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Abstract

Infants are curious learners who drive their own cognitive development by imposing 
structure on their learning environment as they explore. Understanding the mechanisms 
by which infants structure their own learning is therefore critical to our understanding of 
development. Here we propose an explicit mechanism for intrinsically motivated infor-
mation selection that maximizes learning. We first present a neurocomputational model 
of infant visual category learning, capturing existing empirical data on the role of envi-
ronmental complexity on learning. Next we “set the model free”, allowing it to select its 
own stimuli based on a formalization of curiosity and three alternative selection mecha-
nisms. We demonstrate that maximal learning emerges when the model is able to maxi-
mize stimulus novelty relative to its internal states, depending on the interaction across 
learning between the structure of the environment and the plasticity in the learner itself. 
We discuss the implications of this new curiosity mechanism for both existing computa-
tional models of reinforcement learning and for our understanding of this fundamental 
mechanism in early development.

RESEARCH HIGHLIGHTS

•	 We present a novel formalization of the mechanism underlying in-
fants’ curiosity-driven learning during visual exploration.

•	 We implement this mechanism in a neural network that captures 
empirical data from an infant visual categorization task.

•	 In the same model we test four potential selection mechanisms and 
show that learning is maximized when the model selects stimuli 
based on its learning history, its current plasticity and its learning 
environment.

• �The model offers new insight into how infants may drive their own 
learning.

1  | INTRODUCTION

For more than half a century, infants’ information selection has been 
documented in lab-based experiments. These carefully designed, rig-
orously controlled paradigms allow researchers to isolate a variable 

of interest while controlling for extraneous environmental influences, 
offering a fine-grained picture of the range of factors that affect early 
learning. Decades of developmental research have brought about a 
broad consensus that infants’ information selection and subsequent 
learning in empirical tasks are influenced by their existing representa-
tions, the learning environment, and discrepancies between the two 
(for a review, see Mather, 2013). On the one hand, there is substantial 
evidence that infants’ performance in these studies depends heav-
ily on the characteristics of the learning environment. For example, 
early work demonstrated that infants under 6 months of age prefer 
to look at patterned over homogenous grey stimuli (Fantz, Ordy, & 
Udelf, 1962), and in a seminal series of categorization experiments 
with 3-month-old infants, Quinn and colleagues demonstrated that 
the category representations infants form are directly related to 
the visual variability of the familiarization stimuli they see (Quinn, 
Eimas, & Rosenkrantz, 1993; see also Younger, 1985). More recently, 
4-month-old infants were shown to learn animal categories when fa-
miliarized with paired animal images, but not when presented with 
the same images individually (Oakes, Kovack-Lesh, & Horst, 2009; see 
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also Kovack-Lesh & Oakes, 2007). Thus, the representations infants 
learn depend on bottom-up perceptual information. Equally, however, 
infants’ existing knowledge has a profound effect on their behavior 
in these experiments. For example, while newborns respond equiva-
lently to images of faces irrespective of the race of those faces, by 
8 months infants show holistic processing of images of faces from 
their own race, but not of other-race faces, which they process fea-
turally (Ferguson, Kulkofsky, Cashon, & Casasola, 2009). Similarly, 
4-month-old infants with pets at home exhibit more sophisticated 
visual sampling of pet images than infants with no such experience 
(Hurley, Kovack-Lesh, & Oakes, 2010; Hurley & Oakes, 2015; Kovack-
Lesh, McMurray, & Oakes, 2014). Effects of learning history also 
emerge when infants’ experience is controlled experimentally. For 
example, after a week of training with one named and one unnamed 
novel object, 10-month-old infants exhibited increased visual sam-
pling of the previously named object in a subsequent silent looking-
time task (Twomey & Westermann, 2017; see also Bornstein & Mash, 
2010; Gliga, Volein, & Csibra, 2010). Thus, learning depends on the 
interaction between what infants encounter in-the-moment and what 
they know (Thelen & Smith, 1994).

1.1 | Active learning in curious infants

A long history of experiments, starting with Piaget’s (1952) notion of 
children as “little scientists”, has shown that children are more than pas-
sive observers; rather, they take an active role in constructing their own 
learning. Recent work demonstrates this active learning in infants also. 
For example, allowing 16-month-old infants to choose between two 
novel objects in an imitation task boosted their imitation of novel actions 
subsequently performed on the selected item (Begus, Gliga, & Southgate, 
2014). Similarly, in a pointing task, 20-month-old infants were more likely 
to elicit help from their caregivers in finding a hidden object when they 
were unable to see the hiding event than when they saw the object 
being hidden (Goupil, Romand-Monnier, & Kouider, 2016). Indeed, even 
younger infants systematically control their own learning: for example, 7- 
to 8-month-olds increased their visual sampling of a sequence of images 
when those images are moderately—but not maximally or minimally—
predictable (Kidd, Piantadosi, & Aslin, 2012; see also Kidd, Piantadosi, 
& Aslin, 2014). However, as a newly developing field active learning in 
infants is currently poorly understood (Kidd & Hayden, 2015).

Critically, outside the lab infants interact with their environment 
freely and largely autonomously, learning about stimuli in whichever 
order they choose (Oudeyer & Smith, 2016). This exploration is not 
driven by an external motivation such as finding food to satiate hun-
ger. Rather, it is intrinsically motivated (Baldassarre et al., 2014; Berlyne, 
1960; Oudeyer & Kaplan, 2007; Schlesinger, 2013): in the real world 
infants learn based on their own curiosity. Consequently, in construct-
ing their own learning environment, infants shape the knowledge they 
acquire. However, in the majority of studies on early cognitive devel-
opment, infants’ experience in a learning situation is fully specified by 
the experimenter, often through a preselected sequence of stimuli that 
are presented for fixed amounts of time. Thus, we currently know little 
about the cognitive processes underlying infants’ curiosity as a form of 

intrinsic motivation, or indeed the extent to which what infants learn 
from curiosity-driven exploration differs from what they learn in more 
constrained environments. Given that active exploration is at the heart 
of development, understanding how they construct their learning expe-
riences—and consequently, their mental representations—is fundamen-
tal to our understanding of development more broadly.

