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Abstract

Background: Statistical genetics shows that the success of both genetic association studies and genomic
prediction methods is positively associated with the heritability of the trait used in the analysis. Identifying highly
heritable components of a complex disease can thus enhance genetic studies of the disease. Existing heritable
component analysis methods use data from related individuals to compute linearly-combined traits to maximize
heritability. Recent advances in acquiring genome-wide markers have enhanced heritability estimation using
genotypic data from apparently unrelated individuals, which is referred to as the chip heritability. Novel statistical
models are thus needed to identify disease components (subtypes) with high chip heritability.

Methods: We propose an optimization approach to identify highly heritable components of a complex disease as
a function of multiple clinical variables. The heritability of the components is estimated directly from unrelated
individuals using their genome-wide single nucleotide polymorphisms. The proposed approach can also model the
fixed effects due to covariates, such as age and race, so that the derived traits have high chip heritability after
correcting for fixed effects. A new sequential quadratic programming algorithm is developed to efficiently solve
the proposed optimization problem.

Results: The proposed algorithm was validated both in simulations and the analysis of a real-world dataset that
was aggregated from genetic studies of cocaine, opoid, and alcohol dependence. Simulation studies demonstrated
that the proposed approach could identify the hypothesized component from multiple synthesized features. A
case study on cocaine dependence (CD) identified a quantitative trait that achieved chip heritability of 0.86
estimated using a cross-validation process. This quantitative trait corresponded to the likelihood of an individual’s
membership in a CD subtype. Clinical analysis showed that the subtype enclosed individuals who reported heavy
use of cocaine but few withdrawal symptoms.

Conclusions: Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the
proposed approach as a means to find meaningful disease components with high chip heritability.

Introduction
Identifying genetic variation that underlies complex dis-
eases has important implications in medicine. To date,
genome-wide association studies (GWAS) have had lim-
ited success in dissecting the genetic etiology of complex
diseases. For instance, very few associations identified for
substance use disorders at a genome-wide significant

level have been replicated [1-3]. Complex disorders are
often characterized by multiple disease indicators. For
example, to diagnose whether a patient has a lifetime
drug dependence disorder, clinicians interview the
patient to understand his or her drug use behaviors, the
negative consequences of the drug use, the treatment
history and other co-occuring medical conditions. All of
these clinical variables are used to arrive at a diagnosis of
dependence on a certain drug [4]. There is substantial
variation in these variables in the disease population, and
these variables also present different levels of heritability,
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i.e., some are more genetically influenced than others.
This phenotypic heterogeneity diminishes evidence of
genetic association. Statistical genetics also shows that
the success of most gene discovery studies is positively
associated with the heritability of the trait used in the
association analysis [5]. Hence, identifying more homoge-
neous and highly heritable components of a complex dis-
ease could enhance the association analysis.
The ability to translate genotype information into a

quantitative prediction of disease phenotypes is important
for precision medicine [6]. Genomic prediction methods
that predict a phenotype based on genome-wide single
nucleotide polymorphisms (SNPs) may provide a suitable
analytic tool [7,8]. These methods expand the traditional
single-marker-regression-based GWAS model for detect-
ing few variants of large effect to multi-marker predictive
models with many variants of small effect. The predictive
ability of genomic prediction methods relies on several
factors, especially trait heritability [9]. If we identify higly
heritable components of a complex disease, it could also
improve the utility of genomic prediction methods to pre-
dict subtypes (defined by the components) of the disease.
Because the success of both association analysis and

genomic prediction is dependent on the trait heritability,
heritability can be a valid target for refining multivariate
disease phenotypes. The narrow-sense heritability h2 is
defined by the percentage of phenotypic variance that is
due to additive genetic effects [10]. The broad-sense
heritability H2 is defined as the overall genetic contribu-
tion to the phenotypic variation. The heritability of a
quantitative trait is commonly estimated from related
individuals in pedigrees. Recent advances in acquiring
dense genome-wide genetic markers have enhanced her-
itability estimation from apparently unrelated individuals
using their genome-wide SNPs. The SNP-based herit-
ability, often referred to as the chip heritability, is
defined as the portion of the phenotypic variation that
can be explained by the genotyped genetic markers [11].
It has been argued that estimating h2 from unrelated
individuals has an advantage over traditional pedigree-
based methods because the estimated chip h2 corre-
sponds only to the causal-variant heritability that is
tagged by the genotyped SNPs [8,12].
Phenotype refinement is an important but underdeve-

loped genetics research area. Unsupervised cluster analy-
sis or latent class analysis has been commonly used to
partition a study population into subgroups based on
clinical variables [13-18]. This approach can create sub-
groups of individuals that differ in clinical symptoms and
features, but may have limited utility in genetic analysis.
Because genetic data are not used during the creation of
the subgroups, the resultant subtypes (subgroups) are not
guaranteed to have high heritability, and hence may not
be informative for genetic association.

More relevant to this present work, a number of prior
methods identify the principal components of clinical
data that are heritable, and characterize the components
by linear combinations of clinical variables [19-23]. Thus,
these methods are often called heritable component ana-
lysis. All existing methods decompose the variance of
clinical data into two components: the variance due to
additive genetic effects estimated from pedigrees; and the
variance due to other effects (residuals). Then, they solve
a generalized eigen-decomposition problem to identify
the linear combination of the clinical variables that maxi-
mizes the ratio of additive-genetic variance versus the
residual variance, thus leading to high heritability of
the resultant linearly combined trait. Nearly all of these
methods use pedigree-based heritability estimation (an
exception is [23]), and all assume a genetic model that is
based on a single causal variant, an assumption that is
commonly violated for complex diseases.
Although the latest heritable component analysis

