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Abstract

Single-stranded DNA (ssDNA) is characterized by high conformational flexibility that allows these molecules to adopt a
variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD)
spectroscopy and nuclear magnetic resonance (NMR) spectroscopy to show that cytosine methylation at CpG sites affects
the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin) fragments
were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide
mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR
spectroscopy. The oligonucleotides displayed secondary structures at 4uC, and some also at 37uC. Methylation at CpG sites
prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing
ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the
effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for
epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene
transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA.
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Introduction

In the cell nucleus, DNA may be present in single-stranded form

as an intermediate in gene transcription, and also during DNA

replication, repair and recombination [1–5]. During these

processes helicases unwind double-stranded DNA to single-

stranded DNA (ssDNA), which serves as a template for RNA

and DNA polymerases [6], and which may be stabilized by

replication protein A involved in DNA replication and repair [4].

ssDNA is characterized by high conformational flexibility,

allowing a variety of conformations and formation of non-

canonical secondary DNA structures such as cruciforms, G-

quadruplexes and triplexes. These structures are suggested to have

regulatory roles in gene transcription [7,8], DNA replication [9],

and recombination [10,11], and may also be involved in

mutagenesis [8,12,13]. The conformational polymorphism of

ssDNA molecules is sequence-dependent, as demonstrated by

several methods including polyacrylamide gel electrophoresis

(PAGE) [14–17].

Cytosine methylation at CpG and non-CpG sites is a covalent

DNA modification that plays an essential role in controlling gene

transcription by turning off a specific gene or by inactivating an

entire X chromosome [18–21]. The epigenetic regulatory

functions of DNA methylation are becoming increasingly clear,

whereas the mechanisms of methylation-dependent gene regula-

tion are less well understood. Cytosine methylation may regulate

gene transcription by affecting the interaction of DNA with

sequence-specific transcription factors and methyl-CpG-binding

domain proteins, and nucleosomes assembled with non-methylat-

ed DNA are less stable than those with methylated DNA [22,23].

Early studies demonstrated that cytosine methylation causes slight

structural alterations in the B-DNA double-helix [24–26],

changing its mechanical properties [27] and making it more

prone to adopt a Z-conformation [26]. Methylated cytosine

residues can be hydrated via the formation of C–H???O

interactions, which constitute a structural factor in the recognition

of methylated cytosine by polar residues in DNA-binding proteins

[24]. Nuclear magnetic resonance (NMR) analysis has demon-

strated that CpG methylation reduces the dynamics of the DNA

phosphate-sugar backbone [28], while molecular dynamics simu-

lations have suggested that methyl groups decrease DNA flexibility

due to steric hindrance and hydrophobicity [24,29]. This DNA-
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bending flexibility - affected by methylation - may be a critical

factor in formation of nucleosomes [30,31]. Depending on the

level of methylation and the sequence context, methylation may

either inhibit or facilitate DNA strand separation [27]. However,

to the best of our knowledge, previous studies of cytosine

methylation have been focused on double-stranded DNA.

In this study, we evaluated the effects of CpG methylation on

the conformational flexibility of short ssDNA molecules. Using

native PAGE analysis and NMR and circular dichroism (CD)

spectroscopy, we analyzed a set of 37-mer ssDNA oligonucleotides

with two or four CpG sites in each molecule. Effects of cytosine

methylation of one or two of these CpG sites were examined.

Because DNA secondary structures typically are most stable at low

temperatures, the experiments were performed at 4uC, and for

comparison at 37uC where non-canonical DNA secondary

structures usually have melted [15,32–34]. Fragments of exon 4

of the human prodynorphin (PDYN) gene were used as model

molecules because they a) contain CpG sites; and b) may be

involved in DNA metabolic processes due to their potential ability

to form ssDNA in the cell (Fig. 1A). These PDYN segments

demonstrated DNase I hypersensitivity (Fig. 1B) suggesting their

presence in single-stranded form in chromatin context. Further-

more, the sequences derive from a 51-nucleotide mutational ‘‘hot

spot’’ (Fig. 1A, Table 1), containing seven mutations known to

cause the human dominant neurodegenerative disorder spinocer-

ebellar ataxia 23 (SCA23) ([35] and manuscript in preparation). A

high density of these mutations along with the fact that each

mutation eliminates or creates a CpG site suggests a role of

methylation-dependent mutagenesis in this segment. In our

analysis, the magnitudes of the conformational perturbations

introduced by CpG methylation were compared to those induced

by three human pathogenic missense mutations [35] and two

‘‘artificial’’ mutations (Fig. 1, Table 1).