1.2 | Computational studies of intrinsic motivation

In contrast to the relative scarcity of research into infant curiosity, 
recent years have seen a surge in interest in the role of intrinsic mo-
tivation in autonomous computational systems. Equipping artificial 
learning systems with intrinsic motivation mechanisms is likely to be 
key to building autonomously intelligent systems (Baranes & Oudeyer, 
2013; Oudeyer, Kaplan, & Hafner, 2007), and consequently a rapidly 
expanding body of computational and robotic work now focuses on 
the intrinsic motivation mechanisms that may underlie a range of 
behaviors; for example, low-level perceptual encoding (Lonini et al., 
2013; Schlesinger & Amso, 2013), novelty detection (Marsland, 
Nehmzow, & Shapiro, 2005), and motion planning (Frank, Leitner, 
Stollenga, Förster, & Schmidhuber, 2014).

Computational work in intrinsic motivation has suggested a wide 
range of possible formal mechanisms for artificial curiosity-based learn-
ing (for a review, see Oudeyer & Kaplan, 2007). For example, curiosity 
could be underpinned by a drive to maximize learning progress by in-
teracting with the environment in a novel manner relative to previously 
encountered events (Oudeyer et al., 2007). Alternatively, curiosity could 
be driven by prediction mechanisms, allowing the system to engage in 
activities for which predictability is maximal (Lefort & Gepperth, 2015) 
or minimal (Botvinick, Niv, & Barto, 2009). Still other approaches as-
sume that curiosity involves maximizing a system’s competence or 
ability to perform a task (Murakami, Kroger, Birkholz, & Triesch, 2015). 
Although this computational work investigates numerous potential curi-
osity algorithms, it remains largely agnostic as to the psychological plau-
sibility of the implementation of those mechanisms (Oudeyer & Kaplan, 
2007). For example, many autonomous learning systems employ a sep-
arate “reward” module in which the size and timing of the reward are 
defined a priori by the modeler. Only recently has research highlighted 
the value of incorporating developmental constraints in curiosity-based 
computational and robotic learning systems (Oudeyer & Smith, 2016; 
Seepanomwan, Caligiore, Cangelosi, & Baldassarre, 2015). While this 
research shows great promise in incorporating developmentally inspired 
curiosity-driven learning mechanisms into artificial learning systems, a 
mechanism for curiosity in human infants has yet to be specified. The 
aim of this paper therefore is to develop a theory of curiosity-based 
learning in infants, and to implement these principles in a computational 
model of infant categorization.

1.3 | The importance of novelty to curiosity-
based learning

From very early in development, infants show a novelty preference; 
that is, they prefer new items to items they have already encountered 
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(Fantz, 1964; Sokolov, 1963). As infants explore an item, however, it 
becomes less novel; that is, the child habituates. During habituation, 
if a further new stimulus appears, and that stimulus is more novel 
to the infant than the currently attended item, the infant abandons 
the habituated item in favor of the new. Thus, novelty and curiosity 
are linked: broadly, increases in novelty elicit increases in attention 
and learning (although see e.g., Kidd et al., 2012, 2014, for evidence 
that excessive novelty leads to a decrease in attention). Here, we 
propose that curiosity in human infants consists of intrinsically mo-
tivated novelty minimization in which discrepancies between stimuli 
and existing internal representations of those stimuli are optimally 
reduced (see also Rescorla & Wagner, 1972; Sokolov, 1963).

On this view, infants will selectively attend to stimuli that best 
support this discrepancy minimization. However, to date there is no 
agreement in the empirical literature as to what an optimal learn-
ing environment might be. For example, Bulf, Johnson, and Valenza 
(2011) demonstrated that newborns learned from highly predictable 
sequences of visual stimuli, but not from less predictable sequences. 
In contrast, 10-month-old infants in a categorization task formed a 
robust category when familiarized with novel stimuli in an order that 
maximized, but not minimized, overall perceptual differences between 
successive stimuli (Mather & Plunkett, 2011). Still other studies have 
uncovered a “Goldilocks” effect in which learning is optimal when 
stimuli are of intermediate predictability (Kidd et al., 2012, 2014; see 
also Kinney & Kagan, 1976; Twomey, Ranson, & Horst, 2014). From 
this perspective, the degree of novelty and/or complexity in the envi-
ronment that best supports learning is unclear.

Across these studies, novelty and complexity are operational-
ized differently; for example, as objective environmental predictability 
(Kidd et al., 2012, 2014), or objective perceptual differences (Mather & 
Plunkett, 2011). In contrast, in the current work we emphasize that for 
infants who are engaged in curiosity-driven learning, novelty is not a 
fixed environmental quantity but is highly subjective, depending on both 
perceptual environmental characteristics and what the learner knows. 
Importantly, each infant has a different learning history which can affect 
their exploratory behavior. For example, infant A plays with blocks at 
home and has substantial experience with stacking cube shapes. Infant 
B’s favorite toy is a rattle, and she is familiar with the noise it makes 
when shaken. Consequently, the blocks at nursery will be more novel to 
infant B, and the rattle more novel to infant A. On this view, novelty is 
separate from any objective measure of stimulus complexity; for exam-
ple, sequence predictability or differences in visual features (Kidd et al., 
2012, 2014; Mather & Plunkett, 2011). Thus, a fully specified theory of 
curiosity-driven learning must explicitly characterize this subjective nov-
elty based both on the learner’s internal representations (what infants 
know) and the learning environment (what infants experience). In the 
following paragraphs we provide a mechanistic account of this learner–
environment interaction using a neurocomputational model.