method [23] is effective and computationally efficient, a
fundamental question is how much heritability of the
derived trait can be explained by the genotyped SNPs.
Because GWAS and genomic predictions mainly utilize
the genotyped SNPs, the utility of the derived trait may
be limited by a low chip heritability. Thus, novel statisti-
cal models are needed to directly target high chip herit-
ability. In this paper, we propose an approach to identify
the components of a multivariate disease phenotype that
maximizes the chip h2. To estimate the chip heritability
of a given trait, the latest methods use the restricted max-
imum likelihood (REML) method, which assumes that
the trait follows a mixed effect model with random
genetic effects, and fixed effects due to covariates, such
as age, sex and race [8,12]. To identify a trait of high chip
h2, we need to solve the inverse problem of (chip) herit-
ability estimation. In other words, we now search for a
trait (e.g., a linearly-combined trait) so that its chip herit-
ability is high when estimated using the REML method.
Directly solving the inverse problem leads to a quadratic
optimization problem that can be optimized efficiently
via a sequential quadratic programming algorithm. We
validated the proposed approach in simulations as well as
in the analysis of a real-world dataset that was aggregated
from genetic studies of cocaine, opioid, and alcohol
dependence. Our experimental results demonstrated
the effectiveness and generalizability of the proposed
approach.

Methods
The proposed statistical model
Given a set of n subjects, we denote their trait values of
a quantitative trait y by a vector y of length n. We use a
matrix Zn×m to represent their standardized genotypic
data at m genetic markers, and Cn×p to represent their
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data on p covariates. The matrix Z is calculated from
the genotypic data as follows. Let fj be the frequency of
reference allele at the j-th genetic variant, rij be the
number of copies of reference allele that the i-th subject
has at the j-th locus. The standardized geno-type zij is

calculated as rij − 2fj

/√
2fj(1 − fj) [8]. The chip herit-

ability estimation method assumes the following mixed-
effect linear model [8,12] that characterizes how a
phenotype is related to genotypes and covariates:

y = Cβ + Zu + ε, (1)

where ε is a vector of length n, which specifies resi-
dual effects. In Eq.(1), all covariates create fixed effects
(fixed b) on the phenotype whereas genetic effects are
random (random u). Assume that u and ε follow Gaus-
sian distributions: u ~ N (0, Iσe

2) and ε ~ N (0, Iσu
2).

Then, the covariance of y between individuals, denoted
by Ωn×n, can be calculated as:

= ZZTσu
2 + Iσe

2 (2)

Let σg
2 be the phenotypic variance attributable to all

of the m genetic causal variants. Then, we have
σ 2

g = mσ 2
u . Let G = ZZT /m, which is referred to as the

genetic relationship matrix (GRM) among subjects
determined by the causal variants. Then Eq. (2) can be
re-written as:

� = Gσg
2 + Iσe

2 (3)

where σg
2 and σe

2 can be estimated by the REML
method [24,11]. The chip her-itability estimated on the

m causal variants is computed as hp
2 = σg

2/σe
2 , where

σp
2 = σg

2 + σe
2 is the total phenotypic variance.

Because the causal variants of y are usually unknown
for a trait, recent research has proposed to estimate a
GRM using genome-wide SNPs [8,12].
The main idea of REML for estimating the variance

components is to first eliminate the fixed effect due to
covariates from the observed values of y and then esti-
mate the variance components from the random effect
part. The REML finds n basis vectors represented by
columns of a matrix Ln×n. This matrix has two sub-
matrices L = [L1 L2] with L1 of size n × p and L2 of size
n × (n − p). The two sub-matrices satisfy LT

1C = Ip×p,

and LT
2C = 0. Let ỹ = LTy, ỹ1 = LT

1y and Ỹ2 = LT
2y. It can

be derived that ỹ follows the following multivariate
Gaussian distribution given the multivariate Gaussian
assumption of y:

ỹ =

[
LT

1y

LT
2y

]
∼ N

([
β

0

]
,

[
LT

1 L1

LT
2 L1

LT
1 L2

LT
2 L2

])

We have ỹ2 ∼ N
(
0, LT

2 L2
)
and the conditional dis-

tribution:

ỹ1|ỹ2 ∼ N
(
β + LT

1 L2(LT
2 L2)

−1
ỹ2, (CT C)

−1
)

.

Then, the log likelihood of ỹ can be decomposed into:

�(σ 2
g , σ 2

e ; ỹ) = �1(σ 2
g , σ 2

e ; ỹ1|ỹ2) + �2(σ 2
g , σ 2

e ; ỹ2),

Where ℓ2 is not a function of the fixed-effect para-
meter b. The two variance components, i.e., σ 2

g and σ 2
e

can be estimated by maximizing l2, and there is no addi-
tional information in ℓ1 for estimating the variance com-
ponents. Once σ 2

g and σ 2
e are estimated, a generalized

least squares estimate of b can be obtained as:

β̂ = ỹ1 − LT
1 L2(LT

2 L2)−1ỹ2.

The second log likelihood component ℓ2 is calculated
as (after removing constant):

l2(σ 2
g , σ 2

e ; ỹ2) = −1
2

(ln|LT
2�L2| + ỹT(LT

2�L2)−1ỹ2

It has been shown in an early work [25] that when
LT

1C = Ip×p and LT
2C = 0, we have

− L2(LT
2 L2)−1LT

2 = C(CT −1C)−1CT

Substituting these equations into the calculation of ℓ2
yields:

�2(σ 2
g , σ 2

e ; y2) = −1
2

(ln|�| + ln|CT�−1C|ỹTPy), (4)

where P = −1 − −1C(CT −1C)−1CT −1 and b can
be obtained by:

β = (CT −1C)−1CT −1y (5)