Methods

Oligonucleotide Synthesis, Purification and Labeling
The studied oligonucleotides and their abbreviations are shown

in Table 1. The oligonucleotides were synthesized and purified

through high-pressure liquid chromatography (HPLC) by Eurofins

MWG Operon GmbH (Ebersberg, Germany), stored at 280uC
before use, and their concentrations were determined from

260 nm absorption measured using NanodropH (Nanodrop

Technologies, Inc, USA). Additional purification of some oligo-

nucleotides (i.e. a-NE (a- neoendorphin), a-NE5mC1 (5-methyl-

cytosine), Dyn (dynorphin) A, Dyn A (AS (antisense)), and Dyn

A5mC2) was performed using PAGE on 15% denaturating gels in

10 M urea, followed by desalting on NAP 5 and NAP 10 columns

(GE Healthcare, UK). Oligonucleotide (20 ng) labeling was

performed at the 59-end using T4 polynucleotide kinase with

[c-32P]-ATP as a substrate, and the labeled oligonucleotides were

precipitated by 66% ethanol and 1.2 M ammonium acetate in the

presence of glycogen (0.01 mg/ml), followed by washing with 80%

ethanol. Prior to labeling the oligonucleotides were heated for

10 min at 95uC. Native and denaturating PAGE analysis showed

no differences in the behavior and purity between the HPLC

purified and the double HPLC and PAGE purified oligonucleo-

tides. The HPLC purified oligonucleotides were used in the CD

and NMR experiments.

Mass Spectrometry of Oligonucleotides
A Premier qTOF mass spectrometer (Waters, USA) using

negative-mode electrospray ionization was employed to study the

homogeneity of selected methylated oligonucleotide samples. The

oligonucleotide samples were dissolved to a concentration of 8 g/L

in 1:1 (v/v) water-acetonitrile solution to which 3% piperidine was

added to assist with deprotonation and salt adduct removal. Each

mass spectrum was accumulated for 5 minutes and the data were

integrated. Neutral mass deconvolution was performed using

Figure 1. The PDYN-coding sequence, which gives rise to the opioid peptides a-NE, Dyn A, Dyn B. (A) The oligonucleotides analyzed in
this study correspond to PDYN fragments with a-NE-, Dyn A- and Dyn B-coding sequences. Three pathogenic mutations causing the human
neurodegenerative disorder SCA23 are shown in red, and two ‘‘non-natural’’ point mutations in blue. (B) DNase hypersensitive site in the
human PDYN-coding region. Image was taken from the UCSC Genome Browser on Human 2006 (NCBI36/hg18) Assembly with the Dyn A-coding
sequence used for the search; the region of DNase hypersensitivity overlaps with the Dyn A-coding sequence in HepG2 cells.
doi:10.1371/journal.pone.0039605.g001
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commercial software (Waters, USA). In addition, MALDI spectra

provided by Eurofins MWG Operon GmbH (Ebersberg, Ger-

many) for showing the quality of some of the oligonucleotides

analyzed in this study are presented in Fig. S1 and Table S1.

These experiments confirmed that the methylated oligonucleotides

were homogeneous, i.e. there were no mass differences in the

samples due to incomplete methylation (Table S1).

Native and Denaturing PAGE
Native PAGE was carried out at 4uC for 5 hours or 37uC for

3 hours. Prior to the analysis, the oligonucleotides (approximately

0.5 ng per cell) were annealed at 95uC for 10 min, mixed with

loading buffer, and incubated for 30 minutes or overnight at 4uC
or 37uC. The loading buffer consisted of 20 mM Tris/HCl

pH 7.5, 37.5% glycerol, 50 mM NaCl and 15 mM MgCl2. To

examine effects of ion composition, NaCl and MgCl2 were omitted

from the loading buffer, or substituted with 0.5 mM ZnCl2 or

100 mM KCl or 50 mM NH4SO4. The samples were analyzed on

a 15% polyacrylamide (29:1 acrylamide:bisacrylamide) gel with

0.56 TGE (25 mM Tris-HCl, 0.2 M glycine and 1 mM EDTA)

as running buffer. Four single-stranded oligonucleotides were used

as reference oligomers (RO) for migration, i.e. a 26-mer (26RO),

two 37-mers with (+) and (2) strands (37RO(+), 37RO(2)), and a

54-mer (54RO) (Table 1). Relative mobility (Rf, retention factor)

was calculated as the ratio of the distance migrated by an

oligonucleotide to the distance migrated by the pair of 37-nt

reference oligonucleotides, i.e. 37RO(+) and 37RO(2), which

demonstrated virtually identical mobility on native PAGE.

