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Cracked tooth syndrome is a commonly encountered disease in dentistry, which is often accompanied by dramatic painful
responses from occlusion and temperature stimulation. Current clinical diagnostic trials include traditional methods (such as
occlusion test, probing, cold stimulation, etc.) and X-rays based medical imaging (periapical radiography (PR), cone-beam
computed tomography (CBCT), etc.). However, these methods are strongly dependent on the experience of the clinicians, and
some inconspicuous cracks are also extremely easy to be overlooked by visual observation, which will definitely affect the
subsequent treatments. Inspired by the achievements of applying deep convolutional neural networks (CNNs) in crack
detection in engineering, this article proposes an image-based crack detection method using a deep CNN classifier in
combination with a sliding window algorithm. A CNN model is designed by modifying the size of the input layer and adding a
fully connected layer with 2 units based on the ResNet50, and then, the proposed CNN is trained and validated with a self-
prepared cracked tooth dataset including 20,000 images. By comparing validation accuracy under seven different learning rates, 10−5 is
chosen as the best learning rate for the following testing process. The trained CNN is tested on 100 images with 1920 × 1080-pixel
resolutions, which achieves an average accuracy of 90.39%. The results show that the proposed method can effectively detect cracks
in images under various conditions (stained, overexplosion, images affected by other diseases). The proposed method in this article
provides doctors with a more intelligent diagnostic solution, and it is not only suitable for optical photographs but also for
automated diagnosis of other medical imaging images.

1. Introduction

Cracked tooth syndrome, was defined as an incomplete frac-
ture of the anterior molar, and it was considered as one of
the major causes of tooth loss in adults [1, 2]. Later on, the
American Association of Endodontists (AAE) divided
cracked teeth into five types: craze lines, fractured cusp,
cracked tooth, split tooth, and vertical root fracture (VRF)
[3]. The diagnosis of a cracked tooth is a very challenging task,
especially in the early stage, because it is extremely easy to be
misdiagnosed due to indiscoverable microcracks and incon-
spicuous clinical symptoms [4]. The accurate diagnosis of
cracked teeth is of great importance because it may influence

the treatment strategy. On the other hand, it is difficult to
make a definitive diagnosis based on signs and symptoms
alone, because these signs and symptoms are nonspecific
and similar to the clinical manifestations of endodontic
and periodontal diseases. If the cracked tooth cannot be
treated properly, the cracks would continue to expand
and eventually cause pulpitis and even fracture of the
entire tooth [5].

Usually, the diagnosis of a cracked tooth is mainly based
on clinical symptoms [6]. For the suspected teeth, the clini-
cian could determine them by several traditional clinical
tests, such as the occlusion test method [7], probing method
[8], cold stimulation method [9], light transillumination
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method [10], and so on. Currently, X-rays-based methods,
especially CBCT, are widely applied in the clinical diagnosis
of a cracked tooth, and many in vitro and in vivo studies
have also validated the effect of CBCT in the diagnosis of
VRF [11–14]. However, these available diagnosis methods
may have some limitations. Methods like traditional clinical
tests are not accurate enough, and they require a high level
of clinician experience. Although transillumination and
superficial dyes can make microfractures visible to the naked
eye, the clinician’s diagnostic decisions may be interfered
due to visual fatigue. CBCT seems to be the crucial diagnos-
tical solution. However, the doctors may misjudge the frac-
ture and progression of the cracked tooth due to the
impact of metal artifacts on CBCT images [15]. Although
its image resolution is high, it may have an impact on visual
judgment due to the visual fatigue of doctors or the effect of
noise on the image. Besides, the early clinical symptoms of a
cracked tooth are not obvious and easy to misdiagnosis. If
the superficial fracture at initial diagnosis would be rapidly
and effectively detected, it will undoubtedly be beneficial
for clinicians to diagnose and develop subsequent medical
treatment plans at the early stage of crack tooth symptoms.
Therefore, the methods based on artificial intelligence (AI)
as an auxiliary treatment to better facilitate the diagnosis of
a cracked tooth may be a meaningful and helpful solution.