Given data on y, C and Z, σ 2
g and σ 2

e are obtained by
maximizing the log like-lihood of observing the trait
values �(σ 2

g , σ 2
e ; y) which corresponds to maximizing

�2(σ 2
g , σ 2

e ; ỹ2) [11]. The chip heritability of a trait y is

computed using the resultant optimal σ 2
g and σ 2

e .
In our study, however, we solve the inverse problem

of the above estimation model. A definitive quantitative
trait y is not known beforehand but needs to be derived
from a set of known clinical variables. Let Xn×d be the
data matrix of d clinical variables x for the same n sub-
jects as in Z. A trait y is defined by a linear function of
y = wTx where w is the vector of combination coeffi-
cients. Correspondingly, the trait values y = Xw. Unlike
the heritability estimation process that finds the best
values of σ 2

g and σ 2
e to maximize the likelihood of

observing the values of y, the inverse problem searches
for the best w so to form a trait y that maximizes the
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likelihood, (or equivalently the log likelihood

�(σ 2
g , σ 2

e ; y, C, Z) ), of observing a large heritability, i.e., a

large σ 2
g but small σ 2

e . For simplicity and easy interpre-

tation of the resultant model, here we only consider lin-
ear models, but the proposed method can be easily
extended to construct non-linear models through kernel
mapping [26].
Notice that the highest possible heritability of a trait y

is 1 when σ 2
g = 1 and σ 2

e = 0 . We hence propose to for-

mulate an optimization problem, in which we search for
the optimal w that maximizes the log likelihood

�(σ 2
g , σ 2

e ; y, C, Z) (or equivalently, �2(σ 2
g , σ 2

e ; ỹ2, ) ) of

observing σ 2
g = 1 and σ 2

e = 0 . According to Eq.(3), the

covariance matrix Ω = G when σ 2
g = 1 and σ 2

e = 0 . We

substitute the values of these parameters into the log
likelihood Eq.(4), and remove any constant terms. The
resultant maximization problem is equivalent to the fol-
lowing minimization problem:

min
W

wT(XTPX)w (6)

where P is calculated as:

P = G−1 − G−1C(CTG−1C)−1CTG−1. (7)

When σ 2
g = 1 and σ 2

e = 0 , we have σ 2
p = 1 because

σ 2
p = σ 2

g + σ 2
e This requires to impose a constraint to the

optimization problem so that the total phenotypic var-
iance that is due to either genetic or environmental effect

should be scaled to1. An estimate of σ 2
p can be obtained

by calculating the sample variance after correcting for the

covariate effects as σ̂ 2
p =

1
n

(Xw − Cβ)T(Xw − Cβ) . Since

b can be estimated according to Eq.(5), by substituting

the b value, σ̂ 2
p can be computed by

σ̂ 2
p =

1
n

wTXT(JTJ)Xw

where J = I − C(CT −1C)−1CT −1 . To further sim-
plify the notation, denote

Q =
JTJ
n

, (8)

Then

σ̂ 2
p = wT(XTQX)w.

Combining the objective function and the constraint
together, the proposed optimization problem is formu-
lated as:

min
w

wT(XTPX)w,

subject to wT(XTQX)w = 1.
(9)

According to statistical learning theory [26], only max-
imizing the training heritability (by minimizing Eq.(9)),
the resultant model may overfit the training data X. If
overfitting occurs, the optimal w of Eq.(9) may corre-
spond to a trait that has high heritability on the data
that is used to train the linear model, but when the
model is applied to a new sample, the trait has low her-
itability. In order to prevent overfitting and identify a
trait with high heritability that can generalize, we incor-
porate a regularizer R(w) in our formulation (9). The
optimization problem becomes:

min
w

1
n

wT(XTPX)w +
λ

d
R(w)

subject to wT(XTQX)w = 1,
(10)

where l is a hyper-parameter and needs to be tuned,

and
1
n
and

1
d
are included to pre-balance the two items in

the objective function. The value of l can either be chosen
by users according to domain knowledge or determined
using a crossvalidation process as done in our experi-
ments. According to learning theory [26], minimizing
1
n

wT(XTPX)w corresponds to empirical risk minimiza-

tion, whereas minimizing the objective in Eq.(10) corre-
sponds to structural risk minimization that improves the
generalizability of the resultant model. There are many dif-
ferent ways to define R(w) [23]. The L2 vector norm

defined by ||w||22 =
∑

i
w2

i is a common choice. The L1

vector norm defined by ||w||1 =
∑

i|wi| can be a better

choice when model sparsity is required to select variables
for use in the model. In more complicated applications
where variables may be grouped and feature selection
among groups is expected, a structured regularizer, such

as the group lasso ||w||2,1 =
∑L

K=1

√∑
i∈Gk

w2
i , can be

used where Gk contains the indices of variables belonging
to a group k.

Optimization algorithm
In this paper, we use the L1 norm penalty ||w||1 to be R(w),
and develop an efficient algorithm to solve the resultant
optimization problem as follows:

min
w

1
n

wT(XTPX)w +
λ

d
||w||1

subject to wT(XTQX)w = 1.
(11)
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The algorithm we will describe next, although is
designed for Problem (11), can be modified to solve Pro-
blem (10) that may take another form of the
regularizers.
Due to the use of the ‖w‖1 norm, the objective function

in Problem (11) is not continuously differentiable and a
gradient decent type of approach cannot be applied
directly. A well known strategy to overcome this obstacle is
to decompose w into two parts: w = u − v, where both u
and v are vectors of the same size as that of w, and all the
components in u and v are required to be non-negative
(i.e., u ≥ 0, and v ≥ 0). BecauseXw = Xu − Xv , we denote
g = [uT , vT ]T , H = [X, −X], and then we have Xw = Hg.
By the change of variables, Problem (11) can be equiva-
lently re-written as:

min f :
1
n

T(HTPH)γ +
λ

d

2d∑
i=1

γi

subject to g1 : T(HTQH)γ − 1 = 0

g2:e : ≥ 0

(12)

