented in Reference [60]. In that paper, the authors leverage electricity non-intrusive load
monitoring (NILM) to acquire water disaggregation as a set of water/energy correlated states.

5.2.3. Working at Scale

Applying standard rates derived from sample studies is misleading because of the high variability
in water use from one customer to another, even among customers with a similar infrastructure and
social-economic profile. The model extracted from a single house’s data is limited, and does not
leverage the information hidden in the broader population. What we consider parameters for a single
house (pipe size, extension of parcel, number of rooms, habits of tenants, etc.) could be considered
as independent variables in a broader model, comprising a full set of properties in a city or region.
The collection of massive datasets for an entire city or region is, nowadays, technically feasible and
possible to maintain in the long term. Hence, an interesting research question is to build and evaluate
large-scale models.

6. Conclusions

Non-intrusive water disaggregation is a valuable approach for estimating fixture-specific water
consumption, while keeping installation costs affordable, and, at the same time, the underlying
complexity of processing remains manageable. We have presented a review of water disaggregation
methods that make use of either mono-modal sensing or multi-modal sensing (e.g., combining different
variables, such as water flow, pressure, etc.). The result of our review can be summarized in the
following conclusions:

The field of water usage disaggregation is especially important in achieving water efficiency
savings in domestic properties. This enables consumers to see data relating to which of their appliances
utilize the most water, which appliances they use the most, and when they utilize appliances across
the day. The availability of this subsequently enables a more efficient optimization of the consumer’s
water usage by enabling them to reschedule usages at different times.

Generally, the setup to gather the training dataset for the supervised water disaggregation
algorithm is expensive and unpractical in real world scenarios. Therefore, our opinion is that research
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should focus on unsupervised or semi-supervised learning methods. This would, not only make water
disaggregation affordable and easy to deploy, but would also benefit from a wider acceptance from
end users.

The concept of multi-modal sensing can further be exploited by applying data fusion techniques
between water observations and energy observations. The water energy nexus needs to be formulated
with a clear statistical hypothesis and, thus, assessed.
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