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Populations of pollinating insects are in concrete decline globally [1]. Many wild
bees are now considered at risk of extinction, disappearing from many habitats [2]. In
the last decade, high attention has been paid to the rarefaction of the populations of
Apis mellifera, the common honeybee. Populations of this species have suffered significant
numerical losses since 2006–2007 in the USA, when the phenomenon of colony collapse
disorder (CCD) was first described by B. Oldroyd [3]. The great interest in the decline
of this species is justified by the fact that honeybees, in addition to providing important
foods and products such as honey, pollen, propolis, royal jelly and venom [4–8], have long
been employed for the pollination service [9,10]. Therefore, their decline poses a serious
threat to the production of important crops for human consumption globally, with major
repercussions on yields.

To face this worrying scenario, we should focus on the complexity of the trophic
networks in which the honeybee participates, acting as a reliable indicator of the level of
environmental sustainability of a given habitat. Few bees in a specific ecosystem likely in-
dicate an anomaly in progress. However, abundant densities of honeybees, experimentally
surveyed in an identified range, are not necessarily an indication of high environmental
quality. Bees can be raised in large numbers and transported to a given biotope, thus
generating an experimental bias. To overcome this issue, it is necessary to extend the mea-
sure not only to honeybees but also to other wild Apoidea (including solitary, gregarious
and social species) or, even better, to the cluster of insects present in a specific area. The
recent scientific literature focuses the attention on the more generalized decline of insect
populations as a whole. Long-term scientific data examining 452 species of invertebrates
from 1970s indicate a dramatic population reduction of about 45% [11].

What are the possible causes of this widespread reduction in insects in general and
pollinators, more specifically, on a worldwide scale? Current scientific knowledge suggests
that a single factor cannot explain the phenomenon of CCD. More generally, the reasons
for the rarefaction of the pollinator populations, reared and wild, admit a multifactorial
hypothesis, where the causes of perturbation often act concomitantly, giving rise to frequent
and amplified synergistic disturbing actions. Important factors responsible for the rarefac-
tion of beneficial insects include—among others—the fragmentation and degradation of
habitats, with the consequent loss of natural floristic communities, the models of intensive
agricultural management with the excessive use of pesticides, environmental pollution,
the increasingly widespread ease of the diffusion of invasive alien species, the pressure of
parasites and pathogens, global warming and its associated consequences [1–3,12,13].

The case of insecticides belonging to the neonicotinoid class can help one to better
understand the complexity of the phenomenon, shedding light on the above-mentioned
multifactorial synergistic interactions. Neonicotinoids, a class of molecules obtained syn-
thetically in the mid-90s of the last century, are very similar in structure to nicotine. They
have an indirect neurotoxic action, blocking nicotinic receptors and causing nerve over-
stimulation and paralysis. They are highly toxic to most arthropods, so they can be used to
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effectively manage their populations. Being characterized by high mobility at the xylem
and phloem level, their use is widespread in modern agriculture. However, the ease with
which they are translocated into the vascular tissues of the treated plants often determines
significant concentrations of the active principle in the nectar and pollen, thus putting the
pollinator entomofauna at risk [12,13]; this is also due to their toxicity through ingestion,
which is higher than that achieved by contact. Considering these reasons, for some of the
most common active ingredients, the European Food Safety Authority (EFSA) highlighted
their danger to honey and wild bees [14]. A number of studies indicate the sub-lethal
effects of this class of insecticides, which in the case of honeybees manifest themselves with
interactions at the metabolic and neuro-cognitive level, such as the increase in the time
of larval development, disturbances in the orientation, reduction in olfactory ability, and
learning alteration [15]. For the super-organism A. mellifera, the consequences of taking
sub-lethal doses of neonicotinoids can be fatal. The symptoms related to the exposure of
honeybees to low doses of neonicotinoids highlight side-effects and synergies between
stressors, even more subtle than those described above. For instance, sub-lethal doses of
clothianidin alter the bee immune response, promoting the replication of the deformed
wing virus (DWV) [16]. Colonies exposed to this insecticide are more sensitive and more
exposed to attacks by pathogens. Additionally, an unusual mutualistic symbiosis between
the DWV and the ectoparasitic bee mite Varroa destructor, has been reported. Feeding
mites act as DWV vectors in A. mellifera colonies. As a counterpart, the DWV induces
immuno-suppression in the host, delaying the repair of nutritional wounds inflicted by
the V. destructor mother, thus favoring the feeding and reproductive success of the mite’s
offspring [17]. It is evident how the attempt to solve a problem—i.e., the use of a neon-
icotinoid to control a phytophagous insect—can trigger a sort of unpredictable domino
effect, which is not easy to interrupt. We must acquire greater awareness that whenever we
intervene in an ecosystem we alter, in a short time, the consolidated structure and complex-
ity of the trophic networks. Intensive agricultural systems lack the key ecological services
needed for the maintenance of their homeostasis. In contrast, a low-input management of
agricultural production processes translates, over time, into a better level of biodiversity,
generating synergies to support the maintenance of soil fertility, yields and the protection
of multifunctional food networks, including tools to support bee populations [18,19]. In
our opinion, taking a small step back will allow us to gain the momentum to take a longer
leap forward.