where f denotes the objective function, g’s denote the
constraints, and e = 2d + 1, indicating the number of
constraints in that group. It is straightforward to show
that Eq.(12) is equivalent to Eq.(11) in the sense that at
optimality w = u − v =g(1 : d) − g(d + 1 : 2d). When
Eq.(12) reaches optimality, at least one of the two com-
ponents ui and vi at ny i-th position of the two vectors
will be 0. Otherwise, by setting ũi = ui − vi and ṽi = 0 if
ui ≥ vi, or ũi = 0 and ṽi = vi − ui if ui < vi, we obtain a
better solution with ũi and ṽi than (u, v). Therefore, at

optimality,
∑

2d
i=1 i =

∑
d
i=1ui + vi =

∑
d
i=1|wi| = ‖w‖1

Then, Eq.(12) becomes exactly the same as Eq.(11).
Eq.(12) is not a convex problem because of the quadratic

equality constraint. However, it can be efficiently solved
using a sequential quadratic programming (SQP) algo-
rithm [27] because both of the objective and constraints
are either in a quadratic or a linear form. The gradient of
the objective and constraint functions with respect to g
can be calculated as:

∇f =
2
n

(HTPH)γ +
λ

d
1,

∇g1 = 2(HTQH)γ ,

∇g2:e = I.

Let a be the Lagrange multipliers, the Lagrangian
function of this problem can be written as:

L (γ , α) = f (γ ) +
∑

i

αigi(γ );

and the Hessian of the Lagrangian function with
respect to g is computed as:

∇2
L = 2HT(

P

n
+ α1Q)H.

We iteratively search for the optimal solution to Eq.
(12). In the t-th iteration, we have the iterates gt and at,
and we first solve the following quadratic program to
find the moving direction for g and a,

min
p

f (γt) + ∇f (γt)
Tp +

1
2

pT∇2L(γt, αt)p

subject to ∇g1(γt)
Tp + g1(γt) = 0

∇gi(γt)
Tp + gi(γt) � 0, i ∈ [2 : e] .

(13)

The optimal solution to the problem (13) will give the
next moving direction for g, along which the objective
of Problem (12) can be decreased. Let q̂ be the optimal
Lagrange multipliers of the problem (13) corresponding
to p̂. The next moving direction of a is calculated as
q̂ − t . After the moving directions are computed, we
then employ a line search method described in [27] to
find the optimal searching step size s and update g and
a as follows:

γt+1 = γt + sp̂t , t+1 = t + s(q̂t − t). (14)

We summarize the proposed algorithm in Algorithm 1.
It has been proved that a SQP based algorithm can con-
verge to a local minimizer γ̂ of the optimization problem
(12) [28].
Algorithm 1 A sequential quadratic programming

approach to solving Problem (11)

Data sets
We validated the proposed approach in both simulations
and the analysis of a real-world data set that was aggre-
gated from multiple genetic studies of cocaine depen-
dence (CD).
Cocaine use and related behaviors data
We used the Semi-Structured Assessment for Drug
Dependence and Alcoholism (SSADDA) dataset aggre-
gated from genetic studies of drug dependence to evalu-
ate the proposed algorithm. The SSADDA subjects were
recruited from multiple sites, including the University of
Connecticut Health Center, Yale University School of
Medicine, the University of Pennsylvania School of Medi-
cine, McLean Hospital and the Medical University of
South Carolina. All subjects participated using proce-
dures approved by the institutional review board at each
participating site. There were 6,621 subjects genotyped
with a total of 1,140,420 SNPs genome-wide. Among the
subjects, 2,674 were stratified into the African American
population using STRUCTURE software v2.3 [29], and
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only these subjects were used in our experiments to avoid
spurious findings due to population structure. We
removed 537 subjects who had other family members in
the data so the GRM was computed for unrelated
individuals.
Input: Z, C, X, l
Output: g
1. Calculate P according to Eq.(7), and Q according to

Eq.(8).
2. Initialize g with u = 1, v = 0.
3. Initialize the Lagrange multipliers a = 1.
4. Evaluate f, ∇f , ∇gi and ∇2L with the current g and

a.
5. Solve Problem (13) to obtain p̂ and q̂ .
6. Perform a line search to find the searching step size

s.
7. Update g and a as in Eq.(14). Repeat 4-7 until g

reaches a fixed point.
A series of data cleaning steps were performed to

ensure the quality of genotypic markers. Markers that
meet any of the following conditions were excluded: low
call rate (<98% subjects received values for the marker),
G/C and A/T markers (to avoid strand issues), deviation
from Hardy-Weinberg equilibrium at p <10−8, signifi-
cant cohort calling discrepancy and being mono-
morphic. We also removed non-autosomal markers, so
that only markers from the 22 autosomal chromosomes
were used in the analysis. After these data cleaning
steps, 690,864 SNPs remained. Genetic relationship was
estimated for each pair of subjects by the genome-wide
complex trait analysis (GCTA) software [11] using all
690,864 SNPs. We then excluded 385 subjects whose
relatedness to some subjects was greater than 0.025
(corresponding to the relatedness of second cousins).
The remaining sample, 1,752 subjects, was used in our
analysis.
All subjects were interviewed with a computer-assisted

assessment system called the SSADDA [4], which con-
sists of survey questions designed for cocaine use and
related behaviors. All subjects were reported to have
used cocaine in their lifetime. The responses to those
questions in the SSADDA led to the definition of thir-
teen important cocaine use related variables, based on
which a diagnosis of CD was determined. There were
seven binary variables as listed below, which represent
the seven cocaine dependence criteria in DSM-IV.

