metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(propane-1,3-diaminium) hexafluoridoferrate(III) fluoride trihydrate

Aymen Zouaghi,^a Amor BenAli,^a* Vincent Maisonneuve^b and Marc Leblanc^b

^aUnité de Recherche 99/UR12-30, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia, and ^bLaboratoire des Oxydes et Fluorures - UMR 6010 CNRS, Institut de Recherche en Ingénierie Moléculaire et Matériaux, Fonctionnels, IRIM2F FR CNRS 2775, Faculté des Sciences et Techniques, Université du Maine, Avenue Olivier Messiaen, 72085 LE MANS Cedex 9, France Correspondence e-mail: amor benali@fb rnu tn

Received 6 April 2010; accepted 15 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.093; data-to-parameter ratio = 13.3.

The asymmetric unit of the title iron hybrid fluoride, $(C_3H_{12}N_2)_2[FeF_6]F\cdot 3H_2O$, contains two propane-1,3-diaminium $[(H_2dap)^{2+}]$ cations, an octahedral $[FeF_6]^{3-}$ anion, an isolated F^- anion and three water molecules of solvation. Each $[FeF_6]^{3-}$ anion is surrounded by four separate hydrogenbonded water molecules in the equatorial sites and by five separate aminium cation donor groups. The axial F atoms are only involved in N-H···F hydrogen bonds, resulting in a three-dimensional structure.

Related literature

For general background to hybrid fluorides, their synthesis and their applications, see: Ben Ali *et al.* (2007, 2009); Adil *et al.* (2007); Latroche *et al.* (2006); Rother *et al.* (1998), Bentrup *et al.* (1998). For $F \cdots N$ interactions, see: Steiner (1998). For bond-valence sum (BVS) calculations, see: Brese & O'Keeffe (1991).

Experimental

Crystal data $(C_3H_{12}N_2)_2[FeF_6]F\cdot 3H_2O$ $M_r = 395.18$ Triclinic, $P\overline{1}$ a = 9.844 (1) Å b = 9.847 (1) Å c = 10.7740 (8) Å $\alpha = 106.959$ (7)° $\beta = 95.379$ (6)°

 $\gamma = 118.914 \ (9)^{\circ}$ $V = 839.35 \ (17) \ \text{Å}^3$ Z = 2Mo Ka radiation $\mu = 0.98 \text{ mm}^{-1}$ T = 295 K $0.32 \times 0.07 \times 0.07 \text{ mm}$

Data collection

wF

S = 292 219

SIEMENS AED2 diffractometer 2920 measured reflections 2920 independent reflections	2599 reflections with $I > 2\sigma(I)$ 3 standard reflections every 120 min intensity decay: 4%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of

	01001	II atomo treated by a minitare of
$R(F^2) = 0.093$		independent and constrained
= 1.14		refinement
20 reflections		$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
9 parameters		$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Table 1		
Hydrogen-bond geo	ometry (Å,	, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1B\cdots F2^{i}$	0.89	2.03	2.826 (3)	148
$N1 - H1B \cdot \cdot \cdot F5^{i}$	0.89	2.22	2.839 (3)	127
$N2-H2A\cdots F4^{ii}$	0.89	1.82	2.672 (3)	161
$N2 - H2B \cdot \cdot \cdot F7^{ii}$	0.89	1.85	2.735 (3)	172
$N2-H2C\cdots O1W^{iii}$	0.89	2.22	2.926 (3)	136
$N2-H2C\cdots F6^{iii}$	0.89	2.47	3.139 (3)	132
$N3-H3A\cdots F3^{ii}$	0.89	1.95	2.777 (3)	155
$N3-H3A\cdots F4^{ii}$	0.89	2.47	3.135 (3)	132
$N3-H3B\cdots F3^{iv}$	0.89	1.93	2.762 (3)	156
$N4 - H4A \cdots F7^{v}$	0.89	1.86	2.728 (3)	164
$N4 - H4B \cdot \cdot \cdot F6^{vi}$	0.89	2.09	2.886 (3)	149
$N4-H4B\cdots F1^{vi}$	0.89	2.33	3.029 (3)	135
$O1W-H12\cdots O3W^{i}$	0.81 (4)	1.99 (4)	2.787 (4)	173 (4)
$O2W - H21 \cdot \cdot \cdot F1^{vi}$	0.76 (4)	1.91 (4)	2.606 (3)	153 (4)
$O2W - H22 \cdot \cdot \cdot F6^{i}$	0.76 (4)	1.99 (4)	2.747 (3)	171 (4)
$O3W - H32 \cdot \cdot \cdot O2W^{vii}$	0.73 (4)	2.04 (4)	2.766 (4)	173 (4)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x - 1, y, z; (iv) x, y, z + 1; (v) -x + 2, -y + 1, -z + 2; (vi) x, y + 1, z + 1; (vii) -x + 1, -y + 1, -z + 1.

