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Abstract

Infants are curious learners who drive their own cognitive development by imposing 
structure	on	their	learning	environment	as	they	explore.	Understanding	the	mechanisms	
by which infants structure their own learning is therefore critical to our understanding of 
development.	Here	we	propose	an	explicit	mechanism	for	intrinsically	motivated	infor-
mation	selection	that	maximizes	learning.	We	first	present	a	neurocomputational	model	
of	infant	visual	category	learning,	capturing	existing	empirical	data	on	the	role	of	envi-
ronmental	complexity	on	learning.	Next	we	“set	the	model	free”,	allowing	it	to	select	its	
own	stimuli	based	on	a	formalization	of	curiosity	and	three	alternative	selection	mecha-
nisms.	We	demonstrate	that	maximal	learning	emerges	when	the	model	is	able	to	maxi-
mize	stimulus	novelty	relative	to	its	internal	states,	depending	on	the	interaction	across	
learning between the structure of the environment and the plasticity in the learner itself. 
We	discuss	the	implications	of	this	new	curiosity	mechanism	for	both	existing	computa-
tional models of reinforcement learning and for our understanding of this fundamental 
mechanism in early development.

RESEARCH HIGHLIGHTS

•	 We	present	a	novel	formalization	of	the	mechanism	underlying	in-
fants’	curiosity-driven	learning	during	visual	exploration.

•	 We	 implement	this	mechanism	 in	a	neural	network	that	captures	
empirical	data	from	an	infant	visual	categorization	task.

• In the same model we test four potential selection mechanisms and 
show	 that	 learning	 is	maximized	when	 the	model	 selects	 stimuli	
based on its learning history, its current plasticity and its learning 
environment.

• 	The	model	offers	new	insight	into	how	infants	may	drive	their	own	
learning.

1  | INTRODUCTION

For	more	than	half	a	century,	infants’	information	selection	has	been	
documented	in	lab-	based	experiments.	These	carefully	designed,	rig-
orously controlled paradigms allow researchers to isolate a variable 

of	interest	while	controlling	for	extraneous	environmental	influences,	
offering a fine- grained picture of the range of factors that affect early 
learning. Decades of developmental research have brought about a 
broad consensus that infants’ information selection and subsequent 
learning	in	empirical	tasks	are	influenced	by	their	existing	representa-
tions, the learning environment, and discrepancies between the two 
(for a review, see Mather, 2013). On the one hand, there is substantial 
evidence that infants’ performance in these studies depends heav-
ily	on	 the	characteristics	of	 the	 learning	environment.	For	example,	
early	work	demonstrated	that	 infants	under	6	months	of	age	prefer	
to	 look	at	patterned	over	homogenous	grey	 stimuli	 (Fantz,	Ordy,	&	
Udelf,	 1962),	 and	 in	 a	 seminal	 series	 of	 categorization	 experiments	
with 3- month- old infants, Quinn and colleagues demonstrated that 
the category representations infants form are directly related to 
the	 visual	 variability	 of	 the	 familiarization	 stimuli	 they	 see	 (Quinn,	
Eimas,	&	Rosenkrantz,	1993;	see	also	Younger,	1985).	More	recently,	
4- month- old infants were shown to learn animal categories when fa-
miliarized	with	 paired	 animal	 images,	 but	 not	when	 presented	with	
the	same	images	individually	(Oakes,	Kovack-	Lesh,	&	Horst,	2009;	see	
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also	Kovack-	Lesh	&	Oakes,	2007).	Thus,	the	representations	 infants	
learn	depend	on	bottom-	up	perceptual	information.	Equally,	however,	
infants’	existing	knowledge	has	a	profound	effect	on	 their	behavior	
in	these	experiments.	For	example,	while	newborns	respond	equiva-
lently to images of faces irrespective of the race of those faces, by 
8 months infants show holistic processing of images of faces from 
their own race, but not of other- race faces, which they process fea-
turally	 (Ferguson,	 Kulkofsky,	 Cashon,	 &	 Casasola,	 2009).	 Similarly,	
4-	month-	old	 infants	 with	 pets	 at	 home	 exhibit	 more	 sophisticated	
visual	 sampling	of	pet	 images	 than	 infants	with	no	such	experience	
(Hurley,	Kovack-	Lesh,	&	Oakes,	2010;	Hurley	&	Oakes,	2015;	Kovack-	
Lesh,	 McMurray,	 &	 Oakes,	 2014).	 Effects	 of	 learning	 history	 also	
emerge	 when	 infants’	 experience	 is	 controlled	 experimentally.	 For	
example,	after	a	week	of	training	with	one	named	and	one	unnamed	
novel	 object,	 10-	month-	old	 infants	 exhibited	 increased	 visual	 sam-
pling	of	the	previously	named	object	in	a	subsequent	silent	looking-	
time	task	(Twomey	&	Westermann,	2017;	see	also	Bornstein	&	Mash,	
2010;	Gliga,	Volein,	&	Csibra,	2010).	Thus,	 learning	depends	on	the	
interaction between what infants encounter in- the- moment and what 
they	know	(Thelen	&	Smith,	1994).

1.1 | Active learning in curious infants

A	 long	 history	 of	 experiments,	 starting	with	 Piaget’s	 (1952)	 notion	 of	
children	as	“little	scientists”,	has	shown	that	children	are	more	than	pas-
sive	observers;	rather,	they	take	an	active	role	in	constructing	their	own	
learning.	Recent	work	demonstrates	this	active	 learning	 in	 infants	also.	
For	 example,	 allowing	 16-	month-	old	 infants	 to	 choose	 between	 two	
novel	objects	in	an	imitation	task	boosted	their	imitation	of	novel	actions	
subsequently	performed	on	the	selected	item	(Begus,	Gliga,	&	Southgate,	
2014).	Similarly,	in	a	pointing	task,	20-	month-	old	infants	were	more	likely	
to elicit help from their caregivers in finding a hidden object when they 
were unable to see the hiding event than when they saw the object 
being	hidden	(Goupil,	Romand-	Monnier,	&	Kouider,	2016).	Indeed,	even	
younger	infants	systematically	control	their	own	learning:	for	example,	7-		
to 8- month- olds increased their visual sampling of a sequence of images 
when	 those	 images	 are	moderately—but	 not	maximally	 or	minimally—
predictable	 (Kidd,	 Piantadosi,	&	Aslin,	 2012;	 see	 also	Kidd,	 Piantadosi,	
&	Aslin,	2014).	However,	as	a	newly	developing	field	active	learning	in	
infants	is	currently	poorly	understood	(Kidd	&	Hayden,	2015).

Critically, outside the lab infants interact with their environment 
freely and largely autonomously, learning about stimuli in whichever 
order	 they	 choose	 (Oudeyer	 &	 Smith,	 2016).	 This	 exploration	 is	 not	
driven	by	an	external	motivation	such	as	finding	food	to	satiate	hun-
ger. Rather, it is intrinsically motivated	(Baldassarre	et	al.,	2014;	Berlyne,	
1960;	Oudeyer	&	Kaplan,	2007;	Schlesinger,	2013):	 in	 the	real	world	
infants learn based on their own curiosity. Consequently, in construct-
ing	their	own	learning	environment,	infants	shape	the	knowledge	they	
acquire. However, in the majority of studies on early cognitive devel-
opment,	infants’	experience	in	a	learning	situation	is	fully	specified	by	
the	experimenter,	often	through	a	preselected	sequence	of	stimuli	that	
are	presented	for	fixed	amounts	of	time.	Thus,	we	currently	know	little	
about the cognitive processes underlying infants’ curiosity as a form of 

intrinsic	motivation,	or	 indeed	the	extent	to	which	what	 infants	 learn	
from	curiosity-	driven	exploration	differs	from	what	they	learn	in	more	
constrained	environments.	Given	that	active	exploration	is	at	the	heart	
of	development,	understanding	how	they	construct	their	learning	expe-
riences—and consequently, their mental representations—is fundamen-
tal to our understanding of development more broadly.

1.2 | Computational studies of intrinsic motivation

In contrast to the relative scarcity of research into infant curiosity, 
recent years have seen a surge in interest in the role of intrinsic mo-
tivation	 in	 autonomous	 computational	 systems.	 Equipping	 artificial	
learning	systems	with	intrinsic	motivation	mechanisms	is	likely	to	be	
key	to	building	autonomously	intelligent	systems	(Baranes	&	Oudeyer,	
2013;	Oudeyer,	Kaplan,	&	Hafner,	2007),	and	consequently	a	rapidly	
expanding	body	of	computational	and	robotic	work	now	focuses	on	
the intrinsic motivation mechanisms that may underlie a range of 
behaviors;	 for	 example,	 low-	level	 perceptual	 encoding	 (Lonini	 et	al.,	
2013;	 Schlesinger	 &	 Amso,	 2013),	 novelty	 detection	 (Marsland,	
Nehmzow,	 &	 Shapiro,	 2005),	 and	 motion	 planning	 (Frank,	 Leitner,	
Stollenga,	Förster,	&	Schmidhuber,	2014).

Computational	work	 in	 intrinsic	motivation	has	 suggested	a	wide	
range of possible formal mechanisms for artificial curiosity- based learn-
ing	(for	a	review,	see	Oudeyer	&	Kaplan,	2007).	For	example,	curiosity	
could	be	underpinned	by	a	drive	to	maximize	learning	progress	by	in-
teracting with the environment in a novel manner relative to previously 
encountered	events	(Oudeyer	et	al.,	2007).	Alternatively,	curiosity	could	
be driven by prediction mechanisms, allowing the system to engage in 
activities	for	which	predictability	is	maximal	(Lefort	&	Gepperth,	2015)	
or	minimal	 (Botvinick,	Niv,	&	Barto,	2009).	 Still	 other	 approaches	as-
sume	 that	 curiosity	 involves	 maximizing	 a	 system’s	 competence	 or	
ability	to	perform	a	task	(Murakami,	Kroger,	Birkholz,	&	Triesch,	2015).	
Although	this	computational	work	investigates	numerous	potential	curi-
osity algorithms, it remains largely agnostic as to the psychological plau-
sibility	of	the	implementation	of	those	mechanisms	(Oudeyer	&	Kaplan,	
2007).	For	example,	many	autonomous	learning	systems	employ	a	sep-
arate	“reward”	module	in	which	the	size	and	timing	of	the	reward	are	
defined a priori by the modeler. Only recently has research highlighted 
the value of incorporating developmental constraints in curiosity- based 
computational	and	robotic	 learning	systems	(Oudeyer	&	Smith,	2016;	
Seepanomwan,	Caligiore,	Cangelosi,	&	Baldassarre,	 2015).	While	 this	
research shows great promise in incorporating developmentally inspired 
curiosity- driven learning mechanisms into artificial learning systems, a 
mechanism	for	curiosity	in	human	infants	has	yet	to	be	specified.	The	
aim of this paper therefore is to develop a theory of curiosity- based 
learning in infants, and to implement these principles in a computational 
model	of	infant	categorization.