• F1 - tolerance to cocaine;
• F2 - withdrawal from cocaine;
• F3 - using cocaine in larger amounts or over
longer period than intended;
• F4 - persistent desire or unsuccessful efforts to cut
down or control cocaine use;

• F5 - great amount of time spent in activities neces-
sary to obtain, use or recover from the effects of
cocaine;
• F6 - gave up or reduced important social, occupa-
tional, or recreational activities because of cocaine
use;
• F7 - cocaine use despite knowledge of persistent or
recurrent physical or psychological problems likely to
have been caused or exacerbated by cocaine. In our
experiments, positive responses to the seven variables
were coded by 1 and negative responses were coded
by 0. We also included six continuous variables in the
analysis as listed below:
• F8 - number of cocaine symptom endorsed;
• F9 - age when first used cocaine;
• F10 - age when last used cocaine;
• F11 - age when first diagnosed with DSM-IV
cocaine dependence;
• F12 - age when last diagnosed with DSM-IV
cocaine dependence;
• F13 - transition time in years between the first
cocaine use and the first cocaine dependence
diagnosis.

All these variables were normalized to the range of [0, 1]
in the analysis.

Synthetic data
Following the same design principle used in the simula-
tions for testing chip heritability in [8], we used the
real-life genotypic data in the CD study but synthesized
phenotypic data. We simulated quantitative traits based
on the mixed-effect linear model shown in Eq.(1). We
first synthesized a dataset that contained 5 phenotypic
features, all of which were created with moderate to
high heritability, and were used to form a quantitative
trait of very high heritability reaching 0.8. We then
added irrelevant features, which varied mainly due to
covariates, to create five other simulated datasets. These
datasets consisted of 10, 20, 30, 40 and 50 features
where only the first 5 of them were used in the model
of the final trait. These datasets were used to determine
whether the proposed algorithm could identify the right
features for use in the model.
To synthesize features with genetic effects, we ran-

domly picked 2,000 of the 690,864 SNPs in the cocaine
use data set and used them as the causal variants of
these features. The random effect coefficient uj asso-
ciated with each of the 2,000 markers was generated
independently by sampling from the standard normal
distribution N (0, 1). The residual component εi for
each individual was drawn from the normal distribution
of mean 0 and variance var(ziu)(1/h

2 − 1) where zi is
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the i-th row of Z, var(·) is the sample variance of a ran-
dom variable and h2 is the heritability of the feature. To
synthesize features with no genetic effects, we ignored
the term Zu in Eq.(1) and created ε by randomly sam-
pling from the standard normal distribution. To further
synthesize features with fixed covariate effects, we used
sex and age of the individuals in the CD study as the
covariates, and arbitrarily set their effects, i.e., the b
coefficients, to 0.2 and 0.5.
We evaluated the proposed method in two different

experimental settings:
Setting 1: This setting assumed that there were no cov-

ariate effects in the quantitative trait. The five relevant
features were simulated as follows. We used the proce-
dure described in the above paragraph to create four fea-
tures with h2 equal to 0.2: x1, · · · , x4. Then we simulated
the final quantitative trait y1 with h2 = 0.8 using the same
procedure. A five-entry weight vector was created with
arbitrary values, such as w = [0.22, 0.67, 0.60, 0.30, 0.22],
used in our experiments. Then, the fifth feature was

directly computed as x5 = (y1 −
4∑

i=1

wixi)/w5. By simu-

lating the data in this way, we knew that there was at
least one linear combination of the five features in the
data that would result in a composite trait (i.e., y1) with
h2 of 0.8. Hence, if our approach worked, it should at
least find this linear combination if there was no any
other one that gave even higher h2. Note that the herit-
ability of the fifth feature had to depend on the empirical
estimation, but given how it was created, there were
genetic effects in this feature.
We then created 45 other features that had no genetic

effects, and added a certain number of these features to
the original 5 features to create 5 other datasets. Hence,
there were in total 6 datasets for 1,752 subjects with 5,
10, 20, 30, 40 and 50 features. We used this set of data
(i.e., the discovery set) in training to retrieve the combi-
nation models. Then we repeated the above procedure
to create another independent set of data (i.e., the vali-
dation set) to validate the resultant models.
Setting 2: This setting assumed that the two covari-

ates, sex and age, had fixed effects to the features and
the final trait. We generated 5 features by adding fixed
effects to the 5 useful features created in Setting 1.
Because fixed effects do not change h2 of a trait, we
computed a composite trait y2 using the same pre-speci-
fied weight vector w that was used in Setting 1. We then
created 45 other features with only covariate effects
using the procedure described early on. Five other data-
sets were generated consisting of 10, 20, 30, 40 and 50
features. Note that the optimal weight vector for these
datasets should have zero entries for all features except
the first 5 features that were synthesized. Similarly, a

discovery suite of the six datasets and another suite of
them were synthesized using the same procedure for
training and validation, respectively.
We estimated the chip h2 of the features created in

the synthetic datasets using GCTA software. The four
features synthesized with a pre-specified h2 = 0.2 had
empirical chip h2 values 0.2 ± 0.01 in these datasets.
The chip h2 estimate of the fifth feature was 0.57 in the
discovery set and 0.6 in the validation set. Because fixed
effects do not affect trait heritability, the five relevant
features and the final quantitative traits had the same
empirical chip h2 in Settings 1 and 2. The features simu-
lated with no genetic effects had h2 estimates that ran-
ged from 0 to 0.05, and most of these features had
estimates less than 10−5.