1.4 | Computational mechanisms for infant curiosity

Computational models have been widely used to investigate 
various cognitive processes, lending themselves in particular to 

capturing early developmental phenomena such as category learn-
ing (e.g., Althaus & Mareschal, 2013; Colunga & Smith, 2003; Gliozzi, 
Mayor, Hu, & Plunkett, 2009; Mareschal & French, 2000; Mareschal & 
Thomas, 2007; Munakata & McClelland, 2003; Rogers & McClelland, 
2008; Westermann & Mareschal, 2004, 2012, 2014). Here we take 
a connectionist or neurocomputational approach in which abstract 
simulations of biological neural networks are used to implement and 
explore theories of cognitive processes in an explicit way, offering 
process-based accounts of known phenomena and generating predic-
tions about novel behaviors. Neurocomputational models employ a 
network of simple processing units to simulate the learner situated 
and acting in its environment. Inputs reflect the task environment of 
interest, and can have important effects across representational de-
velopment. Like learning in infants, learning in these models emerges 
from the interaction between learner and environment. Thus, neu-
rocomputational models are well suited to implementing and testing 
developmental theories.

In the current work we employed autoencoder networks: ar-
tificial neural networks in which the input and the output are the 
same (Cottrell & Fleming, 1990; Hinton & Salakhutdinov, 2006; see 
Figure 2). These models have successfully captured a range of results 
from infant category learning tasks (Capelier-Mourguy, Twomey, & 
Westermann, 2016; French, Mareschal, Mermillod, & Quinn, 2004; 
Mareschal & French, 2000; Plunkett, Sinha, Møller, & Strandsby, 1992; 
Westermann & Mareschal, 2004, 2012, 2014). Autoencoders imple-
ment Sokolov’s (1963) influential account of novelty orienting in which 
an infant fixates a novel stimulus to compare it with its mental repre-
sentation. While attending to the stimulus the infant adjusts this inter-
nal representation until the two match. At this point the infant looks 
away from the stimulus, switching attention elsewhere. Therefore, the 
more novel a stimulus, the longer fixation time will be. Similarly, au-
toencoder models receive an external stimulus on their input layer, 
and aim to reproduce this input on the output layer via a hidden layer. 
Specifically, an input representation is presented to the model via acti-
vation of a layer of input nodes. This activation flows through a set of 
weighted connections to the hidden layer. Inputs to each hidden layer 
unit are summed and this value passed through a typically sigmoid 
activation function. The values on the hidden units are then passed 
through the weighted connections to the output layer. Again, inputs 
to each output node are summed and passed through the activation 
function, generating the model’s output representation. Learning is 
achieved by adapting connection weights to minimize error, that is, the 
discrepancy between the input and output representations. Because 
multiple iterations of weight adaptation are required to match the 
model’s input and output, error acts as an index of infants’ looking 
times (Mareschal & French, 2000) or, more broadly, the quality of an 
internal representation.

Self-supervised autoencoder models are trained with the well-
known generalized delta rule (Rumelhart, Hinton, & Williams, 1986) 
with the special case that input and target are the same. The weight 
update rule of these models is:

(1)Δw=�(i−o)o(1−o)
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where Δw is the change of a weight after presentation of a stim-
ulus. The first term, (i − o), describes the difference between the 
input and the model’s representation of this input. The second term, 
o(1 − o), is the derivative of the sigmoid activation function. This 
term is minimal for output values near 0 or 1 and maximal for o = 
0.5. Because (i − o) represents the discrepancy between the mod-
el’s input and its representation, and because learning in the model 
consists of reducing this discrepancy, the size of o(1 − o) determines 
the amount the model can learn from a particular stimulus by con-
straining the size of the discrepancy to be reduced. In this sense, 
o(1 − o) reflects the plasticity of the learner, modulating its adapta-
tion to the external environment. Finally, η represents the model’s 
learning rate. The amount of adaptation is thus a function both of 
the environment and the internal state of the learner.

Because learning in neurocomputational models is driven by the 
generalized delta rule, we propose that the delta rule can provide a 
mechanistic account of curiosity-based learning. Specifically, weight 
adaptation—learning—is proportional to (i − o)o(1 − o); that is, learn-
ing is greatest when (i − o)o(1 − o) is maximal. If curiosity is a drive 
to maximize learning, (i − o)o(1 − o) offers a mechanism for stimu-
lus selection to maximize learning: a curious model should attempt 
to maximize its learning by choosing stimuli for which (i − o)o(1 − 
o) is greatest. Below, in Experiment 2 we test this possibility in a 
model, and compare it against three alternative methods of stimulus 
selection.

1.5 | A test case: infant categorization

The ability to categorize—or respond equivalently to—discriminably 
different aspects of the world is central to human cognition (Bruner, 
Goodnow, & Austin, 1972). Consequently, the development of this 
powerful skill has generated a great deal of interest, and a large 
body of research now demonstrates that infant categorization 
is flexible and affected by both existing knowledge and in-the-
moment features of the environment (for a review, see Gershkoff-
Stowe & Rakison, 2005). Categorization therefore lends itself well 
to testing the curiosity mechanism specified above. In Experiment 
1 we present a model that captures infants’ behavior in a recent 
categorization task in which the learning environment was artifi-
cially manipulated (thus examining different learning environments 
in a controlled laboratory study in which infants do not select in-
formation themselves). Then, in Experiment 2 we test the curiosity 
mechanism by “setting the model free”, allowing it to choose its own 
stimuli. We compare the learner–environment interaction instanti-
ated in the curiosity mechanism against three alternative mecha-
nisms, and demonstrate that learning history and learning plasticity 
(i.e., the learner’s internal state) as well as in-the-moment input (i.e., 
the learning environment) are all necessary for maximal learning. 
Taken together, these simulations offer an explicit and parsimoni-
ous mechanism for curiosity-driven learning, providing new insight 
into existing empirical findings, and generating novel, testable pre-
dictions for future work.