For denaturing PAGE, samples were prepared in loading buffer

consisting of 20 mM Tris/HCl pH 7.5, 15 mM MgCl2, 50 mM

NaCl and 50% formamide; and run at 37uC on a 7.5 M urea,

15% polyacrylamide (19:1 acrylamide:bisacrylamide) gel in 16
TBE (8.9 mM Tris base, 8.9 mM boric acid and 0.2 mM EDTA).

CD Spectroscopy
A Chirascan CD unit (Applied Photophysics, Surrey UK) was

used to record CD data of the oligonucleotides dissolved in

10 mM sodium phosphate buffer at pH 7.3. A 2 mm quartz

cuvette was used to hold 400 ml samples of oligonucleotides in the

concentration range 20–30 mM. CD spectra between 220 and

340 nm were recorded at 4uC and at 60uC for all samples, and

melting profiles between 5uC and 60uC were recorded at 275 nm

at a rate of 0.2uC/min. Before the measurements all samples were

annealed at 95uC for 3–5 min. The CD melting profiles were

normalized using the formula (St2S60uC)/(S5uC2S60uC), where St,

S5uC and S60uC are the 275 nm signal intensities at a given

temperature, at 5uC, and at 60uC, respectively.

NMR Spectroscopy
A Bruker Avance 500 MHz NMR spectrometer equipped with

a cryogenic probehead was used to record 1D spectra at 4uC and

at 37uC of unlabelled oligonucleotides dissolved in 10 mM sodium

Table 1. Oligonucleotides used in the study.

Oligonucleotide Sequence

a-NE 59-AGGTCAAACGCTATGGGGGCTTTTTGCGCAAATACCC-39

a-NE5mC1 59-AGGTCAAA5mCGCTATGGGGGCTTTTTGCGCAAATACCC-39

a-NE (AS) 59-GGGTATTTGCGCAAAAAGCCCCCATAGCGTTTGACCT-39

Dyn A 59-GTACAAACGCTATGGGGGCTTCTTGCGGCGCATTCGT-39

Dyn A5mC1 59-GTACAAA5mCGCTATGGGGGCTTCTTGCGGCGCATTCGT-39

Dyn A5mC2 59-GTACAAACGCTATGGGGGCTTCTTG5mCGGCGCATTCGT-39

Dyn A5mC1,2 59-GTACAAA5mCGCTATGGGGGCTTCTTG5mCGGCGCATTCGT-39

Dyn A5mC1,3 59-GTACAAA5mCGCTATGGGGGCTTCTTGCGG5mCGCATTCGT-39

Dyn A M1 59-GTACAAACGCTATGGGGGCTTCTCGCGGCGCATTCGT-39

Dyn A M2 59-GTACAAACGCTATGGGGGCTTCTTGTGGCGCATTCGT-39

Dyn A M3 59-GTACAAACGCTATGGGGGCTTCTTGCGGCGCATTTGT-39

Dyn A M4 59-GTACAAACGCTATGGCGGCTTCTTGCGGCGCATTCGT-39

Dyn A M5 59-GTACAAACGCTAAGGGGGCTTCTTGCGGCGCATTCGT-39

Dyn A (AS) 59-ACGAATGCGCCGCAAGAAGCCCCCATAGCGTTTGTAC-39

Dyn B 59-GCAGAAGCGCTATGGCGGTTTTCTCCGGCGCCAGTTC-39

Dyn B5mC1 59-GCAGAAG5mCGCTATGGCGGTTTTCTCCGGCGCCAGTTC-39

Dyn B (AS) 59-GAACTGGCGCCGGAGAAAACCGCCATAGCGCTTCTGC-39

Reference
oligonucleotides (RO)