The proposed analyses
We first validated the proposed approach in a variety of
experiments with the synthetic data. Then we applied
our approach to the real-life cocaine use data to identify
important components or subtypes of the disease defined
by linear combinations of clinical features. Such a combi-
nation can be used to define a disease subtype because it
produces a quantitative trait for each individual, which
amounts to the membership likelihood of the individual
in a subtype. Because the actual causal variants were
known for synthetic data, we calculated the GRM of
the individuals directly using the causal variants. In the
case study for CD, because the real causal variants were
unknown, we followed the commonly-used procedure in
the literature on chip heritability estimation [30] and
computed the GRM using all 690,864 SNPs that
remained in the data. All of the reported chip heritability
was estimated using GCTA software.
Tuning of the hyperparameter: For both the simula-

tion and the CD case study, we performed 10 times
three-fold cross validation (CV) to help determine a
proper value of l. At each fold of the CV, a linear
model was derived by running the proposed method on
2/3 of the data in the dataset, and then tested on the
remaining 1/3 of the data. The cross validated h2 of
the derived trait was estimated using only subjects in
the remaining 1/3 of the data which was not used to
train the model. We ran the same CV process for each
pre-specified choice of l (the choices we used are
reported in the results section) and chose the l value
that gave a trait of the highest cross validated h2 for
each experimental setting.
Evaluation metrics: We reported and investigated the

CV performance (including the mean values and standard
deviations of the validation h2 obtained in the CV process
described above) for each l choice in each experiment.
Once the best value of l was chosen through the cross
validation for a dataset, we applied the proposed approach
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with the best l to the entire data in the dataset to derive a
quantitative trait. The chip heritability of this trait was
estimated using the separately-synthesized validation data-
sets in simulations and by another cross validation process
in the case study. In other words, in simulations, we esti-
mated the valiation chip h2 using the trait values com-
puted by the linear model on the newly-synthesized
validation samples. In the CD case study, we computed
the trait h2 using SNPs of 2/3 of the subjects randomly
sampled from the dataset and repeated the random sam-
pling 10 times to report the averaged h2 value. We named
this process the evaluation CV. Moreover, besides the her-
itability as a major evaluation metric, we also measured
the effectiveness of our approach by comparing the
derived trait models and the linear model implanted in the
simulated data. We calculated the squared difference
between the learned weights ŵ and the true weights w,
i.e., SE(w) = ||w − ŵ||22 and the mean of squared resi-

duals SE(y) = (1/n)
∑n

i−1

(
yi = xiŵ

)2
, and reported the

values in plots. Additional evaluation steps were con-
ducted in the case study to clinically interpret the resultant
quantitative trait (see the later paragraph).
Comparison: The validated chip h2 of our derived

traits was compared with that of all quantitative fea-
tures in the data in both simulations and the CD case
study. In each of the experiments, our derived trait
was also compared with the commonly-used disease
phenotype, often referred to as a symptom count,
which was the quantitative trait created by equal
weighted aggregation of all features in the data. Given
that no prior method existed to identify heritable dis-
ease components using the genome-wide SNPs, on the
real-life cocaine use data, we compared our approach
with a recently published method [23] that aimed to
derive linearly-combined traits using pedigrees of
related individuals. This comparison considered
whether a pedigree-based heritable component analysis
method can identify a disease component with a chip
heritability comparable to that found by our approach.
As multi-member families were included in the original
cocaine use dataset, i.e., a superset of the sample used
by our approach, it was feasible to apply the method in
[23] to derive a trait. Then we computed the trait values
on the unrelated individuals used by our approach to
compare the chip h2 of the two approaches using the
evaluation CV. Note that the prior pedigree-based
approach was actually given a favor because it used the
superset of 2,674 subjects (unrelated individuals were
treated as one-member pedigrees) to derive the trait in
comparison with our approach that used only the 1,752
unrelated individuals.
Clinical interpretation: It is very important to under-

stand the clinical implications of the quantitative trait

(or an empirical subtype) derived by our approach from
the aggregated CD study data. From prior work [17,31],
we identified three key steps to ensure the clinical valid-
ity of an empirical subtype. We first examined the speci-
fic features selected by our approach for use in the
model. Second, we studied the distribution (or histo-
gram) of the quantitative scores among the 1,752 sub-
jects. From the distribution plot, we examined whether
there were obvious subgroups of the scores. Third, the
subgroups of subjects were characterized and compared
on 11 of the most important clinical variables reflecting
cocaine use and related behaviors including both the
features selected and those not selected for use in the
linear model. The individuals receiving very high or very
low values of the quantitative trait may show the most
representative features of the subtype.

Results
Simulations
We pre-specified 21 different l values ranging from 0 to
0.04 with step size 0.002 for use in the cross-validation
tuning process. The validation or test h2 for each l
choice was plotted for each of the six datasets in Figure 1
(for Setting 1 where data were generated without covari-
ate effects) and Figure 2 (for Setting 2 where data were
generated with covariate effects). The mean, median, and
the standard deviations of the test h2 values in the cross
validation were plotted for each tested l. These two
figures show that our approach could identify compo-
nents (quantitative traits) with test h2 estimate of ~ 0.8,
which was the heritability of the implanted heritable
component (the simulated true model), for all datasets
even with many irrelevant features in some of the data-
sets for both settings. This result demonstrates that our
approach identified highly heritable disease components
and could successfully correct for fixed covariate effects.
In addition, both Figures 1 and 2 show that there was

overfitting of the learned models to the training data
when l was too small, especially when the number of
irrelevant features grew to 25, 35 and 45. The larger the
number of irrelevant features in the data, the more severe
was the overfitting seen when l was small. On the other
hand, when l was too large, underfitting could occur, so
the test h2 showed a peak in most of the plotted curves.
The best choice of l for the six datasets (sorted from the
smallest number of features in the data to the largest
number of features) were 0, 0, 0, 0.002, 0.004 and 0.004
for Setting 1, and 0, 0, 0, 0,002, 0.004 and 0.006 for
Setting 2.
Then l was set to the optimal value for each of the

six datasets, and we re-ran the algorithm to generate the
final quantitative trait from each dataset. We then com-
pared the chip h2 between these derived traits and the
commonly used disease traits, such as individual features
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and the equally weighted aggregation of individual fea-
tures. The results are shown in Figure 3 where all h2

values were estimated using only the validation datasets.
Results from both settings are shown. For all the data-
sets and for both settings, our approach could recover
the quantitative traits of h2 close to 0.8. When the

number of irrelevant features in the data increased, the
h2 values of the derived traits decreased as expected.
Typically, when more irrelevant features were included
in the data, the learning problem became more challen-
ging. Because covariates do not affect h2 estimate when
their effect is properly corrected during the estimation,

Figure 1 Simulation study: the testing h2 of the quantitative traits developed in three-fold cross validation with varying l and total
number of phenotypic features in setting 1, in which datasets are simulated without covariate effect on the phenotypic features.