1.3 | The importance of novelty to curiosity- 
based learning

From	very	early	 in	development,	 infants	show	a	novelty preference; 
that is, they prefer new items to items they have already encountered 
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(Fantz,	1964;	Sokolov,	1963).	As	infants	explore	an	item,	however,	it	
becomes less novel; that is, the child habituates. During habituation, 
if a further new stimulus appears, and that stimulus is more novel 
to the infant than the currently attended item, the infant abandons 
the	habituated	item	in	favor	of	the	new.	Thus,	novelty	and	curiosity	
are	linked:	broadly,	increases	in	novelty	elicit	increases	in	attention	
and	learning	(although	see	e.g.,	Kidd	et	al.,	2012,	2014,	for	evidence	
that	 excessive	 novelty	 leads	 to	 a	 decrease	 in	 attention).	Here,	we	
propose that curiosity in human infants consists of intrinsically mo-
tivated	novelty	minimization	in	which	discrepancies	between	stimuli	
and	existing	 internal	 representations	of	 those	stimuli	are	optimally	
reduced	(see	also	Rescorla	&	Wagner,	1972;	Sokolov,	1963).

On this view, infants will selectively attend to stimuli that best 
support	 this	discrepancy	minimization.	However,	 to	date	there	 is	no	
agreement in the empirical literature as to what an optimal learn-
ing	 environment	might	 be.	 For	 example,	 Bulf,	 Johnson,	 and	Valenza	
(2011) demonstrated that newborns learned from highly predictable 
sequences of visual stimuli, but not from less predictable sequences. 
In	 contrast,	 10-	month-	old	 infants	 in	 a	 categorization	 task	 formed	 a	
robust	category	when	familiarized	with	novel	stimuli	in	an	order	that	
maximized,	but	not	minimized,	overall	perceptual	differences	between	
successive	stimuli	(Mather	&	Plunkett,	2011).	Still	other	studies	have	
uncovered	 a	 “Goldilocks”	 effect	 in	 which	 learning	 is	 optimal	 when	
stimuli	are	of	intermediate	predictability	(Kidd	et	al.,	2012,	2014;	see	
also	Kinney	&	Kagan,	1976;	Twomey,	Ranson,	&	Horst,	2014).	From	
this	perspective,	the	degree	of	novelty	and/or	complexity	in	the	envi-
ronment that best supports learning is unclear.

Across	 these	 studies,	 novelty	 and	 complexity	 are	 operational-
ized	differently;	 for	example,	as	objective	environmental	predictability	
(Kidd	et	al.,	2012,	2014),	or	objective	perceptual	differences	(Mather	&	
Plunkett,	2011).	In	contrast,	in	the	current	work	we	emphasize	that	for	
infants who are engaged in curiosity- driven learning, novelty is not a 
fixed	environmental	quantity	but	is	highly	subjective,	depending	on	both	
perceptual	environmental	characteristics	and	what	the	 learner	knows.	
Importantly, each infant has a different learning history which can affect 
their	exploratory	behavior.	For	example,	 infant	A	plays	with	blocks	at	
home	and	has	substantial	experience	with	stacking	cube	shapes.	Infant	
B’s	 favorite	 toy	 is	a	 rattle,	and	she	 is	 familiar	with	 the	noise	 it	makes	
when	shaken.	Consequently,	the	blocks	at	nursery	will	be	more	novel	to	
infant	B,	and	the	rattle	more	novel	to	infant	A.	On	this	view,	novelty	is	
separate	from	any	objective	measure	of	stimulus	complexity;	for	exam-
ple,	sequence	predictability	or	differences	in	visual	features	(Kidd	et	al.,	
2012,	2014;	Mather	&	Plunkett,	2011).	Thus,	a	fully	specified	theory	of	
curiosity-	driven	learning	must	explicitly	characterize	this	subjective	nov-
elty based both on the learner’s internal representations (what infants 
know)	and	 the	 learning	environment	 (what	 infants	experience).	 In	 the	
following paragraphs we provide a mechanistic account of this learner–
environment interaction using a neurocomputational model.

1.4 | Computational mechanisms for infant curiosity

Computational models have been widely used to investigate 
various cognitive processes, lending themselves in particular to 

capturing early developmental phenomena such as category learn-
ing	(e.g.,	Althaus	&	Mareschal,	2013;	Colunga	&	Smith,	2003;	Gliozzi,	
Mayor,	Hu,	&	Plunkett,	2009;	Mareschal	&	French,	2000;	Mareschal	&	
Thomas,	2007;	Munakata	&	McClelland,	2003;	Rogers	&	McClelland,	
2008;	Westermann	&	Mareschal,	2004,	2012,	2014).	Here	we	 take	
a connectionist or neurocomputational approach in which abstract 
simulations	of	biological	neural	networks	are	used	to	implement	and	
explore	 theories	 of	 cognitive	 processes	 in	 an	 explicit	 way,	 offering	
process-	based	accounts	of	known	phenomena	and	generating	predic-
tions	 about	 novel	 behaviors.	Neurocomputational	models	 employ	 a	
network	of	 simple	processing	units	 to	 simulate	 the	 learner	 situated	
and	acting	in	its	environment.	Inputs	reflect	the	task	environment	of	
interest, and can have important effects across representational de-
velopment.	Like	learning	in	infants,	learning	in	these	models	emerges	
from	 the	 interaction	 between	 learner	 and	 environment.	 Thus,	 neu-
rocomputational models are well suited to implementing and testing 
developmental theories.

In	 the	 current	 work	 we	 employed	 autoencoder	 networks:	 ar-
tificial	 neural	 networks	 in	 which	 the	 input	 and	 the	 output	 are	 the	
same	 (Cottrell	&	Fleming,	1990;	Hinton	&	Salakhutdinov,	2006;	 see	
Figure	2).	These	models	have	successfully	captured	a	range	of	results	
from	 infant	 category	 learning	 tasks	 (Capelier-	Mourguy,	 Twomey,	 &	
Westermann,	 2016;	 French,	 Mareschal,	 Mermillod,	 &	 Quinn,	 2004;	
Mareschal	&	French,	2000;	Plunkett,	Sinha,	Møller,	&	Strandsby,	1992;	
Westermann	&	Mareschal,	2004,	2012,	2014).	Autoencoders	 imple-
ment	Sokolov’s	(1963)	influential	account	of	novelty	orienting	in	which	
an	infant	fixates	a	novel	stimulus	to	compare	it	with	its	mental	repre-
sentation.	While	attending	to	the	stimulus	the	infant	adjusts	this	inter-
nal	representation	until	the	two	match.	At	this	point	the	infant	looks	
away	from	the	stimulus,	switching	attention	elsewhere.	Therefore,	the	
more	novel	a	stimulus,	the	 longer	fixation	time	will	be.	Similarly,	au-
toencoder	models	 receive	 an	 external	 stimulus	 on	 their	 input	 layer,	
and aim to reproduce this input on the output layer via a hidden layer. 
Specifically,	an	input	representation	is	presented	to	the	model	via	acti-
vation	of	a	layer	of	input	nodes.	This	activation	flows	through	a	set	of	
weighted connections to the hidden layer. Inputs to each hidden layer 
unit are summed and this value passed through a typically sigmoid 
activation	 function.	The	values	on	 the	hidden	units	are	 then	passed	
through	the	weighted	connections	to	the	output	 layer.	Again,	 inputs	
to each output node are summed and passed through the activation 
function, generating the model’s output representation. Learning is 
achieved	by	adapting	connection	weights	to	minimize	error,	that	is,	the	
discrepancy	between	the	input	and	output	representations.	Because	
multiple iterations of weight adaptation are required to match the 
model’s	 input	 and	 output,	 error	 acts	 as	 an	 index	 of	 infants’	 looking	
times	(Mareschal	&	French,	2000)	or,	more	broadly,	the	quality	of	an	
internal representation.

Self-	supervised	 autoencoder	 models	 are	 trained	 with	 the	 well-	
known	generalized	delta	 rule	 (Rumelhart,	Hinton,	&	Williams,	1986)	
with	the	special	case	that	input	and	target	are	the	same.	The	weight	
update rule of these models is:

(1)Δw=�(i−o)o(1−o)
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where Δw is the change of a weight after presentation of a stim-
ulus.	The	 first	 term,	 (i − o), describes the difference between the 
input	and	the	model’s	representation	of	this	input.	The	second	term,	
o(1 − o),	 is	 the	derivative	of	 the	 sigmoid	 activation	 function.	This	
term	is	minimal	for	output	values	near	0	or	1	and	maximal	for	o = 
0.5.	Because	(i − o) represents the discrepancy between the mod-
el’s input and its representation, and because learning in the model 
consists	of	reducing	this	discrepancy,	the	size	of	o(1	−	o) determines 
the amount the model can learn from a particular stimulus by con-
straining	 the	size	of	 the	discrepancy	 to	be	 reduced.	 In	 this	 sense,	
o(1 − o) reflects the plasticity of the learner, modulating its adapta-
tion	to	the	external	environment.	Finally,	η represents the model’s 
learning	rate.	The	amount	of	adaptation	is	thus	a	function	both	of	
the environment and the internal state of the learner.