In recent years, with the development of AI and image
processing technology, the image-based method imple-
mented with deep learning was widely applied in crack
detection in industry nondestructive testing for automation
[16–18]. Among these methods based on deep learning,
the image classification method is considered as one of the

essential methods. The image classification-based methods
essentially treat the crack detection problem as a binary clas-
sification problem (with or without cracks). Zhang et al. [16]
proposed an automatic road crack detection method using
ConvNet to classify 99 × 99 × 3 road image patches acquired
by a low-cost smartphone, which shows outstanding perfor-
mance compared with existing hand-craft methods. Cha
et al. [17] proposed a 256 × 256 × 3 CNN classifier in combi-
nation with the sliding window algorithm, which improved
the accuracy of crack detection to a level up to 98%. The
work from Dorafshan et al. [18] had shown that CNN-
based classification methods were superior in both detection
speed and accuracy compared with the traditional common
edge detectors (i.e., Roberts, Prewitt, Sobel, Laplacian of
Gaussian, Butterworth, and Gaussian). Inspired by these
achievements in applying CNN to crack detection in engi-
neering, a ResNet50-based algorithm for the detection of
cracked teeth is present in this article. To the authors’ best
knowledge, we introduce AI for the first time in the image
detection of a cracked tooth and explore its feasibility for
optical image detection of the cracked tooth. The proposed
method here is combined with oral microscopic imaging of
the tooth surface to suggest a rapid diagnosis and
suggestion.

The following sections of this article are described as fol-
lows. Section 2 presents the proposed method and intro-
duces the modified ResNet50 architecture and its detailed
methodologies. Section 3 analyzes the training details of
the CNN. Section 4 demonstrates the testing results of the
trained CNN under various situations, and Section 5 is the
conclusion of this article.
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Figure 1: Flow chart for detecting cracks the proposed method. The trained CNN classifier (256 × 256 pixels) can effectively identify the
areas with or without cracks in raw images (1920 × 1080 pixels) by combining the sliding window algorithm.
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2. Methods

2.1. Overview of the Proposed Method. As reported in Refer-
ences [19] and [20], the ResNet50 model can be used as a
useful and powerful tool for many biomedical applications,
such as the detection of COVID-19 from chest X-ray images
and the diagnosis in 12-lead electrocardiogram. In this arti-
cle, a fine-tuning ResNet50 model was performed and tested
for the automatic detection of superficial cracks in the
cracked tooth. Figure 1 shows a flow chart of using a CNN
to detect cracks, which includes three steps: building a data-
base of the cracked tooth, training the CNN model, and test-
ing the trained CNN model. To train a CNN, a large number
of raw images are taken from the surface of the cracked
tooth, and these collected raw images are cropped into
smaller images.

And then, the cropped images were manually divided
into cracked and uncracked to generate a database contain-
ing 20,000 images. After that, the training set and validation
set at a ratio of 4 : 1 are randomly selected from the database.
Finally, these images are imported into a CNN for training
and validation. The training process generates a CNN classi-
fier, which can distinguish between images with and without
cracks. Then, the trained CNN classifier (256 × 256 pixels) as
a sliding window is used to traverse the entire original image
(1920 × 1080 pixels) to identify the areas with or without
cracks. In conclusion, by combining the trained CNN classi-
fier and a sliding window algorithm, cracks in the tooth sur-
face can be effectively detected.

2.2. Methodology. This section introduces the CNN architec-
ture and its relevant theories for each layer of CNN in detail.
A typical CNN usually consists of input, convolution, activa-
tion, pooling, full connection, and output layers. Besides,
some other auxiliary operations, such as batch normaliza-
tion and dropout, are often embedded in layers, which can
speed up network training and reduce overfitting.

2.2.1. CNN Architecture. Residual Network was a remarkable
CNN proposed by He et al. [21] in 2015, which won first
place in the ImageNet competition for the classification task.
It was worth mentioning that the accuracy of the Residual
Network even surpassed that of the human eye. Our work
builds a CNN model by modifying the ResNet50 [21]. These
modifications are as follows. First, the size of the input layer
is modified from 224 × 224 × 3 to 256 × 256 × 3 to obtain
more information when extracting features and can obtain
faster efficiency in the subsequent sliding window process.
Second, a fully connected layer with 2 units is added fol-
lowing the original fully connected layer and before the
Softmax layer to achieve binary classification (with or with-
out cracks). Finally, the dropout layer is used between the
two fully connected layers to avoid the phenomenon of
overfitting.

The architecture of ResNet50 in this paper consists of
one 7 × 7 × 64 convolution layer, 16 residual blocks, and
two full connection layers. Each residual block starts from
a 1 × 1 convolution layer for dimensionality reduction, then
a 3 × 3 convolution layer for feature extraction, and ends
with another 1 × 1 convolution layer for increasing dimen-
sion to the same number of the input convolution layer in
each block. And the identity shortcuts made the CNN more
efficient, which solves the degradation problem due to the
increase of the depth of a neural network. Besides, opera-
tions of batch normalization (BN) and rectified linear unit
(ReLU) are also implemented after each convolution. The
modified CNN architecture is shown in Figure 2.