Data collection: *STADI4* (Stoe & Cie, 1998); cell refinement: *STADI4*; data reduction: *X-RED* (Stoe & Cie, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 1999); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2004) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors thank Professor L. S. Smiri for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2036).

References

- Adil, K. M., Ali Saada, M., Ben Ali, A., Body, M., Dang, M. T., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Fluorine Chem. 128, 404–412.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Ben Ali, A., Dang, M. T., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911–1917.
- Ben Ali, A., Grenèche, J.-M., Leblanc, M. & Maisonneuve, V. (2009). Solid State Sci. 11, 1631–1638.
- Bentrup, U., Ahmadi, A., Kang, H. C. & Massa, W. (1998). Z. Anorg. Allg. Chem. 624, 1465–1470.
- Brandenburg, K. & Putz, H. (2004). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P., Lee, J.-H., Jhung, J.-S. & Férey, G. (2006). *Angew. Chem. Int. Ed.* 45, 8227–8231.
 Rother, G., Worzala, H. & Bentrup, U. (1998). *Z. Kristallogr. New Cryst. Struct.* 213, 119–120.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (1998). Acta Cryst. B54, 456-463.
- Stoe & Cie (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.

Acta Cryst. (2010). E66, m702-m703 [doi:10.1107/S1600536810018039]

Bis(propane-1,3-diaminium) hexafluoridoferrate(III) fluoride trihydrate

A. Zouaghi, A. BenAli, V. Maisonneuve and M. Leblanc

Comment

The structure of the title compound $(H_2dap)_2[FeF_6](F).3H_2O$ (I) consists of isolated FeF₆ octahedra, diprotonated 1,3diaminopropane $(H_2dap)^{2+}$ cations and three water molecules of solvation connected by a three-dimensional framework of hydrogen bonds in which isolated fluoride anions are located (Figure 1 and Figure 2). In (I) the [FeF₆] complex anion adopts a slightly distorted octahedral environment, the Fe—F bond distance range [1.897 (2)–1.947 (2) Å] being typical of an octahedral iron^{III} environment. Each octahedral FeF₆³⁻ anion is surrounded by four separate hydrogen-bonded water molecules in the equatorial sites and by seven separate aminium cation donor groups (Figure 3). The axial F atoms (F2, F4) are involved only in N–H…F interactions (Table 1). One of the equatorial F atom (F3), which has the longest Fe–F bond distance [1.947 (2)] Å), establishes three hydrogen bonds and consequently presents a low valence (0.47) with Fe^{III}.

In fluoride metallates, "free" fluoride ions, are always surrounded by amine groups and their coordination number varies from 3 to 6. Also F…N distances increase with the coordination number (Steiner, 1998). In the title compound, "free" F ions adopt a tetrahedral coordination with four hydrogen atoms from four H₂dap cations (Figure 4). The three hydrogen-bonded water molecules form trimer clusters, presenting various triangular environments with F acceptor atoms of the FeF₆ octahedra and H donor atoms of the cation aminium groups (Figure 5). The infrared absorption spectrum of the title compound gives information on the organic moiety (C—C, C—N) and on the oxidation state of the iron atom, the presence of a vibrational band in the neighbourhood of 487 cm⁻¹ being consistent with iron(III).