Because	learning	in	neurocomputational	models	is	driven	by	the	
generalized	delta	rule,	we	propose	that	the	delta	rule	can	provide	a	
mechanistic	account	of	curiosity-	based	learning.	Specifically,	weight	
adaptation—learning—is proportional to (i	−	o)o(1 − o); that is, learn-
ing is greatest when (i	−	o)o(1 − o)	is	maximal.	If	curiosity	is	a	drive	
to	maximize	 learning,	 (i	−	o)o(1 − o) offers a mechanism for stimu-
lus	selection	to	maximize	learning:	a	curious	model	should	attempt	
to	maximize	 its	 learning	by	choosing	 stimuli	 for	which	 (i	−	o)o(1 − 
o)	 is	 greatest.	Below,	 in	 Experiment	2	we	 test	 this	 possibility	 in	 a	
model, and compare it against three alternative methods of stimulus 
selection.

1.5 | A test case: infant categorization

The	ability	to	categorize—or	respond	equivalently	to—discriminably	
different	aspects	of	the	world	is	central	to	human	cognition	(Bruner,	
Goodnow,	&	Austin,	1972).	Consequently,	the	development	of	this	
powerful	 skill	 has	 generated	 a	 great	 deal	 of	 interest,	 and	 a	 large	
body	 of	 research	 now	 demonstrates	 that	 infant	 categorization	
is	 flexible	 and	 affected	 by	 both	 existing	 knowledge	 and	 in-	the-	
moment	features	of	the	environment	(for	a	review,	see	Gershkoff-	
Stowe	&	Rakison,	2005).	Categorization	therefore	lends	itself	well	
to	testing	the	curiosity	mechanism	specified	above.	 In	Experiment	
1 we present a model that captures infants’ behavior in a recent 
categorization	 task	 in	 which	 the	 learning	 environment	was	 artifi-
cially	manipulated	(thus	examining	different	learning	environments	
in a controlled laboratory study in which infants do not select in-
formation	themselves).	Then,	in	Experiment	2	we	test	the	curiosity	
mechanism	by	“setting	the	model	free”,	allowing	it	to	choose	its	own	
stimuli.	We	compare	the	learner–environment	interaction	instanti-
ated in the curiosity mechanism against three alternative mecha-
nisms, and demonstrate that learning history and learning plasticity 
(i.e., the learner’s internal state) as well as in- the- moment input (i.e., 
the	 learning	 environment)	 are	 all	 necessary	 for	maximal	 learning.	
Taken	together,	 these	simulations	offer	an	explicit	and	parsimoni-
ous mechanism for curiosity- driven learning, providing new insight 
into	existing	empirical	findings,	and	generating	novel,	testable	pre-
dictions	for	future	work.

2  | EXPERIMENT 1

Early	evidence	for	 infants’	ability	 to	 form	categories	based	on	small	
variations in perceptual features came from an influential series 
of	 familiarization/novelty	 preference	 studies	 by	 Barbara	 Younger	
(Younger,	1985;	Younger	&	Cohen,	1983,	1986).	In	this	paradigm,	in-
fants	are	familiarized	with	a	series	of	related	stimuli—for	example,	an	
infant might see eight images of different cats, for 10 seconds each. 
Then,	 infants	are	presented	with	 two	new	 images	side-	by-	side,	one	
of which is a novel member of the just- seen category, and one of 
which	is	out-	of-	category.	For	example,	after	familiarization	with	cats,	
an	infant	might	see	a	new	cat	and	a	new	dog.	Based	on	their	novelty	
preference,	if	infants	look	for	longer	at	the	out-	of-	category	stimulus	
than	 the	within-	category	 stimulus	 the	 experimenter	 concludes	 that	
they	have	learned	a	category	during	familiarization	which	excludes	the	
out-	of-	category	item.	In	this	example,	longer	looking	at	the	dog	than	
the	cat	image	would	indicate	that	infants	had	formed	a	“cat”	category	
which	excluded	the	novel	dog	exemplar	(and	indeed,	they	do;	Quinn	
et al., 1993)

Younger	 (1985)	explored	whether	 infants	could	track	covariation	
of stimulus features and form a category based on this environmen-
tal	structure.	Ten-	month-	old	 infants	were	shown	a	series	of	pictures	
of	 novel	 animals	 (see	 Figure	1)	 that	 incorporated	 four	 features	 (ear	
separation,	 neck	 length,	 leg	 length	 and	 tail	 width)	 that	 could	 vary	
systematically	in	size	between	discrete	values	of	1	and	5.	At	test,	all	
children saw two simultaneously presented stimuli: one peripheral (a 
new	exemplar	with	extreme	feature	values)	and	one	category-	central	
(a	new	exemplar	with	 the	central	value	 for	each	 feature	dimension).	
Infants’	 increased	 looking	 times	 to	 the	peripheral	 stimulus	 indicated	
that they had learned a category that included the category- central 
stimulus.	 This	 study	 was	 one	 of	 the	 first	 to	 demonstrate	 the	 now	
much-	replicated	finding	that	infants’	categorization	is	highly	sensitive	
to	perceptual	variability	(e.g.,	Horst,	Oakes,	&	Madole,	2005;	Kovack-	
Lesh	&	Oakes,	 2007;	Quinn	 et	al.,	 1993;	 Rakison,	 2004;	 Rakison	&	
Butterworth,	1998;	Younger	&	Cohen,	1986).

The	target	empirical	data	for	the	first	simulation	are	from	a	recent	
extension	of	this	study	which	to	our	knowledge	has	not	yet	been	cap-
tured	 in	 a	 computational	model.	Mather	 and	Plunkett	 (2011;	hence-
forth	M&P)	explored	whether	the	order	in	which	a	single	set	of	stimuli	
was	presented	during	familiarization	would	affect	 infants’	categoriza-
tion.	They	trained	48	10-	month-	old	infants	with	the	eight	stimuli	from	
Younger	 (1985,	 E1).	Although	 all	 infants	 saw	 the	 same	 stimuli,	M&P	
manipulated the order in which stimuli were presented during the fa-
miliarization	phase	so	that	in	one	condition,	infants	saw	a	presentation	
order	which	maximized	perceptual	differences	across	the	stimulus	set,	
and	a	second	condition	which	minimized	overall	perceptual	differences.	
At	test,	all	infants	saw	two	simultaneously	presented	novel	stimuli,	in	
line	 with	 Younger	 (1985):	 one	 category-	central	 and	 one	 peripheral.	
M&P	 found	 that	 infants	 in	 the	maximum	distance	 condition	 showed	
an above- chance preference for the peripheral stimulus, while infants 
in	the	minimum	distance	condition	showed	no	preference.	Thus,	only	
infants	in	the	maximum	distance	condition	formed	a	category.
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M&P	theorized	that	if	stimuli	in	this	task	were	represented	in	a	“cat-
egory	 space”,	 then	 infants	 in	 the	maximum	 distance	 condition	would	
traverse	 greater	 distances	 during	 familiarization	 than	 infants	 in	 the	
minimum distance condition, leading to better learning. However, it is 
not clear from these empirical data how infants adjusted their repre-
sentations	according	to	the	different	presentation	regimes.	To	translate	
this	theory	into	mechanism,	we	used	an	autoencoder	network	to	simu-
late	M&P’s	task.	Closely	following	the	original	experimental	design,	we	
trained	our	model	with	stimulus	sets	in	which	presentation	order	max-
imized	and	minimized	successive	perceptual	distances.	To	enable	more	
fine- grained analyses we tested additional conditions with intermediate 
perceptual distances as well as randomly presented sequences (the 
usual	 case	 in	 familiarization/novelty	 preference	 studies	with	 infants).	
Like	M&P	we	then	tested	the	model	on	new	peripheral	and	category-	
central	stimuli.	Based	on	their	results,	we	expected	the	model	to	form	
the	 strongest	 category	 after	 training	with	maximum	 distance	 stimuli,	
then intermediate/random distance, and finally minimum distance.

2.1 | Model architecture

We	used	an	autoencoder	architecture	consisting	of	four	input	units,	
three	hidden	units,	and	four	output	units	 (Figure	2).	Each	 input	unit	

corresponded to one of the four features of the training stimuli (i.e., 
leg	length,	neck	length,	tail	thickness	and	ear	separation;	see	Figure	1).	
Hidden and output units used a sigmoidal activation function and 
weights	were	initialized	randomly.

2.2 | Stimuli

Stimuli	were	based	on	Younger’s	(1985)	animal	drawings	with	the	four	
features neck length, leg length, ear separation, and tail width. Individual 
stimuli	were	based	on	the	stimulus	dimensions	provided	in	Younger	
(1985,	E1,	Broad;	see	Figure	1).	For	each	feature,	these	values	were	
normalized	to	lie	between	0	and	1.	Each	stimulus	(that	is,	 input	or	 i) 
therefore consisted of a four- element vector in which each element 
represented the value for one of the four features. Model inputs were 
generated	in	an	identical	manner	to	the	stimulus	orders	used	by	M&P.	
We	calculated	all	possible	permutations	of	presentation	sequence	of	
the	eight	stimuli,	resulting	in	40,320	sequences.	In	line	with	M&P,	for	
each	sequence	we	calculated	 the	mean	Euclidean	distance	 (ED)	be-
tween	successive	stimuli.	This	resulted	in	a	single	overall	perceptual	
distance value for each sequence.

We	 created	 orders	 for	 the	 following	 four	 conditions	 based	 on	
mean	ED:

•	 Maximum	distance	(max;	cf.	M&P	maximum	distance):	24	sets	with	
the	largest	mean	ED

• Minimum distance (min;	cf.	M&P	minimum	distance):	24	sets	with	
the	smallest	mean	ED

• Medium distance (med):	 24	 sets	with	 an	 intermediate	 mean	 ED,	
specifically	 sets	20,149–20,172	when	 sets	 are	 sorted	 in	order	of	
distance	(set	20160	is	the	“median”	set)

• stimuli presented in random order

Test	sets	were	identical	across	conditions,	and	as	in	M&P	consisted	
of	two	category-	peripheral	stimuli	(new	exemplars	with	extreme	fea-
ture	values)	and	one	category-	central	stimulus	(a	new	exemplar	with	

F IGURE  1 Stimuli	used	in	Younger	(1985)	and	the	current	
simulations.	Adapted	from	Plunkett,	Hu	&	Cohen	(2008)	and	Mather	
&	Plunkett	(2011)	with	permission F IGURE  2 Model architecture
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the	central	value	for	each	feature	dimension;	see	Figure	1).	Neither	of	
these test stimuli was part of the training set.