2.2.2. Convolution Layer. Convolution is an effective opera-
tion for extracting image features in deep learning. A specific
number of 3 × 3 convolution kernels slide across the input
tensor with an appointed stride. The weights of the convolu-
tion kernel and the values at the corresponding positions in
the tensor are multiplied element by element. Finally, all the
multiplied values are summed up, and bias is added to the
summed values. And the weights in convolution kernels
are updated in training using adaptive moment estimation
(Adam). Usually, the all-zero padding method is adopted
in the convolution operation to keep the input size consis-
tent with the output size. Figure 3 shows a convolution pro-
cess with a bias of 0.

2.2.3. Pooling Layer. Pooling is another core approach in
CNN, and it is a kind of downsampling operation in the
encoding path. The main purpose of the pooling layer is to
decrease the data size after the convolution process, which
can reduce the computational burden of the network and
the risk of overfitting.
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Figure 2: The architecture of the proposed CNN which is modified
based on the classic ResNet50. Two major changes are as followed.
First, the size of the input layer is modified from 224 × 224 × 3 to
256 × 256 × 3. Second, a fully connected layer with 2 units is
added before the Softmax layer.
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There are two types of pooling operations in general:
max pooling and average pooling. Max pooling only selects
the maximum value of the elements in the receptive field,
whereas average pooling calculates the mean values. And
Scherer et al. [22] have demonstrated that max pooling per-
formed better than average pooling in convolutional archi-
tectures. Therefore, in this article, max pooing is adopted
in all the pooling layers, as shown in Figure 4.

2.2.4. Activation Layer. The activation function is a function
with nonlinear, monotonic, and differentiable properties,
which can give nonlinearity in neural networks. The activa-
tion functions can be divided into two categories, one is the
saturated activation functions represented by sigmoid and
tanh functions, and the other is unsaturated activation func-
tions such as ReLU (Rectified Linear Units). ReLU solved the
problem of gradient disappearance, which exists in saturated
activation functions. Besides, it has a faster convergence rate
because of the simpler derivation process [23]. ReLU is cho-
sen in our model.

2.2.5. Full Connection Layer and Softmax Layer. The full
connection layer fully connects each neuron in the current
layer with all neurons in the previous layer, and it usually
connects the output of the last convolution layer or pooling
layer, where the high-dimensional feature map extracted by
the convolution and pooling operations expands into a
one-dimensional vector. The function of the Softmax layer
is to estimate a possibility for every class, which is connected
after the full connection layer and located at the last layer of
the CNN architecture.

2.2.6. Subsidiary Layers. Overfitting has always been a com-
mon phenomenon in deep learning [17], and it easily occurs
when training a network with a large number of neurons.
Dropout operation is proposed to address this issue [24].
The function of dropout operation is to randomly delete

some neurons in the hidden layers with a specified dropout
rate. As a result, the trained network will be more generaliz-
able due to the deceased dependence on certain local fea-
tures. In our model, the dropout rate is set to 0.5.

BN is proposed by Ioffe and Szegedy [25] to accelerate
training speed and improve model adaptability. The BN
layer normalizes the current batch of data before the activa-
tion function to reduce the variability between samples,
which prevents the data from being shifted and enlarged,
thus effectively avoiding gradient disappearance and speed-
ing up the convergence of the network.

3. Results

3.1. Building Dataset. The ideal dataset is prepared by the
fresh extracted cracked tooth; however, it is really difficult
to obtain intact. To build the dataset, it is necessary to pre-
pare some simulated cracked teeth. Two hundred eighty-
six fresh isolated human molars were collected from the
Hospital of Stomatology, Sun Yat-sen University, and the
Hospital of Guangdong University of Technology.
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Figure 3: Illustration of the convolution process with bias of zero.
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3.1.1. Preparation of Cracked Tooth. First, soft scales and
stains on the tooth surface were wiped with cotton swabs
and rinsed with saline. Then used the microscope to pick
out the isolated teeth with relatively intact crowns. Finally,
246 qualified isolated human molars were preserved in
10% paraformaldehyde.