Experimental

The title compound was prepared from a starting mixture of FeF_3 (0.5 g) in 40% HF (3.0 ml) and ethanol (5 ml). 1,3diaminopropane (2.7 ml) was added and mild hydrothermal conditions (463 K) were applied in a Teflon lined autoclave (25 ml). The resulting product was washed with ethanol and dried in air giving colourless single crystals.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the water molecules were located using difference methods and their positional and isotropic displacement parameters were refined. Other H atoms including those on the aminium groups were included in the refinement at calculated positions and refined with a common isotropic thermal parameter.

Figures

Bis(propane-1,3-diaminium) hexafluoridoferrate(III) fluoride trihydrate

Crystal data	
$(C_3H_{12}N_2)_2[FeF_6]F\cdot 3H_2O$	Z = 2
$M_r = 395.18$	F(000) = 414
Triclinic, PT	$D_{\rm x} = 1.564 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.844 (1) Å	Cell parameters from 24 reflections
b = 9.847 (1) Å	$\theta = 5-20^{\circ}$

c = 10.7740 (8) Å	
$\alpha = 106.959 \ (7)^{\circ}$	
$\beta = 95.379 \ (6)^{\circ}$	
γ = 118.914 (9)°	
$V = 839.35 (17) \text{ Å}^3$	

Data collection

SIEMENS AED2 diffractometer	$R_{\rm int} = 0.0000$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 2.1^\circ$
graphite	$h = -11 \rightarrow 11$
$2\theta/\omega$ scans	$k = -10 \rightarrow 11$
2920 measured reflections	$l = -12 \rightarrow 0$
2920 independent reflections	3 standard reflections every 120 min
2599 reflections with $I > 2\sigma(I)$	intensity decay: 4%

 $\mu = 0.98 \text{ mm}^{-1}$ T = 295 K

Parallelepiped, colorless $0.32 \times 0.07 \times 0.07$ mm

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.093$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.14	$w = 1/[\sigma^2(F_o^2) + (0.0485P)^2 + 0.4679P]$ where $P = (F_o^2 + 2F_c^2)/3$
2920 reflections	$(\Delta/\sigma)_{max} < 0.001$
219 parameters	$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe	0.84562 (4)	0.12759 (4)	0.22030 (3)	0.02722 (13)