In this delicate and timely scenario, Molecules welcomes original research articles and
reviews on bee research, with special reference to the identification of novel compounds to
boost bee health, including products to fight their parasites and pathogens. In addition, as
mentioned above, beekeeping is a major source of important products of high value for
humans, including honey, pollen, propolis, venom and royal jelly [4–8]. Studies focusing on
this topic perfectly fits the aim of Molecules, which is committed to publishing beekeeping
research and reviews.

As Academic Editors of Molecules, in the present article, we selected twelve care-
fully reviewed articles on bee and beekeeping research published in this international
journal [6,20–30]. In the first subset of selected articles, recent advances in the field of
pesticide detection in beekeeping products are presented [20–22]. A further research field
well covered in Molecules in recent years is the evaluation of novel natural products to fight
honeybee pathogens and parasites [23–25]. Finally, major attention has been devoted to
the chemical, biological and nutraceutical properties of beekeeping products, with special
reference to bee-collected pollen [6,26,27], venom [28], propolis and honey [29,30].

Overall, bee and beekeeping research fits well the aim of Molecules, as outlined by
the articles mentioned above. On the other hand, we are very aware that this Editorial
cannot reflect the many facets and research challenges characterizing this interesting field of
research. However, we hope that it can inspire further research in our scientific community,
particularly among young researchers.
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“The bee’s life is like a magic well: the more you draw from it, the more it fills with water”.
Karl Von Frisch [31]
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22. Bargańska, Ż.; Konieczka, P.; Namieśnik, J. Comparison of Two Methods for the Determination of Selected Pesticides in Honey
and Honeybee Samples. Molecules 2018, 23, 2582. [CrossRef] [PubMed]

http://doi.org/10.1051/apido/2009012
http://doi.org/10.1016/j.tree.2010.01.007
http://www.ncbi.nlm.nih.gov/pubmed/20188434
http://doi.org/10.1371/journal.pbio.0050168
http://www.ncbi.nlm.nih.gov/pubmed/17564497
http://doi.org/10.3390/molecules23092322
http://doi.org/10.1016/j.jfca.2016.11.001
http://doi.org/10.3390/molecules25214925
http://www.ncbi.nlm.nih.gov/pubmed/33114449
http://doi.org/10.1080/00218839.2019.1614273
http://doi.org/10.1016/j.jff.2018.03.008
http://doi.org/10.1016/j.agee.2012.06.020
http://doi.org/10.1007/s13593-015-0342-x
http://doi.org/10.1126/science.1251817
http://www.ncbi.nlm.nih.gov/pubmed/25061202
http://doi.org/10.1007/s10646-016-1734-7
http://www.ncbi.nlm.nih.gov/pubmed/27709399
http://doi.org/10.1007/s11356-017-9240-x
https://www.efsa.europa.eu/sites/default/files/news/180228-QA-Neonics.pdf
https://www.efsa.europa.eu/sites/default/files/news/180228-QA-Neonics.pdf
http://doi.org/10.1007/s10646-012-0863-x
http://doi.org/10.1073/pnas.1314923110
http://www.ncbi.nlm.nih.gov/pubmed/24145453
http://doi.org/10.1073/pnas.1523515113
http://doi.org/10.1371/journal.pone.0093153
http://doi.org/10.1016/j.sjbs.2017.01.018
http://doi.org/10.3390/molecules25153481
http://doi.org/10.3390/molecules25235703
http://doi.org/10.3390/molecules23102582
http://www.ncbi.nlm.nih.gov/pubmed/30304845


Molecules 2021, 26, 3066 4 of 4
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