2.3 | Procedure

During	training,	each	stimulus	was	presented	for	a	maximum	of	20	
sweeps	(weight	updates)	or	until	network	error	fell	below	a	threshold	
of	0.01	(Mareschal	&	French,	2000).	The	threshold	simulated	infants’	
looking	away	after	fully	encoding	the	present	stimulus.	To	obtain	an	
index	of	familiarization,	we	tested	the	model	with	the	entire	training	
set after each sweep (with no weight updating) and recorded sum 
squared error (SSE)	as	a	proxy	for	looking	time	(Mareschal	&	French,	
2000;	Westermann	&	Mareschal,	 2012,	 2014).	Order	 of	 presenta-
tion	 of	 training	 stimuli	 varied	 by	 condition	 (see	 Stimuli).	 Following	
M&P,	we	tested	the	model	with	three	novel	test	stimuli	(two	periph-
eral, one central), presented sequentially for a single sweep with no 
weight	 updates,	 and	 again	 recorded	 SSE.	 There	 were	 24	 separate	
models in each condition, reflecting the 24 participants in each con-
dition	of	M&P.

2.4 | Results and discussion

2.4.1 | Training trials

During	familiarization	infants	in	M&P	demonstrated	a	significant	de-
crease	in	looking	from	the	first	to	the	final	three-	trial	block.	For	the	
max	and	min	conditions	we	submitted	SSE	during	the	first	and	final	
three-	trial	blocks	to	a	2	(block:	first,	last;	within-	subjects)	×	2	(condi-
tion:	max,	min;	between-	subjects)	mixed	ANOVA.	In	line	with	M&P,	a	
main	effect	of	block	(F(1,	46)	=	97.35,	p < .0001, η2

G = .46) confirmed 
that	overall	SSE	decreased	from	the	first	block	(M	=	0.57,	SD = 0.11) 
to	 the	 final	block	 (M	=	0.54,	SD	=	0.11).	A	main	effect	of	condition	
(F(1,	46)	=	2079.12,	p < .0001, η2

G = .96) revealed that there was less 
error	overall	in	the	max	condition	(M	=	0.45,	SD = 0.03) than in the min 
condition (M = 0.66, SD	=	0.03).	Finally,	there	was	a	significant	block-	
by- condition interaction (F(1, 46) = 4.40, p = .041, η2

G = .03), which 
arose	from	a	greater	decrease	in	SSE	in	the	max	condition	(mean	de-
crease	=	0.045)	than	 in	the	min	condition	 (mean	decrease	=	0.030).	
Thus,	as	with	 the	 infants	 in	M&P,	 “looking”	 in	 the	model	decreased	
over training.

2.4.2 | Test trials

In	M&P,	increased	looking	to	the	peripheral	stimuli	at	test	was	taken	
as	evidence	that	infants	had	learned	a	category.	Again	using	SSE	as	a	
proxy	for	looking	time,	we	collapsed	our	analyses	across	the	two	pe-
ripheral	stimuli	(Mather	&	Plunkett,	2011),	and	calculated	proportion	
of	total	test	SSE	(i.e.,	target	looking	/	target	looking	+	distractor	look-
ing)	to	the	peripheral	stimulus,	as	depicted	in	Figure	3.	Wilcoxon	rank-	
sum tests against chance confirmed that in all conditions the model 
formed a category (all Vs = 300, all ps	<	 .001).	However,	a	Kruskal-	
Wallis	test	revealed	that	SSE	(and	therefore	robustness	of	categoriza-
tion) differed between conditions (H(3) = 80.13, p < .001). Post- hoc 

Wilcoxon	 tests	 (all	 Ws	 two-	tailed	 and	 Bonferroni-	corrected)	 con-
firmed	that	the	model	produced	more	SSE	in	the	max	condition	(Mdn 
= 0.99) than in the min condition (Mdn	=	0.76;	W	=	576,	p < .0001, r = 
−1.53),	the	med	condition	(Mdn	=	0.79;	W	=	576,	p < .0001, r	=	−1.53)	
or the random condition (Mdn = 0.83; W	=	575,	p < .0001, r	=	−1.51).	
All	other	between-	condition	differences	were	also	significant	(all	ps < 
.0001).	Note	that	although	infants	did	not	show	evidence	of	category	
formation	 in	M&P’s	minimum	distance	condition,	 the	authors	argue	
that these infants were in fact learning a category; since distances 
were smaller, these infants traversed less of the category space than 
their	peers	in	the	maximum	distance	condition,	and	their	category	rep-
resentations were therefore not sufficiently robust to be detected at 
test.	However,	our	model	data	are	less	variable	than	M&P’s	empirical	
data,	 likely	accounting	 for	our	detection	of	differences	where	M&P	
found null effects.

Overall,	 our	 results	 support	 M&P’s	 distance-	based	 account.	
We	make	 their	 theoretical	 category	 space	 explicit	 by	 implementing	
stimuli as feature vectors, which can be interpreted as locations in 
Euclidean	 space.	The	greater	overall	Euclidean	distances	 in	 the	max	
condition	 therefore	 force	 the	model	 to	 “travel”	 further	 from	 trial	 to	
trial.	Maximizing	overall	ED	leads	to	greater	error	early	in	training,	and	
therefore greater adaptation, resulting in stronger category learning 
overall.	The	model	 therefore	 explains	 how	manipulation	of	 stimulus	
order during training can lead to observed differences in learning at 
test.

In	 Experiment	 1	 (as	 in	M&P)	 the	 order	 of	 stimulus	 presenta-
tion	was	 fixed	 in	 each	 condition	 to	 control	 the	mean	 successive	
ED.	This	 approach	 created	 an	 artificially	 structured	 environment	
in which the model learned best from the inputs with the most 
inter-	stimulus	variation.	Taken	together,	the	empirical	and	compu-
tational data indicate that both infants and the model learn dif-
ferently in differently structured environments—even when those 
differences may seem minor, such as the order in which stimuli 

F IGURE  3 Proportion	SSE	to	peripheral	stimulus	at	test	in	
Experiment	1 
***p < .001

chance

***

*** ***
***

all between-condition differences ***
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are	experienced.	However,	Experiment	1	 reflected	artificially	op-
timized	 rather	 than	 curiosity-	based	 learning.	An	 important	 ques-
tion for research on curiosity- based learning is how a model that 
selects	 its	 own	 experiences	 structures	 its	 environment	 and	 how	
learning in this self- generated environment compares with learn-
ing	 in	 the	 artificially	 optimized	 environment	 in	 Experiment	 1.	
Thus,	 in	Experiment	2	we	allowed	the	model	to	choose	the	order	
in which it learned from stimuli based both on environmental and 
internal	factors.	Specifically,	in	line	with	theories	of	intrinsic	moti-
vation in which curiosity is triggered when a learner notices a dis-
crepancy between the environment and their representation (e.g., 
Loewenstein, 1994), the model scans the environment and then 
selects	 the	 stimulus	 that	maximizes	 a	 given	 function.	This	 learn-
ing	 is	 analogous	 to	 an	 infant	 looking	 at	 and	 processing	 an	 array	
of	 objects	 before	 choosing	 one	 to	 learn	 from.	We	 compared	 the	
curiosity- based learning discussed above with three alternative 
strategies	that	maximized	objective	complexity,	subjective	novelty,	
or plasticity at each learning step.

3  | EXPERIMENT 2

In	Experiment	2,	the	model	played	an	active	role	in	its	own	learning	by	
selecting	the	order	in	which	it	learned	from	stimuli.	We	explored	four	
possible mechanisms for stimulus selection.

3.1 | Model architecture and stimuli

Model architecture and parameters and stimuli were identical to 
those	used	 in	Experiment	1.	 Stimulus	 selection	proceeded	without	
replacement;	 thus,	as	 in	Experiment	1	 the	model	saw	exactly	eight	
stimuli.

3.2 | Procedure

The	 procedure	 used	 in	 Experiment	 2	 was	 identical	 to	 that	 used	 in	
Experiment	 1,	 with	 the	 exception	 that	 stimulus	 order	 was	 deter-
mined by the model based on the following four methods of stimulus 
selection.

3.2.1 | Curiosity

In the curiosity	condition	we	tested	our	formalization	of	infant	curios-
ity	based	on	the	delta	rule.	Specifically,	before	presentation	of	each	
stimulus, the model calculated (i − o)o(1 − o) for all possible stimuli 
where i = input values and o	=	output	values.	For	example,	after	pres-
entation of the first stimulus, the model calculated (i − o)o(1 − o) for 
each of the remaining seven stimuli, resulting in a set of seven poten-
tial	curiosity	values.	The	next	stimulus	chosen	as	input	to	the	model	
was that for which the absolute value of this curiosity function was 
maximal.	Critically,	weights	were	not	updated	after	this	stage,	simulat-
ing a novelty detection mechanism rather than the novelty reduction 
process of learning.

3.2.2 | Objective complexity maximization

M&P	used	Euclidean	distance	as	a	measure	of	 inter-	stimulus	novelty	
and	showed	that	maximizing	novelty	objectively	present	in	the	learn-
ing	 environment	 led	 to	 better	 learning	 than	minimizing	 this	 novelty.	
However,	 M&P	 selected	 the	 presentation	 orders	 in	 advance	 of	 the	
experiment	 so	 that	 the	max	 condition	maximized	mean	ED	between	
stimuli across the sequence as a whole. However, our model aimed 
to	provide	an	account	of	 in-	the-	moment	 information	selection.	Thus,	
in	 the	objective	 complexity	maximization	 condition,	 at	 each	 step	 the	
model	chose	the	stimulus	that	was	maximally	distant	(by	ED)	from	the	
current	 stimulus.	Complexity	 is	 therefore	 specifically	 implemented	 as	
ED	here.	In	this	condition	the	first	stimulus	was	chosen	randomly	and	
successive	stimuli	were	selected	so	that	the	next	stimulus	had	the	maxi-
mal	ED	(i.e.,	perceptual	distance)	from	the	currently	processed	stimulus.