F1	0.7789 (3)	-0.0409 (2)	0.04636 (19)	0.0734 (6)
F2	0.9740 (2)	0.29714 (19)	0.15238 (16)	0.0467 (4)
F3	0.66528 (18)	0.1495 (2)	0.16599 (17)	0.0479 (4)
F4	0.7093 (2)	-0.0330 (2)	0.28815 (18)	0.0582 (5)
F5	0.91998 (19)	0.30634 (19)	0.39249 (15)	0.0460 (4)
F6	1.0227 (2)	0.1036 (2)	0.2722 (2)	0.0582 (5)
F7	0.79472 (17)	0.17081 (17)	0.74186 (14)	0.0363 (3)
C1	0.6954 (3)	0.3991 (3)	0.6071 (2)	0.0330 (5)
H1D	0.7029	0.4645	0.5530	0.0476 (17)*
H1E	0.6899	0.4560	0.6948	0.0476 (17)*
C2	0.5420 (3)	0.2254 (3)	0.5389 (3)	0.0327 (5)
H2D	0.5468	0.1674	0.4512	0.0476 (17)*
H2E	0.5322	0.1600	0.5935	0.0476 (17)*
C3	0.3974 (3)	0.2417 (3)	0.5219 (3)	0.0371 (6)
H3D	0.4063	0.3203	0.6061	0.0476 (17)*
H3E	0.3969	0.2869	0.4531	0.0476 (17)*
C4	0.6160 (3)	0.3197 (3)	0.9521 (3)	0.0371 (6)
H4D	0.5557	0.3222	1.0181	0.0476 (17)*
H4E	0.5624	0.3215	0.8729	0.0476 (17)*
C5	0.7874 (3)	0.4733 (3)	1.0111 (3)	0.0336 (5)
H5D	0.8430	0.4677	1.0868	0.0476 (17)*
H5E	0.8456	0.4743	0.9431	0.0476 (17)*
C6	0.7863 (3)	0.6330(3)	1.0579 (3)	0.0368 (6)
H6D	0.7111	0.6271	0.9884	0.0476 (17)*
H6E	0.7498	0.6438	1.1388	0.0476 (17)*
N1	0.8414 (2)	0.3911 (2)	0.6246 (2)	0.0318 (4)
H1A	0.8289	0.3195	0.6639	0.0476 (17)*
H1B	0.9268	0.4928	0.6762	0.0476 (17)*
H1C	0.8567	0.3562	0.5442	0.0476 (17)*
N2	0.2431 (2)	0.0780 (3)	0.4826 (2)	0.0368 (5)
H2A	0.2398	0.0399	0.5484	0.0476 (17)*
H2B	0.2363	0.0043	0.4069	0.0476 (17)*
H2C	0.1607	0.0915	0.4689	0.0476 (17)*
N3	0.6179 (3)	0.1637 (3)	0.9144 (2)	0.0393 (5)
H3A	0.5179	0.0751	0.8720	0.0476 (17)*
H3B	0.6561	0.1562	0.9887	0.0476 (17)*
H3C	0.6809	0.1661	0.8599	0.0476 (17)*
N4	0.9502 (3)	0.7830(2)	1.0873 (2)	0.0347 (5)
H4A	1.0194	0.7879	1.1504	0.0476 (17)*
H4B	0.9471	0.8756	1.1168	0.0476 (17)*
H4C	0.9820	0.7753	1.0123	0.0476 (17)*
O1W	1.0878 (3)	0.2596 (3)	0.5849 (3)	0.0568 (6)
O2W	0.6945 (3)	0.7508 (4)	0.7980 (3)	0.0660 (7)
O3W	0.6382 (3)	0.4155 (3)	0.2944 (3)	0.0590 (6)
H11	1.046 (6)	0.265 (6)	0.526 (5)	0.095 (18)*
H12	1.168 (5)	0.352 (5)	0.625 (4)	0.067 (12)*
H21	0.717 (5)	0.829 (5)	0.858 (4)	0.063 (12)*
H22	0.772 (5)	0.782 (5)	0.776 (4)	0.064 (12)*
H31	0.649 (5)	0.330 (4)	0.265 (4)	0.075 (12)*