Figure 2 Simulation study: the testing h2 of the quantitative traits developed in three-fold cross validation with varying l and total
number of phenotypic features in setting 2, in which datasets are simulated with covariate effect on the phenotypic features.
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we did not differentiate the two settings when discussing
and comparing the h2 values of individual features and
the aggregated traits. Recall that in our simulation, the
highest chip h2 of individual features was 0.6 in valida-
tion. Figure 3 also included this most heritable feature
for comparison. Among the traits derived by equally
weighted aggregation, the one developed from the 5-
feature dataset reached the highest h2 (= 0.66). As
expected, chip h2 of these traits decreased along with
the increasing number of irrelevant features. The trait
developed from the 50-feature dataset had the lowest h2

(= 0.28). These results demonstrate that our approach
could identify quantitative traits that are more heritable
(i.e., with high chip heritability) than those commonly
used. The squared difference (error) between learned
weights and the optimal (implanted) weights: SE(w)
together with the squared error between the derived traits
and simulated traits: SE(y) are presented in Figure 4. The
results from both settings are provided. We observed that
clearly when the number of irrelevant features increased,
the noisier data made the learning problem more difficult,
and SE(y) and SE(w) increased in both of the settings.

A case study of cocaine dependence
In this study, we used the same pre-specified l values in
the simulations. In all expriments, we used age, sex and
the first three principal components of the GRM as cov-
ariates. The test h2s of all traits derived for each l

choice in the CV process are plotted in Figure 5. It
shows that there was overfitting when l was too small
as well. The trait derived with l = 0.004 achieved the
highest cross-validated h2 on average. We thus derived a
model by running our approach with l = 0.004 and all
the 1,752 subjects in the data. We examined this model
and the resultant quantitative trait as discussed in the
proposed analyses section.
The weights that each variable received in the model

are shown in Figure 6. Of the 13 clinical variables, five
(F8 - F12) received a zero coefficient, and were comple-
tely ruled out from the model. Variable F13 had an
coefficient close to 0 (< 10−5), thus its impact on the
resultant trait was minimal. Variables with significant

Figure 3 Simulation study: comparison of h2 of commonly
used traits with that of the quantitative traits derived by the
proposed approach with chosen l’s. Results from both settings
(setting 1 - without covariates, setting 2 - with covariates) are
shown. For h2 of individual features in each dataset, we show the
highest. Because in our simulation the feature that has the highest
h2 estimate is shared across all the datasets with varying number of
features, the corresponding h2 curve is a straight line. Since
covariates do not affect the h2 estimate when their effect is
properly corrected for during the estimation, we do not differentiate
the two settings and show one curve for traits derived by equal
weighted aggregation of individual features in the data and one for
individual feature that has the highest h2 estimate.

Figure 4 Simulation study: the square error of feature weights
(w) in models derived by the proposed approach with chosen
l’s: SE(w) and that of resulted quantitative traits (y): SE(y),
comparing to the optimal (implanted) model coefficients

(ŵ)and traits (ŷ) . SE(w) is calculated as ||w − ŵ||22 ; and SE(y)

is calculated as ||y − ŷ||22/n , where n is the total number of

subjects in 2 2 the data. Results from both settings (setting 1 -
without covariates, setting 2 - with covariates) are shown.

Figure 5 Case study on cocaine dataset: the testing h2 of the
composite traits derived in three-fold cross validation with
varying l.
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coefficients in the model are the seven cocaine criteria:
F3 - using cocaine in larger amounts or over longer per-
iod than intended, F2 - withdrawal from cocaine, and
F5 - great amount of time spent in activities necessary
to obtain, use or recover from the effects of cocaine,
had the highest impact on the trait. Both F3 and F5 had
negative weights, which indicated that positive response
to these two variables would lower the score or value of
this trait. In contrast, F2 had a positive coefficient,
which indicated that a positive response to this variable
would increase the score. Variables F4 - persistent desire
or unsuccessful efforts to cut down or control cocaine
use, and F1 - tolerance to cocaine, had limited impact
on the trait.
The cross validated h2 estimate of the trait derived by

the proposed approach is 0.87 (with a standard error of
0.13). For comparison, we ran the approach proposed in
[23], which identifies heritable components with pedi-
grees as genetic inputs and its formulation also had a
hyper-parameter l. For fair comparison, we first ran 10
times cross validation to choose a proper value for l.
With this l, we developed a trait using the entire African
American sample set. We then estimated the trait h2

using the exact same setting (i.e., GRM and covariates) as
for the traits derived by the proposed approach. We esti-
mated the h2 for all six continuous variables in the data
using the same setting. All of the h2 values are plotted in
Figure 7 together with the trait derived by the proposed
approach. The figure clearly shows that the trait derived
by the proposed approach had the highest h2 among all
compared traits, and was significantly higher than that of
the trait derived using the prior approach [23]. Note that
one of the continuous variables in the cocaine use
data was the counting of CD criteria. It was defined as
the number of positive responses to the seven CD cri-
teria, i.e., a quantitative trait resulting from a linear

combination of F1-F7 with equal weights. This trait was
reported to be a better trait for genomewide association
analysis than the binary CD diagnosis [1]. The CD diag-
nosis had a value of h2 close to zero when estimated
using our data. These results demonstrate the effective-
ness of our approach in identifying disease components
with high chip heritability from complex multivariate
phenotypes. It is worth noting that the trait with the sec-
ond highest h2 estimate was the one derived using the
prior approach [23]. This implies that (1) both of these
two methods (i.e., the proposed method and the one pre-
viously reported [23]) can identify heritable components
with high chip heritability; but (2) the proposed method
outperforms as it directly maximizes heritability using
genetic variants.
Figure 8 shows the distribution of the trait values (i.e.,