3.2.3 | Subjective novelty maximization

In the subjective novelty maximization condition the model selected 
stimuli	by	maximizing	i − o, leading to the selection of a stimulus that 
was	maximally	 different	 from	 its	 representation	 in	 the	model.	 This	
mechanism	maximized	novelty	relative to the model’s learning history. 
Subjective	novelty	maximization	 therefore	 reflects	 prediction-	error-	
based computational reinforcement learning systems (for a review, 
see	Botvinick	et	al.,	2009;	 see	also	Ribas-	Fernandes	et	al.,	2011),	 in	
which	the	learner	seeks	out	learning	opportunities	that	maximize	the	
difference	between	expectation	and	observation.

3.2.4 | Plasticity maximization

Choosing stimuli based on o(1 − o)	minimizes	the	in-	the-	moment	effect	
of the environment (i) on the model’s learning by omitting (i − o). Put 
differently,	this	mechanism	maximizes	the	model’s	plasticity.	Thus,	in	
the plasticity maximization condition the model selected stimuli about 
which it was most ready to learn (disregarding how much it would 
actually be able to learn from that stimulus).

In	 all	 conditions	 the	 test	 phase	was	 exactly	 as	 in	 Experiment	 1,	
comparing	network	error	to	central	and	peripheral	stimuli	as	a	mea-
sure of strength of category learning.

3.3 | Results and discussion

Proportion	 of	 total	 SSE	 for	 peripheral	 test	 stimuli	 is	 depicted	 in	
Figure	4.	Wilcoxon	rank-	sum	tests	against	chance	(0.5)	confirmed	that	
the model formed a category in all conditions (all ps	<	 .001).	Active	
learning therefore led to category formation irrespective of the basis 
on	which	the	model	selected	stimuli.	A	Kruskal-	Wallis	test	revealed,	
however,	that	SSE	differed	between	conditions.	In	the	following	sec-
tion we discuss the differences between the four stimulus selection 
mechanisms.

Bonferroni-	corrected	Wilcox	tests	confirmed	that	the	model	learned	
best	in	the	curiosity	condition.	First,	the	model	learned	a	more	robust	
category in the curiosity condition (Mdn	=	0.97)	 than	 in	 the	objective	
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complexity	maximization	condition	(Mdn = 0.91; W	=	495,	p < .001, r = 
−0.92).	This	result	highlights	the	role	of	the	learner	in	the	learning	pro-
cess: when the model selected stimuli based solely on objective, envi-
ronmental	characteristics	it	learned	less	well	than	when	it	also	took	into	
account	its	own	internal	state	(learning	history).	The	curiosity	condition	
also	outperformed	the	subjective	novelty	maximization	condition	(Mdn 
=	0.77;	W	=	575,	p < .001, r	=	−1.51).	Here,	although	the	model’s	learned	
representations	were	taken	into	account	by	selecting	stimuli	for	which	
the difference between its representation (o) and the environment (i) 
were greatest in- the- moment, the longer- term effect of learning history, 
which	determines	the	model’s	readiness	to	learn,	was	ignored.	This	result	
demonstrates that the additional plasticity provided by the o(1	−	o) term 
was	necessary	for	maximal	learning;	omitting	this	term	affected	the	ex-
tent to which the model could adapt to its learning environment, reduc-
ing its ability to select stimuli that would lead to optimum information 
gain	with	respect	to	its	learning	history.	However,	maximizing	plasticity	
alone	is	not	sufficient	to	maximize	learning:	the	model	also	performed	
better	in	the	curiosity	condition	than	in	the	plasticity	maximization	con-
dition (Mdn	=	0.75,	W	=	575,	p < .001, r	=	−1.51).	Since	this	latter	mech-
anism ignores the in- the- moment effect of the environment this result 
suggests that while focusing solely on the environment is not the best 
strategy for active learning, ignoring how much can actually be learned 
from	a	stimulus	is	not	optimal	either.	Finally,	in	line	with	Experiment	1	
and	M&P,	the	objective	complexity	maximization	outperformed	the	sub-
jective	novelty	and	plasticity	maximization	conditions	(respectively,	W = 
564,	p < .0001, r	=	−1.37;	W	=	56,	p < .0001, r	=	−1.36),	further	high-
lighting the importance of environmental input; however, we found no 
difference	in	performance	between	the	subjective	novelty	maximization	

and	plasticity	maximization	 conditions	 (W = 318, p	 =	 .55,	 r	 =	−0.12).	
Overall,	then,	our	formalization	of	curiosity	maximized	learning	via	the	
dynamic interaction of plasticity, learning history, and in- the- moment 
environmental input.

Next,	we	were	 interested	 in	 the	 level	 of	 complexity	 of	 the	 se-
quences	 that	maximized	 learning	 in	 the	 curiosity	 condition.	 In	 the	
context	of	Experiment	1	and	M&P,	we	might	expect	 that	 the	curi-
ous	model	had	maximized	these	environmental	distances.	However,	
other	empirical	work	suggests	that	intermediate	difficulty	could	best	
support	 learning	 (Kidd	 et	al.,	 2012,	 2014;	 Kinney	 &	 Kagan,	 1976;	
Twomey	et	al.,	2014).	Equally,	simplicity	has	been	shown	to	support	
learning	 in	 some	cases	 (Bulf	et	al.,	 2011;	Son,	Smith,	&	Goldstone,	
2008).	To	help	make	sense	of	these	conflicting	results,	all	of	which	
come	 from	 experiments	with	 predetermined	 stimulus	 presentation	
orders,	we	analyzed	the	stimulus	sequences	generated	by	the	curi-
ous model. Overall, the model generated four different sequences 
out	of	 the	 total	 possible	40,320,	depicted	 in	Figure	5.	On	 the	one	
hand, these sequences are very similar; recall that the model selected 
stimuli without replacement, reducing the degrees of freedom as 
training	proceeded.	On	the	other	hand,	they	are	not	identical.	Their	
differences stem from the stochasticity provided to the model by the 
random	weight	initialization,	which	can	be	interpreted	as	differences	
between	participants	(Thomas	&	Karmiloff-	Smith,	2003).	Thus,	as	in	
human	data,	 the	model	data	exhibit	 individual	differences	underly-
ing	a	single	global	pattern	of	behavior.	Nonetheless,	since	the	model	
generated only four different sequences over 24 runs, this result also 
predicts that systematicity in infants’ curiosity- based learning should 
be relatively robust.

To	obtain	an	 index	of	 the	 level	of	complexity	of	 the	generated	
orders	we	 ranked	 the	 entire	 set	 of	 40,320	permutations	 by	mean	
overall	 ED,	 generating	 281	 unique	 values.	 Table	1	 provides	 these	
rankings	(higher	rank	=	greater	complexity)	for	the	sequences	chosen	
in	the	curiosity	condition.	The	curious	model	generated	sequences	
of	 intermediate	 objective	 complexity.	 However,	 these	 sequences	
were	not	of	average	complexity	 (i.e.,	 from	 ranks	around	140/281)	
but	were	 towards	 the	high	end	of	 the	 range.	To	explore	 this	 find-
ing	we	calculated	the	individual	successive	EDs	for	the	eight	stimuli	
in	each	of	the	four	sequences	and	ranked	these	according	to	their	
complexity	 (i.e.,	 a	 rank	of	 1	would	mean	 that	 the	model	 has	 cho-
sen	 the	maximally	different	next	 stimulus	 from	 the	 set	of	 remain-
ing	 stimuli).	These	 individual	 inter-	stimulus	distances	are	provided	
in	Table	2.	 Interestingly,	 the	model	 did	 not	 generate	 intermediate	
distances	at	every	learning	step.	Rather,	Table	2	illustrates	that	tak-
ing	 the	mean	overall	ED	masks	a	more	 interesting	behavior:	 in	 all	
sequences,	the	model	first	maximized	ED	(1/7)	 (cf.	M&P).	 In	three	
out	 of	 the	 four	 sequences	 the	model	 then	minimized	 the	 second	
ED	(6/6),	then	chose	an	intermediate	ED	(3/5)	and	maximized	EDs	
thereafter.	 Therefore,	when	measured	 in	 terms	 of	 objective	 com-
plexity,	 overall	 intermediate	 complexity	 arose	 from	 a	 combination	
of	maximally	complex,	minimally	complex	and	moderately	complex	
stimuli	at	different	stages	of	the	learning	process.	Why,	then,	should	
optimal	 intermediacy	be	shifted	towards	the	more	complex	end	of	
the	scale?	Figure	6	plots	the	curiosity	function	for	values	of	i and o 

F IGURE  4 Proportion	SSE	to	peripheral	stimulus	at	test	in	
Experiment	2 
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between 0 and 1 and illustrates that (i − o)o(1 − o) is minimal when 
(i − o)	is	zero,	and	maximal	when	(i	−	o)	is	around	0.7.	Thus,	learning	
is greatest when both plasticity and subjective novelty are interme-
diate, but shifted towards the higher end of the spectrum.

This	 striking	 novelty-	maximization–novelty-	minimization	 behavior	
emerges	 because	 curiosity-	driven	 learning	 maximizes	 subjective—not	
objective—novelty,	modulated	by	the	model’s	plasticity.	Specifically,	the	
model	is	initialized	randomly	without	prior	knowledge	about	the	to-	be-	
experienced	stimuli.	At	this	stage,	the	stimulus	most	similar	to	this	ran-
dom	representation	in	the	context	of	the	to-	be-	learned	category	would	
be	a	prototypical,	category-	central	stimulus.	At	first,	therefore,	the	model	
maximizes	 learning	 by	 choosing	 a	 category-	peripheral	 stimulus	 that	
is	 maximally	 different	 from	 its	 initial,	 random	 representation.	 Next,	 it	
chooses	the	stimulus	that	again	results	in	maximal	subjective	novelty—the	
other	category	peripheral	stimulus.	Now,	the	two	most	peripheral	cate-
gory stimuli, having just been encoded, are the most familiar to the model 
and	are	represented	discretely	at	the	extremes	of	the	category	space.	The	
stimulus	which	maximizes	subjective	novelty	should	be	as	equidistant	as	
possible between these two representations; that is, a category- central 

stimulus—and	 this	 is	what	 the	 model	 chooses.	 Thus,	 notwithstanding	
the	noise	inherent	in	the	initialization	of	the	model,	which	accounts	for	
its	choice	of	different	specific	orders,	broadly	the	model	explores	with	a	
“start	from	the	outside	and	move	in”	strategy	from	the	extremes	to	the	
prototype.	Note	 that	while	 the	model	predicts	 that	 infants	will	exhibit	
the	same	pattern	of	exploration	this	is	based	on	the	assumption	of	no	a	
priori	knowledge	at	the	start	of	learning.	Infants,	on	the	other	hand,	have	
learned	representations	by	10	months.	Whether	infants	will	exhibit	the	
same	pattern	of	exploration—and	whether	the	pattern	holds	in	different	
tasks	 involving	 truly	 free	 exploration—are	 exciting	 empirical	 questions	
which we are currently addressing.

