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Abstract.
BACKGROUND: The delayed blood pressure recovery (BPR) at post-exercise has been in association with a major risk of
cardiovascular disease and death.
OBJECTIVE: The study focused on evaluating the systolic and diastolic blood pressure recovery (SBPR, DBPR) and the
autonomic modulation following treadmill exercise in healthy young adults. Although considerable literature had been published
about BPR and HRV, the association between BPR and ultra-short-term HRV has not yet been completely described.
METHODS: Fifteen subjects performed exercise with three different intensities on a treadmill, the speed was 6 km/h, 9 km/h,
12 km/h, respectively. SBP and DBP was measured per 30 s in each trial. The synchronous 5-min electrocardiogram (ECG) signals
were recorded and HRV30s parameters including SDNN30s, RMSSD30s, SDNN30s/RMSSD30s, SD130s, SD230s and SD130s/SD230s
were calculated every 30 s periods in 5 min ECG signals to match the corresponding BPR.
RESULTS: The intraclass correlation coefficient (ICC) values and the Bland-Altman plots indicated good consistency and
repeatability between HRV30s and HRV5min at three post-exercise trials, with most ICC values > 0.75. Besides, SBPR and DBPR
generally decreased and returned to the Rest level in 5 mins. The Spearman correlation coefficients showed strong relationships
between BPR and HRV30s sympathetic-vagal balance parameters, i.e., ratio SDNN/RMSSD and ratio SD1/SD2.
CONCLUSIONS: These observations represented a new insight into the cardiovascular regulation at post-exercise, which could
contribute to physical exercise areas in the future.
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1. Introduction

Prehypertension or hypertension is a main risk factor of cardiovascular diseases, i.e., coronary artery
disease, stroke and diabetes [1,2]. The exaggerated BP response to exercise was reported to have a high
incidence of hypertension due to the early alternations in cardiovascular hemodynamic and endothelial
dysfunction [3,4]. Thus, a practical clinical technique to evaluate cardiovascular health is the assessment
of blood pressure recovery (BPR) at post-exercise. BP response to exercise is frequently used to evaluate
various aspects of cardiovascular modulation [5,6].

Heart rate variability (HRV) is a common and useful tool in assessing autonomic nervous system
function, which is used in many academic areas [7]. Short-term HRV is believed to be an independent
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factor of some chronic diseases [8]. It is considered that the increasing mortality of cardiovascular diseases
is related to the sudden changes in antonomic regulation at post-exercise, which could be reflected by
HRV parameters [9–11]. Due to the prevalence of HRV in physical exercise, more literatures aim to pay
attention to the application of accurate HRV assessment in exercise. For example, it was reported that a
larger convertion in sympathetic-vagal balance was resulted from higher intersity exercise in Parekh’s
study [12]. Besides, it was supported that HRV monitor could help to track the exercise program of
training adaptation training adaptation in exercise training, and set the appropriate physical training loads
to improve the performance for athletes [13–15].

BPR and HRV responses to post-exercise are related to the intensity of aerobic exercise, particularly in
the first minutes of recovery [12,16]. Lewis et al. [17] found that the prolonged sympathetic predominance
and slow parasympathetic reactivation at post-exercise contributed to a delayed BPR. Therefore, the
investigation of the impact of exercise on autonomic modulation and BPR may provide further insight
into physical exercise areas.

To our knowledge, most of the literature which bases on studying BPR and HRV at post-exercise
is independent. The purpose of this study was to investigate the effects of treadmill post-exercise on
autonomic nervous modulation and BPR. Instead of using the standard HRV5min, the assessment of
autonomic regulation was performed by using HRV30s, which provided a new way to assess autonomic
regulation for future research. Our research mainly aimed to investigating the BPR and the physiological
mechanisms which regulated and controlled the results.