2  | EXPERIMENT 1

Early evidence for infants’ ability to form categories based on small 
variations in perceptual features came from an influential series 
of familiarization/novelty preference studies by Barbara Younger 
(Younger, 1985; Younger & Cohen, 1983, 1986). In this paradigm, in-
fants are familiarized with a series of related stimuli—for example, an 
infant might see eight images of different cats, for 10 seconds each. 
Then, infants are presented with two new images side-by-side, one 
of which is a novel member of the just-seen category, and one of 
which is out-of-category. For example, after familiarization with cats, 
an infant might see a new cat and a new dog. Based on their novelty 
preference, if infants look for longer at the out-of-category stimulus 
than the within-category stimulus the experimenter concludes that 
they have learned a category during familiarization which excludes the 
out-of-category item. In this example, longer looking at the dog than 
the cat image would indicate that infants had formed a “cat” category 
which excluded the novel dog exemplar (and indeed, they do; Quinn 
et al., 1993)

Younger (1985) explored whether infants could track covariation 
of stimulus features and form a category based on this environmen-
tal structure. Ten-month-old infants were shown a series of pictures 
of novel animals (see Figure 1) that incorporated four features (ear 
separation, neck length, leg length and tail width) that could vary 
systematically in size between discrete values of 1 and 5. At test, all 
children saw two simultaneously presented stimuli: one peripheral (a 
new exemplar with extreme feature values) and one category-central 
(a new exemplar with the central value for each feature dimension). 
Infants’ increased looking times to the peripheral stimulus indicated 
that they had learned a category that included the category-central 
stimulus. This study was one of the first to demonstrate the now 
much-replicated finding that infants’ categorization is highly sensitive 
to perceptual variability (e.g., Horst, Oakes, & Madole, 2005; Kovack-
Lesh & Oakes, 2007; Quinn et al., 1993; Rakison, 2004; Rakison & 
Butterworth, 1998; Younger & Cohen, 1986).

The target empirical data for the first simulation are from a recent 
extension of this study which to our knowledge has not yet been cap-
tured in a computational model. Mather and Plunkett (2011; hence-
forth M&P) explored whether the order in which a single set of stimuli 
was presented during familiarization would affect infants’ categoriza-
tion. They trained 48 10-month-old infants with the eight stimuli from 
Younger (1985, E1). Although all infants saw the same stimuli, M&P 
manipulated the order in which stimuli were presented during the fa-
miliarization phase so that in one condition, infants saw a presentation 
order which maximized perceptual differences across the stimulus set, 
and a second condition which minimized overall perceptual differences. 
At test, all infants saw two simultaneously presented novel stimuli, in 
line with Younger (1985): one category-central and one peripheral. 
M&P found that infants in the maximum distance condition showed 
an above-chance preference for the peripheral stimulus, while infants 
in the minimum distance condition showed no preference. Thus, only 
infants in the maximum distance condition formed a category.



     |  5 of 13TWOMEY and WESTERMANN

M&P theorized that if stimuli in this task were represented in a “cat-
egory space”, then infants in the maximum distance condition would 
traverse greater distances during familiarization than infants in the 
minimum distance condition, leading to better learning. However, it is 
not clear from these empirical data how infants adjusted their repre-
sentations according to the different presentation regimes. To translate 
this theory into mechanism, we used an autoencoder network to simu-
late M&P’s task. Closely following the original experimental design, we 
trained our model with stimulus sets in which presentation order max-
imized and minimized successive perceptual distances. To enable more 
fine-grained analyses we tested additional conditions with intermediate 
perceptual distances as well as randomly presented sequences (the 
usual case in familiarization/novelty preference studies with infants). 
Like M&P we then tested the model on new peripheral and category-
central stimuli. Based on their results, we expected the model to form 
the strongest category after training with maximum distance stimuli, 
then intermediate/random distance, and finally minimum distance.

2.1 | Model architecture

We used an autoencoder architecture consisting of four input units, 
three hidden units, and four output units (Figure 2). Each input unit 

corresponded to one of the four features of the training stimuli (i.e., 
leg length, neck length, tail thickness and ear separation; see Figure 1). 
Hidden and output units used a sigmoidal activation function and 
weights were initialized randomly.

2.2 | Stimuli

Stimuli were based on Younger’s (1985) animal drawings with the four 
features neck length, leg length, ear separation, and tail width. Individual 
stimuli were based on the stimulus dimensions provided in Younger 
(1985, E1, Broad; see Figure 1). For each feature, these values were 
normalized to lie between 0 and 1. Each stimulus (that is, input or i) 
therefore consisted of a four-element vector in which each element 
represented the value for one of the four features. Model inputs were 
generated in an identical manner to the stimulus orders used by M&P. 
We calculated all possible permutations of presentation sequence of 
the eight stimuli, resulting in 40,320 sequences. In line with M&P, for 
each sequence we calculated the mean Euclidean distance (ED) be-
tween successive stimuli. This resulted in a single overall perceptual 
distance value for each sequence.

We created orders for the following four conditions based on 
mean ED:

•	 Maximum distance (max; cf. M&P maximum distance): 24 sets with 
the largest mean ED

•	 Minimum distance (min; cf. M&P minimum distance): 24 sets with 
the smallest mean ED

•	 Medium distance (med): 24 sets with an intermediate mean ED, 
specifically sets 20,149–20,172 when sets are sorted in order of 
distance (set 20160 is the “median” set)

•	 stimuli presented in random order

Test sets were identical across conditions, and as in M&P consisted 
of two category-peripheral stimuli (new exemplars with extreme fea-
ture values) and one category-central stimulus (a new exemplar with 

F IGURE  1 Stimuli used in Younger (1985) and the current 
simulations. Adapted from Plunkett, Hu & Cohen (2008) and Mather 
& Plunkett (2011) with permission F IGURE  2 Model architecture
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the central value for each feature dimension; see Figure 1). Neither of 
these test stimuli was part of the training set.