H32	0.550 (5)	0.373 (5)	0.277	(4) 0.	054 (11)*	
Atomic dis	placement parameter.	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Fe	0.02654 (19)	0.02225 (19)	0.02768 (19)	0.00942 (14)	0.01073 (14)	0.00871 (14)
F1	0.0992 (16)	0.0461 (10)	0.0417 (10)	0.0295 (11)	0.0150 (10)	-0.0069 (8)
F2	0.0495 (9)	0.0373 (8)	0.0437 (9)	0.0118 (7)	0.0234 (7)	0.0211 (7)
F3	0.0338 (8)	0.0473 (9)	0.0622 (10)	0.0206 (7)	0.0079 (7)	0.0244 (8)
F4	0.0472 (10)	0.0500 (10)	0.0602 (10)	0.0053 (8)	0.0147 (8)	0.0373 (9)
F5	0.0473 (9)	0.0379 (8)	0.0333 (8)	0.0151 (7)	0.0146 (7)	0.0019 (6)
F6	0.0478 (10)	0.0597 (11)	0.0797 (13)	0.0361 (9)	0.0190 (9)	0.0295 (10)
F7	0.0372 (8)	0.0356 (7)	0.0377 (8)	0.0180 (6)	0.0152 (6)	0.0176 (6)
C1	0.0341 (13)	0.0253 (11)	0.0363 (13)	0.0133 (10)	0.0121 (10)	0.0119 (10)
C2	0.0322 (13)	0.0263 (12)	0.0356 (13)	0.0135 (10)	0.0113 (10)	0.0103 (10)
C3	0.0329 (13)	0.0285 (12)	0.0463 (15)	0.0130 (11)	0.0113 (11)	0.0161 (11)
C4	0.0283 (12)	0.0379 (14)	0.0374 (13)	0.0118 (11)	0.0116 (10)	0.0150 (11)
C5	0.0281 (12)	0.0323 (13)	0.0375 (13)	0.0134 (11)	0.0099 (10)	0.0146 (11)
C6	0.0327 (13)	0.0388 (14)	0.0419 (14)	0.0190 (11)	0.0154 (11)	0.0181 (11)
N1	0.0287 (10)	0.0243 (10)	0.0363 (11)	0.0094 (8)	0.0116 (8)	0.0123 (8)
N2	0.0306 (11)	0.0338 (11)	0.0416 (12)	0.0155 (9)	0.0113 (9)	0.0122 (9)
N3	0.0316 (11)	0.0329 (11)	0.0376 (11)	0.0054 (9)	0.0138 (9)	0.0137 (9)
N4	0.0370 (11)	0.0281 (10)	0.0380 (11)	0.0173 (9)	0.0120 (9)	0.0112 (9)
O1W	0.0420 (13)	0.0576 (15)	0.0708 (16)	0.0241 (12)	0.0092 (11)	0.0318 (13)
O2W	0.0440 (14)	0.0710 (17)	0.0466 (13)	0.0213 (12)	0.0098 (11)	-0.0055 (13)
O3W	0.0513 (15)	0.0470 (13)	0.0641 (15)	0.0233 (12)	0.0159 (12)	0.0085 (11)

Geometric parameters (Å, °)