2. Methods

2.1. Subjects

Fifteen healthy were recruited to take part in this study. The measurement of the average age and the
body mass index (BMI) was 22.3 ± 1.2 years old and 22.5 ± 1.5 kg/m2, respectively. All subjects in our
study were physical healthy and not taking any medication, all of them were asymptomatic for respiratory
disease and nonsmokers. All subjects were not allowed to drink alcohol or caffeine 24 hours before the
study, as well as any exhaustive exercise. Each subject was informed to write a consent form prior to the
experiment.

2.2. Experimental procedure

Before ECG signal acquisition, subjects were asked to seat quietly and breathe naturally for 10 min.
Then, ECG signal was collected for 5-min duration as a baseline (Rest). Subsequently, subjects were
ask to take the warm-up phase for 60 s on the treadmill, which was to ensure that the sensors were
firmly attached and subjects could be familiar with the procedure. Later, ECG signals were recorded for
other three 5-min periods as soon as each performance was ended. The treadmill speed was adjusted to
6 km/h (Post-E1), 9 km/h (Post-E2) and 12 km/h (Post-E3), respectively. To elimilate the impacts on the
repeated measurements of HRV, the initial BP and HR prior to each trial was recorded to guarantee that
cardiovascular modulation had returned to Rest condition level. Participants were allowed to maintain
stable to reduce the motion artifact. Each trial lasted for 3 mins with the duration of 30 mins in-between
trials and were performed in a random order.

2.3. Blood pressure monitoring

Brachial cuff-BP was measured by a digital BP monitor device (HEM-7211, Omron Healthcare, Japan).
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Subjects were required to sit quitely with the cuff wrapped around the right arm at the same level between
its center and the subject’s heart. Cuff-BP was measured every 30 s and 10 cuff-BPs were recorded for
BPR assessment in each trial. The values that each cuff-BP minus the mean BP at Rest condition were
taken as BPR.

Specifically,

SBPR = SBPi − SBPRest, DBPR = DBPi − DBPRest (1)

SBPi and DBPi were cuff-BP at post-exercise, SBPRest and DBPRest were mean BP values at Rest
condition. The sphygmomanometer was calibrated before each trial.

2.4. Data acquistition and HRV measures

In this study, the Power-Lab/16sp system (Castle Hill, AD Instruments, Australia) was used to collect
and amplify the ECG signal. The frequency was set at 1 kHz. Subsequently, the signals were filtered by a
45-Hz low-pass filter and a 1-Hz high-pass filter. The ectopic beats were visually identified, then, the
abnormal data were replace by linear interpolation of adjacent RR intervals. The normal cardiac intervals
were automatically measured and exported for HRV analysis.

Due to the 30 s consumption for the measurement of each cuff-BP, 30 s ultra-short-term HRV analysis
was used to correlate with the BPR in this study. The consecutive HRV30s was recorded to assess the
autonomic alteration over time. Specifically, time-domain parameters including square root of the mean
squared differences of successive R-R intervals (RMSSD30s), standard deviation of normal to normal
R-R intervals (SDNN30s), and ratio SDNN/RMSSD30s were calculated. Besides, non-linear parameters
extracted from the Poincare plot, i.e., SD130s, SD230s and ratio SD1/SD230s, were calculated. Frequency-
domain indicators, i.e., LF and HF, were not used in the paper as an ultra-short period (< 1 min) was too
short to assess HRV frequency-domain parameters.

2.5. Statistical analysis

The software SPSS Statistics (version 24.0) was used for the statistical analysis. All indices were
presented as mean ± standard deviation (SD). The normal distribution of HRV parameters were evaluate
by the Shapiro-Wilk Normality Test. Repeated one-way ANOVA was performed to investigate the
difference of physiological parameters prior to each trial. Bland-Altman analysis was applied to evaluate
the limits of agreement between HRV30s and HRV5min. Additionally, the intraclass correlation coefficient
(ICC) with Single Measures was used to evaluate the reproducibility of physiological indicators, i.e.,
HR, SBP and DBP, and the consistency between HRV30s and HRV5min. The relationship between BPR
and HRV30s parameters was examined by the nonparametric Spearman correlation test. Statistically
significanct differences were considered with p values < 0.05 in all tests.