Why,	then,	should	this	pattern	maximize	learning?	In	line	with	the	
empirical	infant	categorization	literature,	if	the	model	generates	more	
error	in	response	to	a	previously	unseen	peripheral	exemplar	relative	
to	a	previously	unseen	prototypical	exemplar,	we	assume	that	 it	has	
learned	 a	 category	 with	 the	 prototypical	 exemplar	 at	 its	 center.	 In	
M&P’s	conceptualization	of	category	learning,	exemplars,	represented	
as vectors, can be thought of as locations in representational space. 
Category learning is therefore a process of moving from location to 
location	within	this	space.	From	this	perspective,	the	order	 in	which	
the	curious	model	chooses	stimuli	maximizes	the	number	of	times	it	
traverses the central location in this space, resulting in strong encod-
ing	of	this	area	relative	to	weak	encoding	of	peripheral	stimuli.	More	
generally,	 the	 curiosity	 mechanism	 makes	 the	 intriguing	 prediction	
for	future	work	that	 infants	engaged	in	curiosity-	driven	learning	will	
switch	systematically	between	stimuli	of	maximum	and	minimum	ob-
jective	complexity.

F IGURE  5 Stimulus	orders	chosen	by	
curious model

Trial 1 2 3 4 5 6 7 8

Order 
A

1515 5151 5511 1155 2424 2244 4422 4242

Order 
B

1515 5151 5511 1155 4242 2424 4422 2244

Order 
C

1515 5151 2244 2424 5511 1155 4422 4242

Order 
D

1155 5511 4422 4242 5151 1515 2244 2424

TABLE  1 Rank	mean	Euclidean	distances	chosen	in	the	curiosity	
condition	of	Experiment	2

Rank mean ED Frequency/24

34/281 5

41/281 18

50/281 1



10 of 13  |     TWOMEY and WESTERMann

4  | GENERAL DISCUSSION

In	 the	 current	work	we	used	a	neurocomputational	model	 to	 first	
capture	the	effect	of	objective	environmental	complexity	on	infants’	
categorization,	 and	 then	 to	 offer	 an	 explicit	 account	 of	 curiosity-	
driven	 learning	 in	 human	 infants.	 In	 Experiment	 1	 we	 captured	
empirical	data	presented	by	Mather	and	Plunkett	 (2011),	 in	which	
10-	month-	old	 infants	 formed	 a	 robust	 category	when	 familiarized	
with	stimulus	sequences	that	maximized	overall	perceptual	distance,	
but	 not	 in	 sequences	which	minimized	 it.	 In	 Experiment	 2,	we	 al-
lowed	 the	model	 to	 take	an	active	 role	 in	 its	own	 learning	by	 let-
ting it select its own stimuli, comparing four different mechanisms 
for stimulus selection. Here, curiosity- based learning depended 
critically on the interaction between learning history, plasticity and 
the learning environment, allowing the model to choose stimuli for 
which	learning	was	maximal	at	the	given	point	of	the	model’s	devel-
opmental trajectory.

4.1 | Novelty is in the eye of the beholder

Our goal here was to develop a mechanistic theory of infants’ intrinsi-
cally	motivated—or	curiosity-	based—visual	exploration.	We	selected	
the autoencoder model and its learning mechanism based on their 
roots in psychological theory and their established success in cap-
turing	infants’	behavior	in	empirical	tasks.	Importantly,	the	proposed	
curiosity mechanism is theoretically compatible with classical optimal 
incongruity	approaches	(e.g.,	Hebb,	1949;	Kagan,	1972;	Loewenstein,	
1994;	Vygotsky,	1980).	According	 to	 these	 theories,	 learning	 is	op-
timal	 in	 environments	 of	 intermediate	 novelty.	 Typically,	 these	 ap-
proaches have interpreted this intermediacy as information that is 
neither too similar nor too different from what the learner has previ-
ously	encountered—as	seen	in	the	“Goldilocks”	effect	observed	in	re-
cent	empirical	work	(Kidd	et	al.,	2012,	2014).	Our	curiosity	mechanism	
offers a new perspective: what constitutes optimal novelty changes 
as	the	child	 learns.	Thus,	what	 is	 initially	 too	novel	 to	be	useful	be-
comes	a	more	suitable	input	as	learning	progresses.	The	model	makes	
this	process	explicit,	choosing	stimuli	 that	maximize	subjective	nov-
elty	as	modulated	by	its	plasticity.	The	optimal	learning	environment	
is	 therefore	 related	 to	 subjective	novelty,	 not	objective	 complexity.	

Critically,	 this	 insight	may	 explain	 the	 conflicts	 in	 the	 extant	 litera-
ture	in	which	infants	in	different	tasks	have	been	shown	to	learn	best	
from	minimally	novel	stimuli,	maximally	novel	stimuli,	and	stimuli	of	
intermediate novelty: the relationship between subjective novelty and 
objective	 complexity	 is	 nonlinear.	 That	 is,	 different	 levels	 of	 objec-
tive	complexity	could	provide	an	environment	of	maximal	subjective	
novelty, depending on the infant’s learning history. Developing robust 
methods	of	tapping	subjective	novelty	in	infant	looking	time	tasks,	in	
particular individual differences, is therefore critical to understanding 
the	complex	dynamics	of	early	learning.

These	simulations	offer	important	predictions	for	future	work	in	
infant	curiosity.	First,	the	model	shows	that	based	on	in-	the-	moment	
decisions about what aspect of the environment to learn from, learn-
ing	 can	 be	 maximal.	 Given	 recent	 work	 showing	 that	 infants	 can	
explicitly	structure	their	 learning	environment	by	asking	their	care-
givers	 for	 help	 (Goupil	 et	al.,	 2016),	 this	 suggests	 that	 infants	may	
also	 implicitly	 optimize	 their	 own	 learning	 (for	 an	 early	 empirical	
test	of	 this	predction,	 see	Twomey,	Malem,	&	Westermann,	2016).	
Second,	 in	 line	with	 looking	 time	 studies	 showing	 that	 infants	 se-
lect	 information	systematically	 (Kidd	et	al.,	2012,	2014),	 the	model	
chose	stimuli	of	 intermediate	objective	complexity.	However,	anal-
yses of the sequences chosen by the model predict that rather than 

Trial number

Order A (chosen 
× 1)

Order B (chosen 
× 5)

Order C (chosen 
× 11)

Order D (chosen 
× 7)

ED Rank ED Rank ED Rank ED Rank

1 – – – – – – – –

2 1.5885 1/7 1.5885 1/7 1.5885 1/7 1.5885 1/7

3 1.0974 3/6 1.0974 3/6 0.3971 6/6 0.3971 6/6

4 1.5885 1/5 1.5885 1/5 0.7942 3/5 0.7942 3/5

5 0.8717 3/4 0.904 2/4 0.904 1/4 0.904 1/4

6 0.5487 3/3 0.7942 1/3 1.5885 1/3 1.5885 1/3

7 0.7942 1/2 0.5742 1/2 1.1914 1/2 1.1914 1/2

8 0.5487 – 0.7942 – 0.7942 – 0.7942 –

TABLE  2 Euclidean	distances	(ED)	
between successive stimuli for sequences 
chosen in the curiosity condition of 
Experiment	2

F IGURE  6 Plot of the curiosity function, (i − o)o(1 − o)
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seeking	out	intermediate	complexity	at	each	learning	event,	infants	
may switch systematically between more and less objectively com-
plex	stimuli	in	the	pursuit	of	maximal	subjective	novelty.	Third,	then,	
our account goes further than classical theories in which curiosity is 
viewed	as	either	 a	novelty-	seeking	or	 a	novelty-	minimizing	behav-
ior (e.g., Loewenstein, 1994). Rather, our model predicts that infants’ 
visual	exploration	should	exhibit	both	novelty	seeking	and novelty- 
minimizing	 components	when novelty is viewed objectively, unifying 
these theories in a single mechanism.

4.2 | A new approach to computational curiosity in 
visual exploration

This	work	contributes	to	computational	research	in	intrinsic	motiva-
tion	by	modeling	curiosity	using	the	mechanisms	inherent	in	the	exist-
ing	model	based	on	in-	the-	moment,	 local	decision-	making	without	a	
separate, top- down system for monitoring learning progress and/or 
reward.	Existing	computational	and	robotic	systems	typically	simulate	
reward as generated by a discrete, engineered module that calculates 
a	reward	value	using	task-	specific	computations.	Our	model	departs	
from this approach, showing that domain- general mechanisms can 
produce the motivation to learn, performing a similar function to re-
ward	without	requiring	a	separate	module;	that	is,	in	our	model,	“re-
ward”	 is	part	of	 the	algorithm	 itself.	Overall,	 then	 the	current	work	
offers	an	explicit	implementation	of	curiosity	in	infants’	visual	explora-
tion, and offers a broader account of the cognitive mechanisms that 
may drive curiosity: learning that integrates a search for subjective 
novelty modulated by the learner’s plasticity. Here, intrinsically mo-
tivated	information	selection	emerges	from	within	the	model	by	ex-
ploiting	its	learning	mechanism	in	a	way	that	optimizes	the	reduction	
of	discrepancy	between	expectation	and	experience.