Fe-F4 $1.9083 (15)$ $C6-M4$ $1.487 (3)$ $Fe-F5$ $1.9157 (14)$ $C6-H6D$ 0.9700 $Fe-F6$ $1.9234 (17)$ $C6-H6E$ 0.9700 $Fe-F2$ $1.9405 (14)$ $N1-H1A$ 0.8900 $C1-N1$ $1.9468 (15)$ $N1-H1B$ 0.8900 $C1-C2$ $1.519 (3)$ $N2-H2A$ 0.8900 $C1-H1D$ 0.9700 $N2-H2B$ 0.8900 $C1-H1E$ 0.9700 $N2-H2B$ 0.8900 $C2-C3$ $1.508 (3)$ $N3-H3A$ 0.8900 $C2-H2D$ 0.9700 $N3-H3B$ 0.8900 $C2-H2E$ 0.9700 $N3-H3B$ 0.8900 $C3-H3D$ 0.9700 $N4-H4A$ 0.8900 $C3-H3D$ 0.9700 $N4-H4B$ 0.8900 $C3-H3E$ 0.9700 $N4-H4C$ 0.8900 $C4-N3$ $1.480 (3)$ $O1W-H11$ $0.75 (5)$ $C4-C5$ $1.520 (3)$ $O1W-H12$ $0.81 (4)$ $C4-H4E$ 0.9700 $O2W-H22$ $0.76 (4)$	Fe—F1	1.8968 (17)	С5—Н5Е	0.9700
Fe—F51.9157 (14)C6—H6D0.9700Fe—F61.9234 (17)C6—H6E0.9700Fe—F21.9405 (14)N1—H1A0.8900Fe—F31.9468 (15)N1—H1B0.8900C1—N11.475 (3)N1—H1C0.8900C1—C21.519 (3)N2—H2A0.8900C1—H1D0.9700N2—H2B0.8900C1—H1E0.9700N2—H2C0.8900C2—C31.508 (3)N3—H3A0.8900C2—H2D0.9700N3—H3B0.8900C2—H2E0.9700N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4B0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)	Fe—F4	1.9083 (15)	C6—N4	1.487 (3)
Fe-F6 $1.9234(17)$ $C6-H6E$ 0.9700 $Fe-F2$ $1.9405(14)$ $N1-H1A$ 0.8900 $Fe-F3$ $1.9468(15)$ $N1-H1B$ 0.8900 $C1-N1$ $1.475(3)$ $N1-H1C$ 0.8900 $C1-C2$ $1.519(3)$ $N2-H2A$ 0.8900 $C1-H1D$ 0.9700 $N2-H2B$ 0.8900 $C1-H1E$ 0.9700 $N2-H2C$ 0.8900 $C2-C3$ $1.508(3)$ $N3-H3A$ 0.8900 $C2-H2D$ 0.9700 $N3-H3B$ 0.8900 $C2-H2E$ 0.9700 $N3-H3B$ 0.8900 $C3-H3D$ 0.9700 $N4-H4A$ 0.8900 $C3-H3E$ 0.9700 $N4-H4E$ 0.8900 $C3-H3E$ 0.9700 $N4-H4C$ 0.8900 $C4-N3$ $1.480(3)$ $01W-H11$ $0.75(5)$ $C4-C5$ $1.520(3)$ $01W-H12$ $0.81(4)$ $C4-H4D$ 0.9700 $02W-H21$ $0.76(4)$	Fe—F5	1.9157 (14)	C6—H6D	0.9700
Fe—F21.9405 (14)N1—H1A0.8900Fe—F31.9468 (15)N1—H1B0.8900C1—N11.475 (3)N1—H1C0.8900C1—C21.519 (3)N2—H2A0.8900C1—H1D0.9700N2—H2B0.8900C1—H1E0.9700N2—H2C0.8900C2—C31.508 (3)N3—H3A0.8900C2—H2D0.9700N3—H3B0.8900C2—H2E0.9700N3—H3C0.8900C3—H3D0.9700N4—H4A0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H220.76 (4)	Fe—F6	1.9234 (17)	С6—Н6Е	0.9700
Fe-F3 $1.9468 (15)$ $N1-H1B$ 0.8900 $C1-N1$ $1.475 (3)$ $N1-H1C$ 0.8900 $C1-C2$ $1.519 (3)$ $N2-H2A$ 0.8900 $C1-H1D$ 0.9700 $N2-H2B$ 0.8900 $C1-H1E$ 0.9700 $N2-H2C$ 0.8900 $C2-C3$ $1.508 (3)$ $N3-H3A$ 0.8900 $C2-H2D$ 0.9700 $N3-H3B$ 0.8900 $C2-H2E$ 0.9700 $N3-H3C$ 0.8900 $C3-N2$ $1.483 (3)$ $N4-H4A$ 0.8900 $C3-H3E$ 0.9700 $N4-H4B$ 0.8900 $C4-N3$ $1.480 (3)$ $O1W-H11$ $0.75 (5)$ $C4-C5$ $1.520 (3)$ $O1W-H12$ $0.81 (4)$ $C4-H4D$ 0.9700 $O2W-H22$ $0.76 (4)$	Fe—F2	1.9405 (14)	N1—H1A	0.8900
C1N11.475 (3)N1H1C0.8900C1C21.519 (3)N2H2A0.8900C1H1D0.9700N2H2B0.8900C1H1E0.9700N2H2C0.8900C2C31.508 (3)N3H3A0.8900C2H2D0.9700N3H3B0.8900C2H2E0.9700N3H3C0.8900C3N21.483 (3)N4H4A0.8900C3H3D0.9700N4H4B0.8900C3H3E0.9700N4H4C0.8900C4N31.480 (3)01WH110.75 (5)C4C51.520 (3)01WH120.81 (4)C4H4D0.9700O2WH210.76 (4)	Fe—F3	1.9468 (15)	N1—H1B	0.8900
C1—C21.519 (3)N2—H2A0.8900C1—H1D0.9700N2—H2B0.8900C1—H1E0.9700N2—H2C0.8900C2—C31.508 (3)N3—H3A0.8900C2—H2D0.9700N3—H3B0.8900C2—H2E0.9700N3—H3C0.8900C3—N21.483 (3)N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C1—N1	1.475 (3)	N1—H1C	0.8900
C1—H1D0.9700N2—H2B0.8900C1—H1E0.9700N2—H2C0.8900C2—C31.508 (3)N3—H3A0.8900C2—H2D0.9700N3—H3B0.8900C2—H2E0.9700N3—H3C0.8900C3—N21.483 (3)N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)	C1—C2	1.519 (3)	N2—H2A	0.8900
C1—H1E0.9700N2—H2C0.8900C2—C31.508 (3)N3—H3A0.8900C2—H2D0.9700N3—H3B0.8900C2—H2E0.9700N3—H3C0.8900C3—N21.483 (3)N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)01W—H110.75 (5)C4—C51.520 (3)01W—H120.81 (4)C4—H4D0.970002W—H210.76 (4)C4—H4E0.970002W—H220.76 (4)	C1—H1D	0.9700	N2—H2B	0.8900
C2—C31.508 (3)N3—H3A0.8900C2—H2D0.9700N3—H3B0.8900C2—H2E0.9700N3—H3C0.8900C3—N21.483 (3)N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C1—H1E	0.9700	N2—H2C	0.8900
C2—H2D0.9700N3—H3B0.8900C2—H2E0.9700N3—H3C0.8900C3—N21.483 (3)N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C2—C3	1.508 (3)	N3—H3A	0.8900
C2—H2E0.9700N3—H3C0.8900C3—N21.483 (3)N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C2—H2D	0.9700	N3—H3B	0.8900
C3—N21.483 (3)N4—H4A0.8900C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C2—H2E	0.9700	N3—H3C	0.8900
C3—H3D0.9700N4—H4B0.8900C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C3—N2	1.483 (3)	N4—H4A	0.8900
C3—H3E0.9700N4—H4C0.8900C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C3—H3D	0.9700	N4—H4B	0.8900
C4—N31.480 (3)O1W—H110.75 (5)C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	С3—Н3Е	0.9700	N4—H4C	0.8900
C4—C51.520 (3)O1W—H120.81 (4)C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C4—N3	1.480 (3)	O1W—H11	0.75 (5)
C4—H4D0.9700O2W—H210.76 (4)C4—H4E0.9700O2W—H220.76 (4)	C4—C5	1.520 (3)	O1W—H12	0.81 (4)
C4—H4E 0.9700 O2W—H22 0.76 (4)	C4—H4D	0.9700	O2W—H21	0.76 (4)
	C4—H4E	0.9700	O2W—H22	0.76 (4)