the membership scores) of the subjects. It shows that
based on the scores, the samples can be partitioned into
four subgroups. There were 250 subjects (14.27% of
total) in Group 1, which had a mean score of -2.22.
Group 2 consisted of 323 subjects and comprised
18.44% of the entire sample set. Its mean score was -0.8.
Group 3 was the largest one and consisted of 821 sub-
jects (46.86% of the sample). The mean score of this
group was -0.2. Group 4 was the smallest, comprised of
237 individuals (13.53% of the sample), with a mean
score of 1.22.
To understand the clinical implications of the derived

trait, we characterized the four groups using 11 important
clinical variables, including the 7 CD criteria (F1-F7), the
total number of CD criteria endorsed (F8), age of first
cocaine use (F9), age when first diagnosed with DSM-IV
CD (F11), and the transition time in years from first
cocaine use to first DSM-IV CD diagnosis (F13). The
results are summarized in Table 1. Only 5.6% of the sub-
jects in Group 1 had experienced cocaine withdrawal

Figure 6 Case study on cocaine dataset: the weights of variables in the linear combination learned by the proposed method with l =
4 and the entire sample set.
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symptoms (F2), despite the face that this group contained
heavy cocaine users (as shown by other variables). Most of
the subjects (99.6%) in this group reported using cocaine
in larger amounts or over a longer period than indended
(F3). Moreover, this group had the highest percentage of
subjects (96%) who spent a great amount of time in activ-
ities related to cocaine (F5). Group 2 had the lowest per-
centage of subjects (23.6%) with tolerance to cocaine (F1),
but the highest percentage of subjects (92.92%) who used
cocaine despite knowledge that problems were likely
caused by cocaine (F7). Subjects in Group 3 endorsed all
of the seven CD criteria with similar percentages (87.04%
was the lowest and 90.60% was the highest among the
seven criteria). Group 4 had the lowest percentage of sub-
jects who endorsed F3, F5 and F7. Group 4 also had the
highest percentage of subjects with persistent desire or
unsuccessful attempts to cut down their cocaine use (F4).

Group 1 and Group 2 had a similar transition time from
first cocaine use to first CD diagnosis (F13): 8.01 years for
Group 1 and 8.07 years for Group 2. These were signifi-
cantly shorter than the transition time in Groups 3 and 4,
which were 12.15 years and 15.19 years, respectively.

Conclusion
We developed an approach to identify composite traits
from multivariate phenotypes that are highly heritable,
as estimated using genome-wide SNPs. The trait we
derived is in the form of a linear combination of vari-
ables related to the phenotype, that is y = Xw. A quad-
ratic optimization problem was formulated, in which
optimal w was sought to optimize the log likelihood for
estimating variance components in REML. In this for-
mulation, variance components are set to their ideal
values with the additive genetic variance component σ 2

g

equal to 1 and other components equal to 0. To avoid
overfitting, we incorporated a regularization term in
our formulation. An efficient algorithm based on the
sequential quadratic programming framework was devel-
oped to solve the proposed optimization problem. We
evaluated the proposed approach on both synthetic and
real world data. The empirical results demonstrate the
effectiveness of our approach as a means to identify
traits with much higher chip h2 than commonly-used
disease phenotypes.
In this paper, the pairwise genetic relationship among

subjects was estimated from genome-wide SNPs. How-
ever, it can also be estimated from SNPs restricted to a
specific region, such as on a particular chromosome or in
genes related to a pathway, to explore the genetic archi-
tecture of a trait. When SNPs within a specific region are
used, the trait resulting from the proposed approach will
achieve the maximized genetic variance component

Figure 7 Case study on cocaine dataset: comparison of h2’s of
six individual continuous variables in the data, composite
traits derived by the approach in [23]and that derived by the
proposed approach with l = 2.

Table 1. Characteristic of the three subject groups on important clinical variables related to cocaine use

Variable Group1
250(14.27)

Group2
339(19.35)

Group3
926(52.85)

Group4
237(13.53)

Tolerance to cocaine 124(49.60) 80(23.60) 807(87.15) 123(51.90)

Withdrawal from cocaine 14(5.60) 275(81.12) 813(87.80) 192(81.01)

Using cocaine in larger amounts or over longer period than intended 249(99.60) 323(95.28) 816(88.12) 103(43.46)

Persistent desiring or unsuccessful cutting down cocaine use 223(89.20) 326(96.17) 839(90.60) 233(98.31)

Great amount of time spent in activities related to cocaine 240(96.00) 290(85.55) 823(88.88) 82(34.60)

Gave up or reduced important activities because of cocaine use 170(68.00) 212(62.54) 806(87.04) 156(65.82)

Cocaine use despite knowledge of problems likely caused by cocaine 209(83.60) 315(92.92) 817(88.23) 170(71.73)

Number of CD criteria endorsed 4.92(1.07) 5.37(1.08) 6.18(2.10) 4.47(1.50)

Age when first used cocaine 21.93(6.34) 22.32(6.51) 21.44(5.75) 22.97(8.42)

Age onset of DSM4 cocaine dependence 28.24(7.88) 28.31(7.95) 26.63(6.70) 28.32(8.06)

Transition time in years from first cocaine use to first CD diagnosis 8.01(12.05) 8.07(12.91) 12.15(21.30) 15.19(24.65)

N (%) is shown for the first seven binary variables, where N is the number of subjects who are positive on the corresponding variable within a group and % is
the percentage of N in the group.

µ(s2) is shown for the last four continuous variable, where µ is the group mean and s2 the standard deviation.
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corresponding to this region. In an application, such as
substance dependence, there are known pathways
involved, so it may be of utility to determine whether
there is a composite trait, the variance of which can be
largely explained by the variants within the pathways.
This will be a future application of our approach.
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