3. Results

3.1. Ultra-short term HRV30s as a surrogate of standard HRV5min

The results of initinal BP and HR prior to each trial are summarized as mean ± SD in Table 1. The
sensibility analysis did not show differences among trials and the ICC values for the parameters showed
good concistency with ICCs > 0.831.
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Table 1
The variation of HR and BP in repeated measurement prior to each trial, and the intraclass correlation
coefficient (ICC) in four trials

Rest Post-E1 Post-E2 Post-E3 p values ICC
HR 77.29 ± 10.22 76.23 ± 10.56 76.20 ± 10.98 76.92 ± 9.34 0.990 0.943∗∗

SBP 116.76 ± 9.21 116.07 ± 11.40 118.21 ± 9.14 117.64 ± 8.86 0.940 0.831∗∗

DBP 71.54 ± 7.86 68.79 ± 8.36 69.14 ± 8.98 71.28 ± 7.18 0.731 0.906∗∗

Note: p values was yielded by repeated one-way ANOVA. ICC was used for analyzing the repeatability of
the parameters prior to each trial. Generally, ICC values larger than 0.75 were considered good. ∗∗p < 0.01.

Fig. 1. The Bland-Altman analysis between HRV30s and HRV5min. (a), (b), (c) and (d) represented SDNN, RMSSD, SD1 and
SD2, respectively.

Bland-Altman plots of the differences between HRV30s and HRV5min are shown in Fig. 1. The plots
indicated the average difference (red line) and agreement limits (black line, ± 1.96SD) for HRV30s and
HRV5min. In addition, the ICC analysis in Table 2 shows good agreement between HRV30s and HRV5min in
all comparisons, with most ICC values > 0.75. These results indicated that it was acceptable for HRV30s
as a surrogate of standard HRV5min in the present study.

Continuous short-term HRV30s in three post-exercise trials are presented in Figs 2 and 3 as mean
± SD. For SDNN30s, RMSSD30s, SD130s, SD230s and ratio SD1/SD230s, the values were observed
decreasing response to higher exercise intensity. For ratio SDNN/RMSSD30s, no significant differences
were identified at three post-exercise trials.
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Table 2
The ICC results between HRV30s and HRV5min

SDNN RMSSD SD1 SD2
Rest 0.890∗∗ 0.876∗∗ 0.877∗∗ 0.718∗∗

Post-E1 0.767∗∗ 0.821∗∗ 0.784∗∗ 0.708∗∗

Post-E2 0.796∗∗ 0.753∗∗ 0.754∗∗ 0.756∗∗

Post-E3 0.772∗∗ 0.837∗∗ 0.823∗∗ 0.818∗∗

Note: ICC was used for analyzing the repeatability and
consistency between HRV30s and HRV5min. Generally,
ICC < 0.4: poor; 0.4 6 ICC < 0.75: moderate; 0.75 6
ICC: good. ∗∗p < 0.01.

Fig. 2. The continuous time-domain HRV30s parameters at post-exercise trials. (a) is the standard deviation of all NN inter-
vals (SDNN). (b) is the root mean square of standard deviation between adjacent NN intervals (RMSSD). (c) is the ratio
SDNN/RMSSD.

Fig. 3. The continuous non-linear HRV30s parameters at post-exercise trials. (a) is SD1, (b) is SD2, (c) is ratio SD1/SD2.

3.2. BPR and the relationship with HRV30s

The results of simultaneous SBPR and DBPR are illustrated in Fig. 4. As expected, SBPR and DBPR
generally decreased and returned to the Rest level in nearly 4th mins at post-exercise.