C5—C6	1.511 (3)		O3W—H31	O3W—H31	
C5—H5D	0.9700		O3W—H32		0.73 (4)
F1—Fe—F4	92.30 (9)		C6—C5—C4		110.7 (2)
F1—Fe—F5	177.01 (8)		C6—C5—H5D		109.5
F4—Fe—F5	90.69 (8)		C4—C5—H5D		109.5
F1—Fe—F6	89.93 (10)		С6—С5—Н5Е		109.5
F4—Fe—F6	91.86 (8)		C4—C5—H5E		109.5
F5—Fe—F6	90.04 (8)		H5D—C5—H5E		108.1
F1—Fe—F2	89.21 (8)		N4—C6—C5		111.1 (2)
F4—Fe—F2	175.81 (8)		N4—C6—H6D		109.4
F5—Fe—F2	87.80 (7)		C5—C6—H6D		109.4
F6—Fe—F2	92.04 (8)		N4—C6—H6E		109.4
F1—Fe—F3	89.45 (9)		С5—С6—Н6Е		109.4
F4—Fe—F3	88.01 (8)		H6D—C6—H6E		108.0
F5—Fe—F3	90.59 (7)		C1—N1—H1A		109.5
F6—Fe—F3	179.36 (8)		C1—N1—H1B		109.5
F2—Fe—F3	88.10 (7)		H1A—N1—H1B		109.5
N1—C1—C2	112.05 (19)		C1—N1—H1C		109.5
N1—C1—H1D	109.2		H1A—N1—H1C		109.5
C2—C1—H1D	109.2		H1B—N1—H1C		109.5
N1—C1—H1E	109.2		C3—N2—H2A		109.5
C2—C1—H1E	109.2		C3—N2—H2B		109.5
H1D—C1—H1E	107.9		H2A—N2—H2B		109.5
C3—C2—C1	109.6 (2)		C3—N2—H2C		109.5
C3—C2—H2D	109.7		H2A—N2—H2C		109.5
C1—C2—H2D	109.7		H2B—N2—H2C		109.5
C3—C2—H2E	109.7		C4—N3—H3A		109.5
C1—C2—H2E	109.7		C4—N3—H3B		109.5
H2D—C2—H2E	108.2		H3A—N3—H3B		109.5
N2—C3—C2	112.1 (2)		C4—N3—H3C		109.5
N2—C3—H3D	109.2		H3A—N3—H3C		109.5
C2—C3—H3D	109.2		H3B—N3—H3C		109.5
N2—C3—H3E	109.2		C6—N4—H4A		109.5
С2—С3—Н3Е	109.2		C6—N4—H4B		109.5
H3D—C3—H3E	107.9		H4A—N4—H4B		109.5
N3—C4—C5	110.4 (2)		C6—N4—H4C		109.5
N3—C4—H4D	109.6		H4A—N4—H4C		109.5
C5—C4—H4D	109.6		H4B—N4—H4C		109.5
N3—C4—H4E	109.6		H11—O1W—H12		106 (5)
С5—С4—Н4Е	109.6		H21—O2W—H22		101 (4)
H4D—C4—H4E	108.1		H31—O3W—H32		100 (4)
Hydrogen-bond geometry (Å, °)					
D—H…A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1B…F2 ⁱ		0.89	2.03	2.826 (3)	148
N1—H1B…F5 ⁱ		0.89	2.22	2.839 (3)	127