Overall, this neurocomputational model provides the first formal 
account of curiosity- based learning in human infants, integrating sub-
jective novelty and intrinsic motivation mechanisms in a single model. 
The	model	is	based	on	the	view	that	early	learning	is	an	active	process	in	
which infants select information to construct their own optimal learning 
environment, and it provides a parsimonious mechanism by which this 
learning	can	take	place.	Clearly,	our	model	is	restricted	to	visual	explo-
ration;	thus,	investigating	whether	these	mechanisms	generalize	to	em-
bodied	learning	situations	is	an	exciting	avenue	for	future	work.	Equally,	
it is possible that another one of the many potential mechanisms for 
intrinsically	 motivated	 learning	 may	 take	 over	 later	 in	 development,	
particularly once metacognition is established and language begins in 
earnest	(e.g.,	Gottlieb,	Oudeyer,	Lopes,	&	Baranes,	2013).	Nonetheless,	
the current implementation of curiosity not only provides novel insight 
into	infant	curiosity-	driven	category	learning	and	makes	predictions	for	
future	work	both	in	and	outside	the	lab,	but	also	offers	a	new	mechanis-
tic theory of early intrinsically motivated visual learning.

ACKNOWLEDGEMENTS

This	 work	 was	 supported	 by	 the	 ESRC	 International	 Centre	 for	
Language	 and	 Communicative	 Development	 (LuCiD),	 an	 ESRC	

Future	 Research	 Leaders	 fellowship	 to	 KT	 and	 a	 British	 Academy/
Leverhulme	 Trust	 Senior	 Research	 Fellowship	 to	GW.	 The	 support	
of	 the	 Economic	 and	 Social	 Research	 Council	 (ES/L008955/1;	 ES/
N01703X/1)	 is	gratefully	acknowledged.	Data	and	scripts	are	avail-
able on request from the authors. Portions of these data were pre-
sented	 at	 the	 2015	 5th	 International	 Conference	 on	 Development	
and	Learning	and	on	Epigenetic	Robotics,	Providence,	Rhode	Island,	
USA.

ORCID

Katherine E. Twomey  http://orcid.org/0000-0002-5077-2741 

Gert Westermann  http://orcid.org/0000-0003-2803-1872  

REFERENCES

Althaus,	 N.,	 &	 Mareschal,	 D.	 (2013).	 Modeling	 cross-	modal	 interac-
tions in early word learning. IEEE Transactions on Autonomous Mental 
Development, 5,	288–297.

Baldassarre,	G.,	Stafford,	T.,	Mirolli,	M.,	Redgrave,	P.,	Ryan,	R.M.,	&	Barto,	A.	
(2014). Intrinsic motivations and open- ended development in animals, 
humans,	and	robots:	An	overview.	Frontiers in Psychology, 5,	985.

Baranes,	 A.,	 &	 Oudeyer,	 P.-Y.	 (2013).	 Active	 learning	 of	 inverse	 models	
with	 intrinsically	 motivated	 goal	 exploration	 in	 robots.	 Robotics and 
Autonomous Systems, 61,	49–73.

Begus,	K.,	Gliga,	T.,	&	Southgate,	V.	 (2014).	 Infants	 learn	what	they	want	
to learn: Responding to infant pointing leads to superior learning. PLoS 
ONE, 9,	e108817.

Berlyne,	D.E.	(1960).	Conflict, arousal, and curiosity.	New	York:	McGraw-Hill.
Bornstein,	M.H.,	&	Mash,	C.	(2010).	Experience-	based	and	on-	line	catego-

rization	of	objects	in	early	infancy.	Child Development, 81,	884–897.
Botvinick,	M.M.,	Niv,	Y.,	&	Barto,	A.C.	(2009).	Hierarchically	organized	be-

havior	and	 its	neural	 foundations:	A	 reinforcement	 learning	perspec-
tive. Cognition, 113, 262–280.

Bruner,	J.D.,	Goodnow,	J.J.,	&	Austin,	G.A.	 (1972).	Categories	and	cogni-
tion.	 In	 J.P.	 Spradley	 (Ed.),	Culture and cognition	 (pp.	 168–190).	New	
York:	Chandler.

Bulf,	H.,	Johnson,	S.P.,	&	Valenza,	E.	(2011).	Visual	statistical	learning	in	the	
newborn infant. Cognition, 121,	127–132.

Capelier-Mourguy,	A.,	Twomey,	K.E.,	&	Westermann,	G.	(2016,	August).	A 
neurocomputational model of the effect of learned labels on infants’ object 
representations.	Poster	presented	at	the	38th	Annual	Cognitive	Science	
Society	Meeting,	Philadelphia,	PA.

Colunga,	E.,	&	Smith,	L.B.	(2003).	The	emergence	of	abstract	ideas:	Evidence	
from	networks	and	babies.	Philosophical Transactions of the Royal Society 
of London Series B- Biological Sciences, 358,	1205–1214.

Cottrell,	G.W.,	&	Fleming,	M.	(1990).	Face	recognition	using	unsupervised	
feature	 extraction.	 In	Proceedings of the International Neural Network 
Conference	(pp.	322–325),	Paris,	France.	Dordrecht:	Kluwer.

Fantz,	R.L.	(1964).	Visual	experience	in	infants:	Decreased	attention	famil-
iar patterns relative to novel ones. Science, 146,	668–670.

Fantz,	 R.L.,	 Ordy,	 J.M.,	 &	 Udelf,	 M.S.	 (1962).	 Maturation	 of	 pattern	 vi-
sion	in	infants	during	the	first	six	months.	Journal of Comparative and 
Physiological Psychology, 55,	907–917.

Ferguson,	 K.T.,	 Kulkofsky,	 S.,	 Cashon,	 C.H.,	 &	 Casasola,	 M.	 (2009).	 The	
development	 of	 specialized	 processing	 of	 own-	race	 faces	 in	 infancy.	
Infancy, 14, 263–284.

Frank,	M.,	Leitner,	J.,	Stollenga,	M.,	Förster,	A.,	&	Schmidhuber,	J.	 (2014).	
Curiosity driven reinforcement learning for motion planning on human-
oids. Frontiers in Neurorobotics, 7,	25.

French,	 R.M.,	 Mareschal,	 D.,	 Mermillod,	 M.,	 &	 Quinn,	 P.C.	 (2004).	
The	 role	 of	 bottom-	up	 processing	 in	 perceptual	 categorization	 by	

http://orcid.org/0000-0002-5077-2741
http://orcid.org/0000-0002-5077-2741
http://orcid.org/0000-0003-2803-1872
http://orcid.org/0000-0003-2803-1872


12 of 13  |     TWOMEY and WESTERMann

3-		to	4-	month-	old	infants:	Simulations	and	data.	Journal of Experimental 
Psychology: General, 133,	382–397.

Gershkoff-Stowe,	 L.,	&	Rakison,	D.H.	 (2005).	Building object categories in 
developmental time.	Mahwah,	NJ:	Psychology	Press.

Gliga,	T.,	Volein,	A.,	 &	Csibra,	G.	 (2010).	Verbal	 labels	modulate	 percep-
tual object processing in 1- year- old children. Journal of Cognitive 
Neuroscience, 22,	2781–2789.

Gliozzi,	V.,	Mayor,	J.,	Hu,	J.F.,	&	Plunkett,	K.	(2009).	Labels	as	features	(not	
names)	 for	 infant	 categorization:	 A	 neurocomputational	 approach.	
Cognitive Science, 33,	709–738.

Gottlieb,	J.,	Oudeyer,	P.-Y.,	Lopes,	M.,	&	Baranes,	A.	 (2013).	 Information-	
seeking,	 curiosity,	 and	 attention:	 Computational	 and	 neural	 mecha-
nisms. Trends in Cognitive Sciences, 17,	585–593.

Goupil,	L.,	Romand-Monnier,	M.,	&	Kouider,	S.	(2016).	Infants	ask	for	help	
when	they	know	they	don’t	know.	Proceedings of the National Academy 
of Sciences, USA, 113, 3492–3496.

Hebb, D. (1949). The organization of behavior: A neuropsychological theory. 
New	York:	Wiley.

Hinton,	G.E.,	&	Salakhutdinov,	R.R.	(2006).	Reducing	the	dimensionality	of	
data	with	neural	networks.	Science, 313,	504–507.

Horst,	J.S.,	Oakes,	L.M.,	&	Madole,	K.L.	(2005).	What	does	it	look	like	and	
what	can	it	do?	Category	structure	influences	how	infants	categorize.	
Child Development, 76, 614–631.

Hurley,	 K.B.,	 Kovack-Lesh,	 K.A.,	 &	Oakes,	 L.M.	 (2010).	 The	 influence	 of	
pets on infants’ processing of cat and dog images. Infant Behavior and 
Development, 33, 619–628.

Hurley,	K.B.,	&	Oakes,	L.M.	 (2015).	Experience	and	distribution	of	atten-
tion:	Pet	exposure	and	 infants’	 scanning	of	animal	 images.	Journal of 
Cognition and Development, 16, 11–30.

Kagan,	J.	(1972).	Motives	and	development.	Journal of Personality and Social 
Psychology, 22,	51–66.

Kidd,	C.,	&	Hayden,	B.Y.	(2015).	The	psychology	and	neuroscience	of	curi-
osity. Neuron, 88, 449–460.

Kidd,	C.,	Piantadosi,	S.T.,	&	Aslin,	R.N.	(2012).	The	Goldilocks	effect:	Human	
infants allocate attention to visual sequences that are neither too sim-
ple	nor	too	complex.	PLoS ONE, 7, e36399.

Kidd,	C.,	Piantadosi,	S.T.,	&	Aslin,	R.N.	(2014).	The	Goldilocks	effect	in	in-
fant auditory attention. Child Development, 85,	1795–1804.

Kinney,	D.K.,	&	Kagan,	J.	(1976).	Infant	attention	to	auditory	discrepancy.	
Child Development, 47,	155–164.

Kovack-Lesh,	K.A.,	McMurray,	B.,	&	Oakes,	 L.M.	 (2014).	 Four-	month-	old	
infants’	visual	investigation	of	cats	and	dogs:	Relations	with	pet	experi-
ence and attentional strategy. Developmental Psychology, 50, 402–413.