In this study, the simulated cracked tooth was created
based on the phenomena of thermal expansion and contrac-
tion. These samples were immersed in a tank of liquid nitro-
gen (−196°) for 24 hours. Then, the frozen teeth were
immediately placed in boiling water for 5–10 minutes. The
large temperature difference generated thermal stress, which
further resulted in the microcracks in the sample. More
details can be found in Reference [26].

3.1.2. Image Acquisition. A total number of 800 images
(1920 × 1080 pixels) were obtained by optical microscope
with an industrial camera. The industrial camera parameters
are shown in Table 1. First, 700 of these 800 raw images were
randomly selected for training and validation of the CNN
classifier model, and the remaining 100 raw images were
used for the subsequent sliding window test. Then, these
700 raw images were cropped to a smaller size at 256 × 256

pixels and randomly divided into training and validation
sets, at a ratio of 4 : 1. To obtain a CNN classifier with excel-
lent robustness, these cropped images are captured under
various situations and background features, as shown in
Figure 5. On the other hand, the purpose of cropping images
into images with a resolution of 256 × 256 is to meet the
same size as the CNN input layer.

3.1.3. Data Augmentation. The number of images in the
dataset is 4,000 (the proportion of images with and without
cracks is 1 : 1), which may cause the overfitting phenome-
non in the classification task due to the limited dataset.
Therefore, data augmentation is implemented in this study,
which includes flip and contrast shift operations. After data
augmentation, the total number of data sets is 20,000.

3.1.4. Data Description. In the dataset prepared in this arti-
cle, a total of 800 raw images of 1920 × 1080 pixels were
taken from 286 fresh human molars using an optical micro-
scope with an industrial camera. Among them, 700 ran-
domly selected raw images were used for training and
validation of the CNN classifier model, and the remaining
100 images were used for subsequent testing. The 700

Table 1: The industrial camera parameters.

Product model Specification

USB3.0 industrial camera

Effective pixels 16 million

Resolution 1920 × 1080@30FPS
Sensor MN34120

External dimension 47 × 35:8mm

Size of pixel 1:335 × 1:335 μm

Figure 5: Sample display of partial dataset. Some cracks in images under various conditions (stained, overexplosion, affected by other
diseases).
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original images used for training and validation were cropped
to a total of 4,000 images with a smaller size of 256 × 256
pixels, and then expanded to 20,000 images through data aug-
mentation (flip and contrast shift operations).

3.2. Optimizer and Loss Function. The loss function is one of
the most significant mathematical components of a CNN
model, which is defined as the objective function to optimize
the model. Common loss functions include cross-entropy
loss function, focal loss function, SoftMax loss function,
and so on. To calculate the deviation between the predicted
and actual values, cross-entropy is chosen as the loss func-
tion in this article, which is defined in equation (1):

Lce = − y log ŷ + 1 − yð Þ log 1 − ŷð Þ½ �, ð1Þ

where y ∈ f0, 1g is the actual class probability and y ∈ ½0, 1� is
the predicted class probability.

To minimize the total loss during backpropagation, this
article selected the Adam optimizer to update the model
parameters. Among the numerous remarkable optimization
methods like stochastic gradient descent (SGD), momentum
method, root mean square prop (RMSprop), and so on. The
Adam optimizer is considered as the most efficient and fast-
est method to narrow the deviations. It combines the advan-
tages of the Adaptive Subgradient (AdaGrad) algorithm and
RMSProp algorithm, which promote the gradients to con-
verge at a commendable speed.

3.3. Training and Validating Results. The training process
was accomplished on matlab2021b in a Windows system

using a workstation configured with a high-performance
GPU (NVIDIA Quadro p2200) and a CPU (Intel(R) Core
(TM) i5-10500 CPU@3.10GHz, RAM: 56GB). The network
is trained with a batch size of 32, a momentum of 0.9, and a
weight delay of 0.0001 for 20 epochs.

The learning rate has a certain effect on the network’s con-
vergence speed and performance during training a CNN. To
select a proper learning rate, the learning rates used in this arti-
cle are set to 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, and 10−7,
respectively. Then, the network was trained for 10,000 itera-
tions under different base learning rates and validated every
20 iterations. Recorded validation accuracies are shown in
Figure 6. It can be seen that the validation accuracies and con-
vergence speeds increase fast with the learning rate of 10−3,
10−4, 10−5, 10−6, and the final validation accuracy of them is
all above 97%. The validation value of the cyan solid line with
a learning rate of 10−4 seems to be the best learning rate,
because the value of the accuracy increased fastest. However,
the upward trend of the training process is relatively unstable,
and the ultimate accuracy converged to 99.03%, which is lower
than the learning rate of 10−5 (99.12%). In the largest learning
rate of 10−1, the accuracy maintains at about 50% from start to
end,which indicates the training of theCNN is nonconvergent.
When the learning rate decreases to 10−2, the convergence
speed becomes low and achieves the ultimate validation accu-
racy of about only 88.25%. It can be seen that the minimum
learning rate 10−7 performed worse, which may be caused by
overfitting. The key finding from the training results demon-
strates that a proper learning rate can make a CNN converge
faster and obtain higher validation accuracy during training.
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As a result, the learning rate 10−5 is selected as our model
hyperparameters.