There were correlations between HRV30s and BPR at post-exercise, as shown in Table 3. Spear-
man correlation coefficients larger than 0.6, which indicated a moderate to a strong relationship, was
achieved between SBPR and ratio SDNN/RMSSD30s, DBPR and ratio SDNN/RMSSD30s, SBPR and
ratio SD1/SD230s, DBPR and ratio SD1/SD230s. Statistical significance was determined by p values,
which is also summarized in Table 3. Furthermore, these correlations are presented in detail in Figs 5
and 6 with p values and r coefficients.
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Table 3
Spearman correlation coefficients between HRV30s and blood pressure recovery (SBPR and DBPR) at
post-exercise trials

SDNN30s RMSSD30s SDNN/RMSSD30s SD130s SD230s SD1/SD230s

SBPR
Post-E1 0.295 0.691∗ −0.814∗∗ 0.626∗ −0.294 0.607∗

Post-E2 −0.490 −0.229 −0.714∗ −0.500 −0.709∗ 0.618∗

Post-E3 −0.678 0.733∗∗ −0.831∗∗ 0.740 −0.775∗ 0.709∗∗

DBPR
Post-E1 0.221 0.572 −0.708∗ 0.732∗ −0.165 0.679∗

Post-E2 −0.452 −0.318 −0.607∗ −0.460 −0.653∗ 0.635∗

Post-E3 −0.600 −0.769∗ −0.760∗∗ 0.905∗∗ −0.710∗ 0.730∗∗

∗p < 0.05 and ∗∗p < 0.01.

Fig. 4. The continuous blood pressure recovery at post-exercise trials. (a) is systolic BP recovery (SBPR), (b) is diastolic BP
recovery (DBPR).

Fig. 5. The Spearman correlation between SBPR and HRV30s, i.e., SDNN/RMSSD30s and SD1/SD230s.

4. Discussion

In the present study, we investigated the effects of treadmill exercise on cardiovascular modulation and
BPR during the recovery period. The continuous autonomic response was evaluated by ultra-short-term
HRV30s instead of the standard HRV5min, which was a new approach to assess autonomic regulation
for future research. These observations of this study were linked to the relationship between BPR and
autonomic response to post-exercise.
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Fig. 6. The Spearman correlation between DBPR and HRV30s, i.e., SDNN/RMSSD30s and SD1/SD230s.

Physical exercise could lead to great alteration in stroke volume and the increase of peripheral vasocon-
striction. Three major mechanisms were thought to be liable for neurocardiovascular regulation during
physical exercise, i.e., activation of the cerebral nervous system, the baroreceptor afferents and the activity
from chemical and mechanical receptors [18–21]. The neural circuits in the medulla are activated by
these mechanisms so as to regulate the balance of the sympathetic and parasympathetic tone. However,
some factors can influence the physiological responses to exercise for each mechanism, i.e., exercise
mode and intensity, muscle fiber type or recruited muscle mass [22]. The responses were also reflected in
the autonomic alteration, as assessed via HRV parameters. Time-domain parameters including SDNN,
RMSSD and ratio SDNN/RMSSD, and non-linear parameters including SD1, SD2 and ratio SD1/SD2
were utilized in the present study. SDNN and SD2 were affected by both sympathetic and parasympa-
thetic activities [23]; RMSSD and SD1 were considered to represent vagal modulation [7]; while ratio
SDNN/RMSSD and ratio SD1/SD2 could be used as an indicator of sympathovagal balance [7,24].

Instead of using the standard HRV5min to assess the autonomic alteration, ultra-short-term HRV30s was
verified to be a reliable surrogate to examine the continuous change of autonomic activities at post-exercise
in this study, which was an important tool in HRV monitoring applications and clinical studies [25–27].
Regarding the Rest and post-exercise trials, the concordance was observed between HRV30s and HRV5min,
which confirmed that the 30 s duration could provide acceptable reliability for ultra-short time HRV
analysis. The Bland-Altman analysis showed the common applicability of HRV30s by integrating all data
together. The results indicated that the limits were tight for all parameters. Additionally, we intended
to get the consistent results from the two different analysis methods, not just “high correlation”, so the
“Absolute Agreement” type of ICC analysis was used in the study. The repeatability of HRV30s was
reinforced by the ICC results with values > 0.75.