Kovack-Lesh,	 K.A.,	 &	Oakes,	 L.M.	 (2007).	 Hold	 your	 horses:	 How	 expo-
sure	 to	 different	 items	 influences	 infant	 categorization.	 Journal of 
Experimental Child Psychology, 98, 69–93.

Lefort,	M.,	&	Gepperth,	A.	(2015).	Active learning of local predictable represen-
tations with artificial curiosity.	Paper	presented	at	the	5th	International	
Conference	on	Development	and	Learning	and	on	Epigenetic	Robotics,	
Providence, RI.

Loewenstein,	G.	(1994).	The	psychology	of	curiosity:	A	review	and	reinter-
pretation. Psychological Bulletin, 116,	75–98.

Lonini,	L.,	Forestier,	S.,	Teulière,	C.,	Zhao,	Y.,	Shi,	B.E.,	&	Triesch,	J.	(2013).	
Robust active binocular vision through intrinsically motivated learning. 
Frontiers in Neurorobotics, 7, 20.

Mareschal,	D.,	 &	 French,	 R.	 (2000).	Mechanisms	 of	 categorization	 in	 in-
fancy. Infancy, 1,	59–76.

Mareschal,	D.,	&	Thomas,	M.S.C.	(2007).	Computational	modeling	in	devel-
opmental psychology. IEEE Transactions on Evolutionary Computation, 
11,	137–150.

Marsland,	S.,	Nehmzow,	U.,	&	Shapiro,	J.	(2005).	On-	line	novelty	detection	
for autonomous mobile robots. Robotics and Autonomous Systems, 51, 
191–206.

Mather,	 E.	 (2013).	 Novelty,	 attention,	 and	 challenges	 for	 developmental	
psychology. Frontiers in Psychology, 4, 491.

Mather,	E.,	&	Plunkett,	K.	 (2011).	Same	 items,	different	order:	Effects	of	
temporal	variability	on	infant	categorization.	Cognition, 119,	438–447.

Munakata,	Y.,	&	McClelland,	J.L.	(2003).	Connectionist	models	of	develop-
ment. Developmental Science, 6, 413–429.

Murakami,	M.,	Kroger,	B.,	Birkholz,	P.,	&	Triesch,	J.	 (2015).	Seeing [u] aids 
vocal learning: Babbling and imitation of vowels using a 3D vocal tract 
model, reinforcement learning, and reservoir computing. Paper presented 
at	the	5th	International	Conference	on	Development	and	Learning	and	
on	Epigenetic	Robotics,	Providence,	RI.

Oakes,	L.M.,	Kovack-Lesh,	K.A.,	&	Horst,	J.S.	 (2009).	Two	are	better	than	
one: Comparison influences infants’ visual recognition memory. Journal 
of Experimental Child Psychology, 104, 124–131.

Oudeyer,	P.-Y.,	&	Kaplan,	F.	(2007).	What	is	intrinsic	motivation?	A	typology	
of computational approaches. Frontiers in Neurorobotics, 1, 6.

Oudeyer,	P.-Y.,	Kaplan,	F.,	&	Hafner,	V.V.	(2007).	Intrinsic	motivation	systems	
for autonomous mental development. IEEE Transactions on Evolutionary 
Computation, 11	(2),	265–286.

Oudeyer,	 P.-Y.,	 &	 Smith,	 L.B.	 (2016).	 How	 evolution	 may	 work	 through	
curiosity- driven developmental process. Topics in Cognitive Science, 8, 
492–502.

Piaget,	 J.	 (1952).	The origins of intelligence in children	 (Vol.	 8).	New	York:	
International	University	Press.

Plunkett,	K.,	Sinha,	C.,	Møller,	M.F.,	&	Strandsby,	O.	(1992).	Symbol	ground-
ing	or	the	emergence	of	symbols?	Vocabulary	growth	in	children	and	a	
connectionist net. Connection Science, 4, 293–312.

Quinn,	P.C.,	Eimas,	P.D.,	&	Rosenkrantz,	S.L.	(1993).	Evidence	for	represen-
tations of perceptually similar natural categories by 3- month- old and 
4- month- old infants. Perception, 22,	463–475.

Rakison,	D.H.	(2004).	Infants’	sensitivity	to	correlations	between	static	and	
dynamic	 features	 in	a	 category	context.	 Journal of Experimental Child 
Psychology, 89, 1–30.

Rakison,	D.H.,	&	Butterworth,	G.E.	 (1998).	 Infants’	use	of	object	parts	 in	
early	categorization.	Developmental Psychology, 34, 49–62.

Rescorla,	R.A.,	&	Wagner,	A.R.	(1972).	A	theory	of	Pavlovian	conditioning:	
Variations	in	the	effectiveness	of	reinforcement	and	nonreinforcement.	
In	A.H.	 Black	 &	W.F.	 Prokasy	 (Eds.),	Classical Conditioning II: Current 
Research and Theory	(pp.	64–99).	New	York:	Appleton-Century-Crofts.

Ribas-Fernandes,	J.J.F.,	Solway,	A.,	Diuk,	C.,	McGuire,	J.T.,	Barto,	A.G.,	Niv,	
Y.,	&	Botvinick,	M.M.	 (2011).	A	neural	 signature	of	 hierarchical	 rein-
forcement learning. Neuron, 71,	370–379.

Rogers,	T.T.,	&	McClelland,	J.L.	(2008).	Precis	of	semantic	cognition:	A	par-
allel distributed processing approach. Behavioral and Brain Sciences, 31, 
689–749.

Rumelhart,	D.E.,	Hinton,	G.E.,	&	Williams,	R.J.	(1986).	Learning	representa-
tions	by	back-	propagating	errors.	Nature, 323,	533–536.

Schlesinger,	M.	 (2013).	 Investigating	the	origins	of	 intrinsic	motivation	 in	
human	 infants.	 In	G.	Baldassare	&	M.	Mirolli	 (Eds.),	 Intrinsically moti-
vated learning in natural and artificial systems	 (pp.	 367–392).	 Berlin:	
Springer.

Schlesinger,	M.,	&	Amso,	D.	(2013).	Image	free-	viewing	as	intrinsically-	
motivated	exploration:	Estimating	the	learnability	of	center-	of-	gaze	
image samples in infants and adults. Frontiers in Psychology, 4, 802.

Seepanomwan,	K.,	Caligiore,	D.,	Cangelosi,	A.,	&	Baldassarre,	G.	(2015).	The	
role	of	intrinsic	motivations	in	the	development	of	tool	use:	A	study	in	
infant robots. Cognitive Processing, 16,	S100–S100.

Sokolov,	 E.N.	 (1963).	 Perception and the conditioned reflex.	 New	 York:	
Macmillan.

Son,	J.Y.,	Smith,	L.B.,	&	Goldstone,	R.L.	 (2008).	Simplicity	and	generaliza-
tion:	 Short-	cutting	 abstraction	 in	 children’s	 object	 categorizations.	
Cognition, 108, 626–638.

Thelen,	E.,	&	Smith,	L.B.	(1994).	A dynamic systems approach to the develop-
ment of cognition and action.	Cambridge,	MA:	MIT	Press.

Thomas,	M.,	 &	 Karmiloff-Smith,	A.	 (2003).	 Connectionist	 models	 of	 de-
velopment, developmental disorders, and individual differences. 
In	 R.J.	 Sternberg,	 J.	 Lautrey	&	T.	 Lubart	 (Eds.),	Models of intelligence: 



     |  13 of 13TWOMEY and WESTERMann

International perspectives	 (pp.	 133–150).	Washington,	 DC:	 American	
Psychological	Association.

Twomey,	 K.E.,	 Malem,	 B.,	 &	 Westermann,	 G.	 (2016,	 May).	 Infants’	 in-
formation	 seeking	 in	 a	 category	 learning	 task.	 In	 In	 K.E.	 Twomey	
(chair), Understanding infants’ curiosity-based learning: Empirical and 
computational approaches.	 Symposium	 presented	 at	 the	 XX	 Biennial	
International	Conference	on	Infant	Studies,	New	Orleans,	LA.

Twomey,	K.E.,	Ranson,	S.L.,	&	Horst,	J.S.	(2014).	That’s	more	like	it:	Multiple	
exemplars	 facilitate	word	 learning.	 Infant and Child Development, 23, 
105–122.

Twomey,	K.E.,	&	Westermann,	G.	(2017).	Labels	shape	pre-	speech	infants’	
object representations. Infancy, https://doi.org/10.1111/infa.12201

Vygotsky,	L.S.	(1980).	Mind in society: The development of higher psychologi-
cal processes.	Cambridge,	MA:	Harvard	University	Press.

Westermann,	 G.,	 &	 Mareschal,	 D.	 (2004).	 From	 parts	 to	 wholes:	
Mechanisms of development in infant visual object processing. 
Infancy, 5,	131–151.

Westermann,	G.,	&	Mareschal,	D.	 (2012).	Mechanisms	of	developmental	
change	in	infant	categorization.	Cognitive Development, 27,	367–382.

Westermann,	 G.,	 &	Mareschal,	 D.	 (2014).	 From	 perceptual	 to	 language-	
mediated	categorization.	Philosophical Transactions of the Royal Society 
B: Biological Sciences, 369, 20120391.

Younger,	 B.A.	 (1985).	 The	 segregation	 of	 items	 into	 categories	 by	 ten-	
month- old infants. Child Development, 56,	1574–1583.

Younger,	 B.A.,	 &	 Cohen,	 L.B.	 (1983).	 Infant	 perception	 of	 correlations	
among attributes. Child Development, 54,	858–867.

Younger,	 B.A.,	 &	 Cohen,	 L.B.	 (1986).	 Developmental	 change	 in	 infants’	
perception of correlations among attributes. Child Development, 57, 
803–815.

How to cite this article:	Twomey	KE,	Westermann	G.	
Curiosity- based learning in infants: a neurocomputational 
approach. Dev Sci. 2018;21:e12629. https://doi.org/10.1111/
desc.12629

https://doi.org/10.1111/infa.12201
https://doi.org/10.1111/desc.12629
https://doi.org/10.1111/desc.12629