Figure 7shows the feature images of the first and the tenth
convolution layers, and 64 feature images were obtained for each

layer. As shown in Figure 7(b), some feature images show the
blurred outline of the crack. As the convolution operation con-
tinues, some extra interference is filtered out. The ideal feature
of the crack is extracted from some feature images in Figure 7(c).

(a) (b)

(c)

Figure 7: Visualization of features: (a) raw images; (b) feature visualization after the first convolution (64 images); and (c) feature
visualization after the 31st convolution layer (64 images).
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Figure 9: Testing results for image containing different types of cracks: (a) normal cracks; (b) tiny cracks; (c) normal cracks and thin cracks;
(d) tiny cracks and lighting spot; and (e) crossing cracks. The red arrows point to the crack.
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4. Discussion

To test the performance of the trained and validated CNN from
the previous section, 100 raw imageswith 1920 × 1080-pixel res-
olutions that are not selected for training and validation pro-
cesses are used in the testing. Notably, the trained and
validated CNN framework shows nearly the same performance
without any degradation of the accuracy, even though different
images (normal, the presence of other dental diseases, stained
tooth surface) are used for testing.

In the sliding testing results, the regions in original images
with cracks are defined as positive regions, and the opposite
are negative regions. Meanwhile, if the trained CNN detected
and classified the positive and negative regions correctly, then
these areas are defined as true-positive and true-negative
regions, otherwise false-positive and false-negative regions,
respectively. It is worth mentioning that one of the authors
in this article is a professional dentist, who have checked the
data annotations of cracked tooth. The testing accuracy of
each image is calculated using equation (2):

Accuracy = TP + TN
TP + TN + FP + FN

: ð2Þ

Among them, TP, TN, FP, and FN represent the number
of true-positive, true-negative, false-positive, and false-
negative regions in the tested images, respectively.

Figure 8 depicts the testing accuracy of 100 raw images.
Inspiringly, the average accuracy of them is 90.39%, which
is close to the validation accuracy. Besides, the performance
of the trained CNN is still remarkable even though different
images under various conditions are used for testing, and it
takes about 10 seconds to test each image.

This article selects and presents some representative
tested images under various conditions, where the false-
positive and false-negative regions are highlighted as green
and red colored square illumination boxes, respectively, as
shown in Figures 9–11. Figure 9 shows images of normal
tooth surfaces with different degrees of the crack size of
microcracks. The testing results are generally encouraging
where most cracks are detected correctly. Especially in
Figure 9(b), the trained CNN can successfully detect the
image with extremely thin cracks that are difficult to be
observed with visual inspection. However, image distortion
may affect the accuracy. In the image that has normal cracks
and fine cracks in Figure 9(c), three false-negative regions
are distributed at the periphery of the raw image center
due to the image distortion in the thin crack region. It may
be because distorted images result in poorly characterized
cracks, which prevent them from being recognized by the
network. Crossed cracks may reduce detection accuracy to
some extent. For example, in Figure 9(e), all cracks in origi-
nal images are still detected correctly, although there is one
false-negative region in the images from blurred and dis-
torted surfaces. On the other hand, the misjudgments of
forming false-negative regions are these cracks at the edge
of each sliding window, because the image would be contin-
uously smaller when the input image passes through CNN,
resulting in less chance for the cracks at the edge of the
image to be recognized by the network than the cracks in
the middle of the image.

To learn the effect of CNN on illumination, two images
with light spots of different degrees of crack size were tested.
It turns out that strong light may cause errors in crack detec-
tion, as shown in Figure 9(a) and 9(d). In Figure 9(a), nor-
mal cracks in original images are all detected correctly. In
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Figure 10: Testing results for image containing other diseased tooth surfaces. (a) Cavities exist on the tooth surface with tiny cracks; and (b)
tooth surface with dental plaque with normal cracks. The red arrows point to the crack.
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Figure 9(d), there are two false-negative regions with
extremely tiny cracks in the images from strongly lighted
tooth surfaces. And further addition of images about the
corresponding samples of overexposed images to the dataset
may tackle the above problem.