2.3 | Procedure

During training, each stimulus was presented for a maximum of 20 
sweeps (weight updates) or until network error fell below a threshold 
of 0.01 (Mareschal & French, 2000). The threshold simulated infants’ 
looking away after fully encoding the present stimulus. To obtain an 
index of familiarization, we tested the model with the entire training 
set after each sweep (with no weight updating) and recorded sum 
squared error (SSE) as a proxy for looking time (Mareschal & French, 
2000; Westermann & Mareschal, 2012, 2014). Order of presenta-
tion of training stimuli varied by condition (see Stimuli). Following 
M&P, we tested the model with three novel test stimuli (two periph-
eral, one central), presented sequentially for a single sweep with no 
weight updates, and again recorded SSE. There were 24 separate 
models in each condition, reflecting the 24 participants in each con-
dition of M&P.

2.4 | Results and discussion

2.4.1 | Training trials

During familiarization infants in M&P demonstrated a significant de-
crease in looking from the first to the final three-trial block. For the 
max and min conditions we submitted SSE during the first and final 
three-trial blocks to a 2 (block: first, last; within-subjects) × 2 (condi-
tion: max, min; between-subjects) mixed ANOVA. In line with M&P, a 
main effect of block (F(1, 46) = 97.35, p < .0001, η2

G = .46) confirmed 
that overall SSE decreased from the first block (M = 0.57, SD = 0.11) 
to the final block (M = 0.54, SD = 0.11). A main effect of condition 
(F(1, 46) = 2079.12, p < .0001, η2

G = .96) revealed that there was less 
error overall in the max condition (M = 0.45, SD = 0.03) than in the min 
condition (M = 0.66, SD = 0.03). Finally, there was a significant block-
by-condition interaction (F(1, 46) = 4.40, p = .041, η2

G = .03), which 
arose from a greater decrease in SSE in the max condition (mean de-
crease = 0.045) than in the min condition (mean decrease = 0.030). 
Thus, as with the infants in M&P, “looking” in the model decreased 
over training.

2.4.2 | Test trials

In M&P, increased looking to the peripheral stimuli at test was taken 
as evidence that infants had learned a category. Again using SSE as a 
proxy for looking time, we collapsed our analyses across the two pe-
ripheral stimuli (Mather & Plunkett, 2011), and calculated proportion 
of total test SSE (i.e., target looking / target looking + distractor look-
ing) to the peripheral stimulus, as depicted in Figure 3. Wilcoxon rank-
sum tests against chance confirmed that in all conditions the model 
formed a category (all Vs = 300, all ps < .001). However, a Kruskal-
Wallis test revealed that SSE (and therefore robustness of categoriza-
tion) differed between conditions (H(3) = 80.13, p < .001). Post-hoc 

Wilcoxon tests (all Ws two-tailed and Bonferroni-corrected) con-
firmed that the model produced more SSE in the max condition (Mdn 
= 0.99) than in the min condition (Mdn = 0.76; W = 576, p < .0001, r = 
−1.53), the med condition (Mdn = 0.79; W = 576, p < .0001, r = −1.53) 
or the random condition (Mdn = 0.83; W = 575, p < .0001, r = −1.51). 
All other between-condition differences were also significant (all ps < 
.0001). Note that although infants did not show evidence of category 
formation in M&P’s minimum distance condition, the authors argue 
that these infants were in fact learning a category; since distances 
were smaller, these infants traversed less of the category space than 
their peers in the maximum distance condition, and their category rep-
resentations were therefore not sufficiently robust to be detected at 
test. However, our model data are less variable than M&P’s empirical 
data, likely accounting for our detection of differences where M&P 
found null effects.

Overall, our results support M&P’s distance-based account. 
We make their theoretical category space explicit by implementing 
stimuli as feature vectors, which can be interpreted as locations in 
Euclidean space. The greater overall Euclidean distances in the max 
condition therefore force the model to “travel” further from trial to 
trial. Maximizing overall ED leads to greater error early in training, and 
therefore greater adaptation, resulting in stronger category learning 
overall. The model therefore explains how manipulation of stimulus 
order during training can lead to observed differences in learning at 
test.

In Experiment 1 (as in M&P) the order of stimulus presenta-
tion was fixed in each condition to control the mean successive 
ED. This approach created an artificially structured environment 
in which the model learned best from the inputs with the most 
inter-stimulus variation. Taken together, the empirical and compu-
tational data indicate that both infants and the model learn dif-
ferently in differently structured environments—even when those 
differences may seem minor, such as the order in which stimuli 

F IGURE  3 Proportion SSE to peripheral stimulus at test in 
Experiment 1 
***p < .001

chance

***

*** ***
***

all between-condition differences ***
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are experienced. However, Experiment 1 reflected artificially op-
timized rather than curiosity-based learning. An important ques-
tion for research on curiosity-based learning is how a model that 
selects its own experiences structures its environment and how 
learning in this self-generated environment compares with learn-
ing in the artificially optimized environment in Experiment 1. 
Thus, in Experiment 2 we allowed the model to choose the order 
in which it learned from stimuli based both on environmental and 
internal factors. Specifically, in line with theories of intrinsic moti-
vation in which curiosity is triggered when a learner notices a dis-
crepancy between the environment and their representation (e.g., 
Loewenstein, 1994), the model scans the environment and then 
selects the stimulus that maximizes a given function. This learn-
ing is analogous to an infant looking at and processing an array 
of objects before choosing one to learn from. We compared the 
curiosity-based learning discussed above with three alternative 
strategies that maximized objective complexity, subjective novelty, 
or plasticity at each learning step.

3  | EXPERIMENT 2

In Experiment 2, the model played an active role in its own learning by 
selecting the order in which it learned from stimuli. We explored four 
possible mechanisms for stimulus selection.

3.1 | Model architecture and stimuli

Model architecture and parameters and stimuli were identical to 
those used in Experiment 1. Stimulus selection proceeded without 
replacement; thus, as in Experiment 1 the model saw exactly eight 
stimuli.

3.2 | Procedure

The procedure used in Experiment 2 was identical to that used in 
Experiment 1, with the exception that stimulus order was deter-
mined by the model based on the following four methods of stimulus 
selection.