26RO 59-ATCAATGCCAACCGCAGGTCCCTTAG-39

37RO(+) 59-GGTGATCAGGGACTTTCCGCTGGGGACTTTCCAGGAT-39

37RO(2) 59-GTGATCCTGGAAAGTGAATAGCGGAAAGTGAATGATC-39

54RO 59-GCGCCGCAAGAAGCCGCCATAGCGTTTGTACAGGTCCTCATGGCCCATGCTATC-39

a-NE, Dyn A and Dyn B correspond to the a-neoendorphin-, dynorphin A- and dynorphin B-coding sequences of the human prodynorphin (PDYN) gene. AS, antisense
oligonucleotide. 5mC, 5-methylcytosine. RO, reference oligonucleotide. (+), plus strand. (2), minus strand. M, mutations are shown in bold italic underlined letters. CpG
dinucleotides are shown in bold letters. Dyn A M1–3 are oligonucleotides with human pathogenic SCA 23 mutations [35]. Dyn A M4,5 are oligonucleotides with nonsense
and silent mutations.
doi:10.1371/journal.pone.0039605.t001
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phosphate buffer at pH 7.3 (90/10 H2O/D2O). The sample

concentrations were in the range 100–300 mM, with 30 mM

tetramethylsilane added for reference purposes. The water signal

was suppressed using the excitation sculpting method. Before the

measurements all samples were annealed at 95uC for 3–5 min.

Computer modeling
The mFold software [36] was used to predict secondary

structures and folding energies for the 37 nt Dyn A and Dyn B

sequences at temperatures from 5 to 55uC, using an ionic strength

corresponding to 10 mM NaCl.

Results

PAGE Analysis
PAGE mobility depends on the molecular mass, nucleotide

content, sequence, shape, and compactness, and the rigidity of the

oligonucleotide molecules [37]. Oligonucleotides that form non-

canonical structures such as DNA hairpins and G-quadruplexes

differ in mobility on the native PAGE from unstructured

oligonucleotides [38–44], and even single-nucleotide substitutions

may induce conformational changes that can be detected with

PAGE analysis [16].

The effects of cytosine methylation on the oligonucleotide

secondary structures were analyzed by comparing the mobilities of

unmethylated and methylated 37-mer oligonucleotides with the a-

NE-, Dyn A- and Dyn B-coding sequences at 4uC or 37uC
(Tables 1, 2; Figs. 1, 2). The a-NE, Dyn A (AS), and two 37-mer

reference oligomers 37RO(+) and 37RO(2) demonstrated similar

mobilities at each temperature (Fig. 2A,C, lanes 1, 2, 9, 12),

suggesting similar - probably unstructured -conformations. The

Dyn A oligonucleotide demonstrated a higher mobility than these

four species at 4uC (Fig. 2A, lane 4), but did not differ from them

in mobility at 37uC (Fig. 2C, lane 4). The Dyn B and Dyn B (AS)

oligonucleotides migrated faster compared to the first four

oligonucleotides at both temperatures (Fig. 2B,D, lanes 4, 5),

which may be explained by differences in nucleotide sequence or

content, or by acquisition of conformations stable also at 37uC.

Methylation of the Dyn A-oligonucleotide at the first CpG site

from the 59-end (Dyn A5mC1) resulted in formation of a dominant

slowly migrating conformer at 4uC, while methylation of the

second CpG site (Dyn A5mC2) produced no changes in mobility

(Fig. 2A, lanes 5, 6). Methylation of both the first and second sites

(Dyn A5mC1,2), or the first and third sites (Dyn A5mC1,3) resulted in

patterns similar to that produced by the Dyn A5mC1 oligomer

(Fig. 2A, lanes 7, 8). At 37uC, the methylated Dyn A

oligonucleotides did not differ in mobility from the unmethylated

Dyn A oligomer (Fig. 2C, lanes 4–8). No mobility effect from

methylation of the a-NE oligomer at the first CpG site was

observed (Fig. 2A, lane 3). Methylation of the Dyn B oligomer at

the first CpG site yielded a conformer with decreased mobility at

both 4uC and 37uC (Fig. 2B,D, lane 6).

The methylation effects were compared to the effects induced

by five point mutations (M) in the Dyn A oligonucleotide

sequence, including the three human pathogenic mutations

causing SCA23 (M1–M3), a G to C substitution in the middle of

the G run (M4), and a T to A substitution producing an in-frame

stop codon (M5) (Tables 1 and 2). The SCA23 mutation M2, but

not M1 or M3, resulted in a substantial mobility decrease at 4uC
(Fig. 2E, lanes 4–6), while at 37uC these three mutants showed a

similar migration pattern (Fig. 2F, lanes 4–6). The Dyn A M4

oligonucleotide showed elevated mobility at both temperatures

compared to the wild-type oligomer (Fig. 2A,C, lanes 10), while

the M5 mutation resulted in decreased mobility at 4uC but not at

37uC (Fig. 2A, C, lanes 11).