Furthermore, the decreased SDNN30s, RMSSD30s, SD130s, SD230s and ratio SD1/SD230s were observed
as the intensity increased, which was in line with some previous studies [28–30]. The continuous
changes of HRV30s parameters mainly resulted from the enhancement of sympathetic modulation and
its dominance over parasympathetic tone with the exercise intensity increasing. It had been observed by
Buchheit et al. [30] and Fisher et al. [28] that the increased glycolytic metabolism was triggered by higher
intensity exercise. Likewise, the activation of sympathetic activity and the withdrawal of parasympathetic
tone would contribute to metabolites. However, we focused on investigating the inherent mechanisms
which regulated and controlled these outcomes from the aspect of physiological significance, instead of
explaining the difference of autonomic alteration of the three post-exercise trials, i.e., Post-E1, Post-E2
and Post-E3.
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Physical exercise-related blood pressure response was demonstrated to have prognostic implications
in clinical study. The exaggerated BP response to exercise was caused by the increased peripheral
vascular resistance and impaired capacity of vasodilatation in the early period of hypertension [4,31].
BPR was extensively studied to assess the cardiovascular system. The whole exercise period was dynamic
with various changes of physiological conditions. Treadmill exercise required a lot of muscle mass
participation, which could produced a volume load on cardiovascular system. In general, the increase of
vascular conductance and the decrease of vascular resistance were usually greater than the elevations of
cardiac output after dynamic exercise, which indicated that the BPR was triggered by vasodilation [32].
On the other hand, there was an interesting phenomenon in our study: SBP had recovered to rest level at
the 4th min and then maintained stability, while DBP returned to rest level at 3.5th min and decreased
further. It was believed that the venous return, which stemmed from the physical vasodilation of vascular
system, could led to the further decrease of DBP [33].

Besides, it had been proposed that the cerebral nervous mechanism played an important role in
cardiovascular modulation, which was related to the vasodilation at post-exercise as a feed-forward
system [34]. That was the reason that the correlation between HRV30s and BPR existed at post-exercise.
The body stress and the metabolic status was constantly monitored by chemoreceptors and baroreceptors,
which were controlled by the autonomic system. The pressure in arteries was continuously adjusted
during movement as chemoreceptor and baroreceptor activities flowed into the medulla. Later, these
changes were fed back to the medulla, the receptors regulated the adjusted the pressure in arteries by
altering heart rate and blood pressure [35–38]. The strong correlations between ratio SDNN/RMSSD30s,
ratio SD1/SD230s and BPR indicated that BRP was regulated by the movement of sympathovagal balance.
Specifically, the increased ratio SDNN/RMSSD30s and ratio SD1/SD230s was associated with a withdrawal
of sympathetic modulation and an enhancement of vagal tone. In summary, the autonomic nervous system
was involved in the regulation of blood pressure and the outcomes in this study provided a new insight
into the interplay between BPR and autonomic nervous alteration.

The major limitations of this study are the lack of different age ranges, i.e., younger or older paticipants,
which indicated that the results could not be precisely extrapolated for a wider population. Additionally,
only one exercise mode was performed to investigate the correlation between HRV30s and BPR. It has
been demonstrated that cardiac vagal tone and vascular system had a great different response to endurance
exercise versus resistance exercise [33,39]. Further research is needed to provide additional information
to better understand the regulation mechanism in different exercise modes in future work.

5. Conclusions

In summary, exercise-related high blood pressure was a common phenomenon, which had a great
relationship with autonomic modulation and vasoconstriction. The ultra-short-term HRV30s analysis was
verified to be reliable to assess the continuous autonomic response to treadmill exercise in the present
study. SBPR and DBPR at the post-exercise period had strong correlations with HRV30s parameters
that represented the sympathovagal balance, i.e., ratio SDNN/RMSSD and ratio SD1/SD2, which was
associated with the reduction in sympathetic modulation and the augmentation in parasympathetic activity.
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