0.89

1.82

2.672 (3)

161

N2—H2A…F4ⁱⁱ

N2—H2B…F7 ⁱⁱ	0.89	1.85	2.735 (3)	172				
N2—H2C…O1W ⁱⁱⁱ	0.89	2.22	2.926 (3)	136				
N2—H2C…F6 ⁱⁱⁱ	0.89	2.47	3.139 (3)	132				
N3—H3A…F3 ⁱⁱ	0.89	1.95	2.777 (3)	155				
N3—H3A…F4 ⁱⁱ	0.89	2.47	3.135 (3)	132				
N3—H3B…F3 ^{iv}	0.89	1.93	2.762 (3)	156				
N4—H4A····F7 ^v	0.89	1.86	2.728 (3)	164				
N4—H4B…F6 ^{vi}	0.89	2.09	2.886 (3)	149				
N4—H4B…F1 ^{vi}	0.89	2.33	3.029 (3)	135				
O1W—H12···O3W ⁱ	0.81 (4)	1.99 (4)	2.787 (4)	173 (4)				
O2W—H21…F1 ^{vi}	0.76 (4)	1.91 (4)	2.606 (3)	153 (4)				
O2W—H22…F6 ⁱ	0.76 (4)	1.99 (4)	2.747 (3)	171 (4)				
O3W—H32···O2W ^{vii}	0.73 (4)	2.04 (4)	2.766 (4)	173 (4)				
Symmetry codes: (i) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1; (ii) - <i>x</i> +1, - <i>y</i> , - <i>z</i> +1; (iii) <i>x</i> -1, <i>y</i> , <i>z</i> ; (iv) <i>x</i> , <i>y</i> , <i>z</i> +1; (v) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +2; (vi) <i>x</i> , <i>y</i> +1, <i>z</i> +1; (vii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1.								