3.2.1 | Curiosity

In the curiosity condition we tested our formalization of infant curios-
ity based on the delta rule. Specifically, before presentation of each 
stimulus, the model calculated (i − o)o(1 − o) for all possible stimuli 
where i = input values and o = output values. For example, after pres-
entation of the first stimulus, the model calculated (i − o)o(1 − o) for 
each of the remaining seven stimuli, resulting in a set of seven poten-
tial curiosity values. The next stimulus chosen as input to the model 
was that for which the absolute value of this curiosity function was 
maximal. Critically, weights were not updated after this stage, simulat-
ing a novelty detection mechanism rather than the novelty reduction 
process of learning.

3.2.2 | Objective complexity maximization

M&P used Euclidean distance as a measure of inter-stimulus novelty 
and showed that maximizing novelty objectively present in the learn-
ing environment led to better learning than minimizing this novelty. 
However, M&P selected the presentation orders in advance of the 
experiment so that the max condition maximized mean ED between 
stimuli across the sequence as a whole. However, our model aimed 
to provide an account of in-the-moment information selection. Thus, 
in the objective complexity maximization condition, at each step the 
model chose the stimulus that was maximally distant (by ED) from the 
current stimulus. Complexity is therefore specifically implemented as 
ED here. In this condition the first stimulus was chosen randomly and 
successive stimuli were selected so that the next stimulus had the maxi-
mal ED (i.e., perceptual distance) from the currently processed stimulus.

3.2.3 | Subjective novelty maximization

In the subjective novelty maximization condition the model selected 
stimuli by maximizing i − o, leading to the selection of a stimulus that 
was maximally different from its representation in the model. This 
mechanism maximized novelty relative to the model’s learning history. 
Subjective novelty maximization therefore reflects prediction-error-
based computational reinforcement learning systems (for a review, 
see Botvinick et al., 2009; see also Ribas-Fernandes et al., 2011), in 
which the learner seeks out learning opportunities that maximize the 
difference between expectation and observation.

3.2.4 | Plasticity maximization

Choosing stimuli based on o(1 − o) minimizes the in-the-moment effect 
of the environment (i) on the model’s learning by omitting (i − o). Put 
differently, this mechanism maximizes the model’s plasticity. Thus, in 
the plasticity maximization condition the model selected stimuli about 
which it was most ready to learn (disregarding how much it would 
actually be able to learn from that stimulus).

In all conditions the test phase was exactly as in Experiment 1, 
comparing network error to central and peripheral stimuli as a mea-
sure of strength of category learning.

3.3 | Results and discussion

Proportion of total SSE for peripheral test stimuli is depicted in 
Figure 4. Wilcoxon rank-sum tests against chance (0.5) confirmed that 
the model formed a category in all conditions (all ps < .001). Active 
learning therefore led to category formation irrespective of the basis 
on which the model selected stimuli. A Kruskal-Wallis test revealed, 
however, that SSE differed between conditions. In the following sec-
tion we discuss the differences between the four stimulus selection 
mechanisms.

Bonferroni-corrected Wilcox tests confirmed that the model learned 
best in the curiosity condition. First, the model learned a more robust 
category in the curiosity condition (Mdn = 0.97) than in the objective 
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complexity maximization condition (Mdn = 0.91; W = 495, p < .001, r = 
−0.92). This result highlights the role of the learner in the learning pro-
cess: when the model selected stimuli based solely on objective, envi-
ronmental characteristics it learned less well than when it also took into 
account its own internal state (learning history). The curiosity condition 
also outperformed the subjective novelty maximization condition (Mdn 
= 0.77; W = 575, p < .001, r = −1.51). Here, although the model’s learned 
representations were taken into account by selecting stimuli for which 
the difference between its representation (o) and the environment (i) 
were greatest in-the-moment, the longer-term effect of learning history, 
which determines the model’s readiness to learn, was ignored. This result 
demonstrates that the additional plasticity provided by the o(1 − o) term 
was necessary for maximal learning; omitting this term affected the ex-
tent to which the model could adapt to its learning environment, reduc-
ing its ability to select stimuli that would lead to optimum information 
gain with respect to its learning history. However, maximizing plasticity 
alone is not sufficient to maximize learning: the model also performed 
better in the curiosity condition than in the plasticity maximization con-
dition (Mdn = 0.75, W = 575, p < .001, r = −1.51). Since this latter mech-
anism ignores the in-the-moment effect of the environment this result 
suggests that while focusing solely on the environment is not the best 
strategy for active learning, ignoring how much can actually be learned 
from a stimulus is not optimal either. Finally, in line with Experiment 1 
and M&P, the objective complexity maximization outperformed the sub-
jective novelty and plasticity maximization conditions (respectively, W = 
564, p < .0001, r = −1.37; W = 56, p < .0001, r = −1.36), further high-
lighting the importance of environmental input; however, we found no 
difference in performance between the subjective novelty maximization 

and plasticity maximization conditions (W = 318, p = .55, r = −0.12). 
Overall, then, our formalization of curiosity maximized learning via the 
dynamic interaction of plasticity, learning history, and in-the-moment 
environmental input.

Next, we were interested in the level of complexity of the se-
quences that maximized learning in the curiosity condition. In the 
context of Experiment 1 and M&P, we might expect that the curi-
ous model had maximized these environmental distances. However, 
other empirical work suggests that intermediate difficulty could best 
support learning (Kidd et al., 2012, 2014; Kinney & Kagan, 1976; 
Twomey et al., 2014). Equally, simplicity has been shown to support 
learning in some cases (Bulf et al., 2011; Son, Smith, & Goldstone, 
2008). To help make sense of these conflicting results, all of which 
come from experiments with predetermined stimulus presentation 
orders, we analyzed the stimulus sequences generated by the curi-
ous model. Overall, the model generated four different sequences 
out of the total possible 40,320, depicted in Figure 5. On the one 
hand, these sequences are very similar; recall that the model selected 
stimuli without replacement, reducing the degrees of freedom as 
training proceeded. On the other hand, they are not identical. Their 
differences stem from the stochasticity provided to the model by the 
random weight initialization, which can be interpreted as differences 
between participants (Thomas & Karmiloff-Smith, 2003). Thus, as in 
human data, the model data exhibit individual differences underly-
ing a single global pattern of behavior. Nonetheless, since the model 
generated only four different sequences over 24 runs, this result also 
predicts that systematicity in infants’ curiosity-based learning should 
be relatively robust.