To explore the sensitivity of the network to the distur-
bances of other diseased tooth surfaces (cavities, dental pla-
que, etc.). In Figure 10(a), in the image of tooth surface with
cavities, only one false-negative region with a thin crack
exists. In the image of the surface with dental plaque in
Figure 10(b), there are two false-negative regions from the
uneven surface. The results showed a good generalization
of the proposed CNN.

To examine the robustness of the trained CNN further,
three images with stained tooth surfaces are chosen in
Figure 11. It can be clearly seen from the testing results that
most of the stains do not affect the judgment of the proposed
CNN, but those stains with a shape of near-strip would be

labeled as false-positive regions by the CNN. Under the con-
dition of normal cracks in the stained tooth surface image in
Figure 11(a), only one false-positive region exists. This type
of image includes complex cracks as shown in Figure 11(a)
and 11(b) and false-negative region with blurred areas with
cracks are not detected by the CNN. In the image with
crossed normal and thin cracks in Figure 11(c), the testing
results provide a desirable testing accuracy of 89.29% with
only one false-negative region and two false-positive
regions.

In a nutshell, the proposed method presents robust per-
formance and strong adaptability in tooth crack detection
under various conditions of the raw images, which will pro-
vide satisfactory effectiveness in the real world. Using binary
classification CNN to realize the automatic detection of
cracks in the cracked tooth may definitely provide worthy
or amazing diagnostic methods with more intelligent, auto-
mated, and specialized solutions.
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Figure 11: Testing results for image containing stained tooth surfaces of different types of cracks: (a) normal cracks; (b) normal crossed
cracks; and (c) normal cracks and tiny cracks. The red arrows point to the crack.
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5. Conclusion

This article used CNNs with a sliding window algorithm
to detect cracks from optical images. The CNN architec-
ture of binary-class output for crack detection was
designed by modifying the classic ResNet50. Eight hun-
dred images with 1920 × 1080-pixel resolutions acquired
by an optical microscope with an industrial camera were
used to train, validate, and test the CNN where all of the
images were taken from the simulated cracked tooth. To
build the training set and validation set, 800 images were
cropped into 20,000 smaller images of 256 × 256-pixel res-
olutions. To choose the best learning rate according to
validation accuracy, seven different learning rates were
set during training the CNN. By comparing the training
results under different base learning rates, the learning
rate of 10−5 was chosen with the highest validation accu-
racy of 99.12%. Combined with a sliding window algo-
rithm, the trained CNN was tested on 100 raw images
under various situations, such as the stained, overexplo-
sion, affected by other diseases, etc. Encouragingly, the
average testing accuracy reached 90.39%.

The purpose of the presented classification-based CNN
combined with a sliding window algorithm is to propose an
image processing method to assist clinicians in the diagno-
sis of cracked tooth, aiming at helping them to make diag-
nostic decisions and proposing relevant suggestions and
recommendations. The current method was initially
explored and verified for the detection of cracks on the
tooth surface, and it can be widely extended to other imag-
ing tools (e.g., CBCT, Oral X-rays, etc.) in the following
study. For example, the proposed method can also be used
for the detection of root fracture if associated with CBCT
imaging.

Even though we have achieved encouraging results by
testing the simulated cracked tooth under various condi-
tions, there are still some limitations of the proposed
method. First, the construction of the dataset in this arti-
cle is based on the simulated cracked tooth, which may
affect the accuracy of the clinical detection of cracked
tooth. Second, the real oral cavity is more complex, fac-
tors such as lighting can have an impact on the quality
of the image, which may increase the difficulty of taking
clear optical photographs for subsequent image analysis.
Third, the method currently detects some superficial
cracks on the teeth. More research can be done in combi-
nation with CBCT and oral X-rays to detect other types of
cracked tooth, for example, VRF (a fracture that origi-
nates from the coronal (enamel) or apical (root) portion
of the tooth and usually extends faciolingually). In a nut-
shell, this article created a dataset of cracked teeth and
conducted a subsequent AI-based method to detect the
cracks on the teeth. In the next step, according to the oral
environment and different imaging schemes, some
improvement studies will be conducted on hardware
design and software optimization for multiple aspects of
the network, including the real-time ability, accuracy,
and clinical applicability.
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