To obtain an index of the level of complexity of the generated 
orders we ranked the entire set of 40,320 permutations by mean 
overall ED, generating 281 unique values. Table 1 provides these 
rankings (higher rank = greater complexity) for the sequences chosen 
in the curiosity condition. The curious model generated sequences 
of intermediate objective complexity. However, these sequences 
were not of average complexity (i.e., from ranks around 140/281) 
but were towards the high end of the range. To explore this find-
ing we calculated the individual successive EDs for the eight stimuli 
in each of the four sequences and ranked these according to their 
complexity (i.e., a rank of 1 would mean that the model has cho-
sen the maximally different next stimulus from the set of remain-
ing stimuli). These individual inter-stimulus distances are provided 
in Table 2. Interestingly, the model did not generate intermediate 
distances at every learning step. Rather, Table 2 illustrates that tak-
ing the mean overall ED masks a more interesting behavior: in all 
sequences, the model first maximized ED (1/7) (cf. M&P). In three 
out of the four sequences the model then minimized the second 
ED (6/6), then chose an intermediate ED (3/5) and maximized EDs 
thereafter. Therefore, when measured in terms of objective com-
plexity, overall intermediate complexity arose from a combination 
of maximally complex, minimally complex and moderately complex 
stimuli at different stages of the learning process. Why, then, should 
optimal intermediacy be shifted towards the more complex end of 
the scale? Figure 6 plots the curiosity function for values of i and o 

F IGURE  4 Proportion SSE to peripheral stimulus at test in 
Experiment 2 
***p < .001
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between 0 and 1 and illustrates that (i − o)o(1 − o) is minimal when 
(i − o) is zero, and maximal when (i − o) is around 0.7. Thus, learning 
is greatest when both plasticity and subjective novelty are interme-
diate, but shifted towards the higher end of the spectrum.

This striking novelty-maximization–novelty-minimization behavior 
emerges because curiosity-driven learning maximizes subjective—not 
objective—novelty, modulated by the model’s plasticity. Specifically, the 
model is initialized randomly without prior knowledge about the to-be-
experienced stimuli. At this stage, the stimulus most similar to this ran-
dom representation in the context of the to-be-learned category would 
be a prototypical, category-central stimulus. At first, therefore, the model 
maximizes learning by choosing a category-peripheral stimulus that 
is maximally different from its initial, random representation. Next, it 
chooses the stimulus that again results in maximal subjective novelty—the 
other category peripheral stimulus. Now, the two most peripheral cate-
gory stimuli, having just been encoded, are the most familiar to the model 
and are represented discretely at the extremes of the category space. The 
stimulus which maximizes subjective novelty should be as equidistant as 
possible between these two representations; that is, a category-central 

stimulus—and this is what the model chooses. Thus, notwithstanding 
the noise inherent in the initialization of the model, which accounts for 
its choice of different specific orders, broadly the model explores with a 
“start from the outside and move in” strategy from the extremes to the 
prototype. Note that while the model predicts that infants will exhibit 
the same pattern of exploration this is based on the assumption of no a 
priori knowledge at the start of learning. Infants, on the other hand, have 
learned representations by 10 months. Whether infants will exhibit the 
same pattern of exploration—and whether the pattern holds in different 
tasks involving truly free exploration—are exciting empirical questions 
which we are currently addressing.

Why, then, should this pattern maximize learning? In line with the 
empirical infant categorization literature, if the model generates more 
error in response to a previously unseen peripheral exemplar relative 
to a previously unseen prototypical exemplar, we assume that it has 
learned a category with the prototypical exemplar at its center. In 
M&P’s conceptualization of category learning, exemplars, represented 
as vectors, can be thought of as locations in representational space. 
Category learning is therefore a process of moving from location to 
location within this space. From this perspective, the order in which 
the curious model chooses stimuli maximizes the number of times it 
traverses the central location in this space, resulting in strong encod-
ing of this area relative to weak encoding of peripheral stimuli. More 
generally, the curiosity mechanism makes the intriguing prediction 
for future work that infants engaged in curiosity-driven learning will 
switch systematically between stimuli of maximum and minimum ob-
jective complexity.

F IGURE  5 Stimulus orders chosen by 
curious model

Trial 1 2 3 4 5 6 7 8

Order 
A

1515 5151 5511 1155 2424 2244 4422 4242

Order 
B

1515 5151 5511 1155 4242 2424 4422 2244

Order 
C

1515 5151 2244 2424 5511 1155 4422 4242

Order 
D

1155 5511 4422 4242 5151 1515 2244 2424

TABLE  1 Rank mean Euclidean distances chosen in the curiosity 
condition of Experiment 2

Rank mean ED Frequency/24

34/281 5

41/281 18

50/281 1
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4  | GENERAL DISCUSSION

In the current work we used a neurocomputational model to first 
capture the effect of objective environmental complexity on infants’ 
categorization, and then to offer an explicit account of curiosity-
driven learning in human infants. In Experiment 1 we captured 
empirical data presented by Mather and Plunkett (2011), in which 
10-month-old infants formed a robust category when familiarized 
with stimulus sequences that maximized overall perceptual distance, 
but not in sequences which minimized it. In Experiment 2, we al-
lowed the model to take an active role in its own learning by let-
ting it select its own stimuli, comparing four different mechanisms 
for stimulus selection. Here, curiosity-based learning depended 
critically on the interaction between learning history, plasticity and 
the learning environment, allowing the model to choose stimuli for 
which learning was maximal at the given point of the model’s devel-
opmental trajectory.

4.1 | Novelty is in the eye of the beholder

Our goal here was to develop a mechanistic theory of infants’ intrinsi-
cally motivated—or curiosity-based—visual exploration. We selected 
the autoencoder model and its learning mechanism based on their 
roots in psychological theory and their established success in cap-
turing infants’ behavior in empirical tasks. Importantly, the proposed 
curiosity mechanism is theoretically compatible with classical optimal 
incongruity approaches (e.g., Hebb, 1949; Kagan, 1972; Loewenstein, 
1994; Vygotsky, 1980). According to these theories, learning is op-
timal in environments of intermediate novelty. Typically, these ap-
proaches have interpreted this intermediacy as information that is 
neither too similar nor too different from what the learner has previ-
ously encountered—as seen in the “Goldilocks” effect observed in re-
cent empirical work (Kidd et al., 2012, 2014). Our curiosity mechanism 
offers a new perspective: what constitutes optimal novelty changes 
as the child learns. Thus, what is initially too novel to be useful be-
comes a more suitable input as learning progresses. The model makes 
this process explicit, choosing stimuli that maximize subjective nov-
elty as modulated by its plasticity. The optimal learning environment 
is therefore related to subjective novelty, not objective complexity. 

Critically, this insight may explain the conflicts in the extant litera-
ture in which infants in different tasks have been shown to learn best 
from minimally novel stimuli, maximally novel stimuli, and stimuli of 
intermediate novelty: the relationship between subjective novelty and 
objective complexity is nonlinear. That is, different levels of objec-
tive complexity could provide an environment of maximal subjective 
novelty, depending on the infant’s learning history. Developing robust 
methods of tapping subjective novelty in infant looking time tasks, in 
particular individual differences, is therefore critical to understanding 
the complex dynamics of early learning.

These simulations offer important predictions for future work in 
infant curiosity. First, the model shows that based on in-the-moment 
decisions about what aspect of the environment to learn from, learn-
ing can be maximal. Given recent work showing that infants can 
explicitly structure their learning environment by asking their care-
givers for help (Goupil et al., 2016), this suggests that infants may 
also implicitly optimize their own learning (for an early empirical 
test of this predction, see Twomey, Malem, & Westermann, 2016). 
Second, in line with looking time studies showing that infants se-
lect information systematically (Kidd et al., 2012, 2014), the model 
chose stimuli of intermediate objective complexity. However, anal-
yses of the sequences chosen by the model predict that rather than 

Trial number

Order A (chosen 
× 1)

Order B (chosen 
× 5)

Order C (chosen 
× 11)

Order D (chosen 
× 7)

ED Rank ED Rank ED Rank ED Rank

1 – – – – – – – –

2 1.5885 1/7 1.5885 1/7 1.5885 1/7 1.5885 1/7

3 1.0974 3/6 1.0974 3/6 0.3971 6/6 0.3971 6/6

4 1.5885 1/5 1.5885 1/5 0.7942 3/5 0.7942 3/5

5 0.8717 3/4 0.904 2/4 0.904 1/4 0.904 1/4

6 0.5487 3/3 0.7942 1/3 1.5885 1/3 1.5885 1/3

7 0.7942 1/2 0.5742 1/2 1.1914 1/2 1.1914 1/2

8 0.5487 – 0.7942 – 0.7942 – 0.7942 –

TABLE  2 Euclidean distances (ED) 
between successive stimuli for sequences 
chosen in the curiosity condition of 
Experiment 2

F IGURE  6 Plot of the curiosity function, (i − o)o(1 − o)
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seeking out intermediate complexity at each learning event, infants 
may switch systematically between more and less objectively com-
plex stimuli in the pursuit of maximal subjective novelty. Third, then, 
our account goes further than classical theories in which curiosity is 
viewed as either a novelty-seeking or a novelty-minimizing behav-
ior (e.g., Loewenstein, 1994). Rather, our model predicts that infants’ 
visual exploration should exhibit both novelty seeking and novelty-
minimizing components when novelty is viewed objectively, unifying 
these theories in a single mechanism.

4.2 | A new approach to computational curiosity in 
visual exploration

This work contributes to computational research in intrinsic motiva-
tion by modeling curiosity using the mechanisms inherent in the exist-
ing model based on in-the-moment, local decision-making without a 
separate, top-down system for monitoring learning progress and/or 
reward. Existing computational and robotic systems typically simulate 
reward as generated by a discrete, engineered module that calculates 
a reward value using task-specific computations. Our model departs 
from this approach, showing that domain-general mechanisms can 
produce the motivation to learn, performing a similar function to re-
ward without requiring a separate module; that is, in our model, “re-
ward” is part of the algorithm itself. Overall, then the current work 
offers an explicit implementation of curiosity in infants’ visual explora-
tion, and offers a broader account of the cognitive mechanisms that 
may drive curiosity: learning that integrates a search for subjective 
novelty modulated by the learner’s plasticity. Here, intrinsically mo-
tivated information selection emerges from within the model by ex-
ploiting its learning mechanism in a way that optimizes the reduction 
of discrepancy between expectation and experience.

Overall, this neurocomputational model provides the first formal 
account of curiosity-based learning in human infants, integrating sub-
jective novelty and intrinsic motivation mechanisms in a single model. 
The model is based on the view that early learning is an active process in 
which infants select information to construct their own optimal learning 
environment, and it provides a parsimonious mechanism by which this 
learning can take place. Clearly, our model is restricted to visual explo-
ration; thus, investigating whether these mechanisms generalize to em-
bodied learning situations is an exciting avenue for future work. Equally, 
it is possible that another one of the many potential mechanisms for 
intrinsically motivated learning may take over later in development, 
particularly once metacognition is established and language begins in 
earnest (e.g., Gottlieb, Oudeyer, Lopes, & Baranes, 2013). Nonetheless, 
the current implementation of curiosity not only provides novel insight 
into infant curiosity-driven category learning and makes predictions for 
future work both in and outside the lab, but also offers a new mechanis-
tic theory of early intrinsically motivated visual learning.
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