The migration patterns on native PAGE shown in Fig. 2 did not

depend on the presence or absence of mono- and divalent ions

including 50 mM NaCl, 15 mM MgCl2, 100 mM KCl, 50 mM

NH4SO4 or 0.5 mM ZnCl2 in the loading buffer during the pre-

incubation period, nor on whether this period was 10 or 30 min,

or 18 h, before loading on the gel (data not shown). All analyzed

37-mer oligonucleotides demonstrated virtually identical mobility

on the denaturing PAGE (Fig. 2G).

The upper band of the Dyn A5mC1 oligonucleotide (Fig. 2A,

lane 5) could conceivably represent a molecular dimer. If so, the

increase in oligonucleotide concentration should shift the equilib-

rium in favor of the dimer. Analysis of labeled Dyn A5mC1

oligonucleotides (Fig. 3, lane 2) preincubated with unlabeled Dyn

A5mC1 or Dyn A oligonucleotides did not confirm this hypothesis:

a 1400-fold molar excess of the unlabeled oligonucleotides

produced no effects on the ratio of the upper to lower labeled

complexes (Fig. 3, lanes 4–9).

CD Spectroscopy
To characterize the ssDNA secondary structures and their

temperature dependency, CD melting profiles for all PDYN-

derived oligonucleotides were recorded between 5uC and 60uC at

275 nm, i.e. the wavelength with maximum intensity of the CD

signal (Fig. 4), and complete CD spectra were recorded at 4uC and

60uC (Fig. S2). The CD spectra at 5uC were typical for ssDNA not

forming DNA G-quartets and triplexes. With exception for Dyn A

M2, all CD signals decreased when temperature increased from

5uC to 60uC, indicating a loss of secondary structure, although the

patterns of signal decrease differed between the samples (Fig. 4).

The Dyn A, Dyn A5mC1, Dyn A5mC2, Dyn A5mC1,2, Dyn

A5mC1,3, Dyn A M4, Dyn A M5 and a-NE oligonucleotides

displayed a substantial reduction of the CD signal between 5uC
and 30uC (Fig. 4) indicating a) loss of secondary structure, and b)

cooperativity of this process that may be due to stabilization of

structures mostly by hydrogen bonds but not stacking interactions.

In contrast, the Dyn A M1, Dyn A M3, Dyn B, Dyn B5mC1 and a-

NE5mC1 oligomers showed higher stabilities with melting temper-

atures around 35uC.

The M3 point mutation increased the melting temperature from

approximately 15uC for wild type Dyn A to approximately 35uC.

The Dyn A M1 oligonucleotide displayed a rather even loss of

signal characterized by two transitional intervals at approximately

25uC and 40uC, suggesting two distinct structural conformations

differing in melting temperature. Such presence of dual structures

could also explain the anomalous behavior of the Dyn A M2

oligonucleotide, and of the a-NE5mC1 oligonucleotide that

displayed an initial increase of CD signal with temperature,

followed by a decrease after 30–40uC (Fig. 4). The two

conformations with different CD signals may exist in equilibrium;

when the temperature is increased these oligonucleotides do not

melt into unstructured ssDNA, but instead adopt the conformation

with stronger CD signal. At the highest temperatures however, all

ssDNA structures melt and the standard decrease in CD intensity

is observed.

NMR Spectroscopy
1D 1H-NMR experiments were performed to monitor the

presence of G or T imino proton resonances, which are indicative

of DNA hydrogen bonds and consequently base pair formation. At

4uC the PDYN-derived oligonucleotides and their methylated and

mutated variants display multiple imino proton resonances

originating from various base-pair hydrogen bonds (Fig. 5A),

CpG Methylation Effects ssDNA Conformation
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confirming the formation of secondary structures involving DNA

base-pairs at this temperature. Imino protons were observed from

both Watson-Crick A-T base pairs (14–15 ppm) and G-C base

pairs (12–13 ppm), as well as from non-canonical G-T pairs (10–

12 ppm). The minimum number of identified base pairs of each

type is presented in Table 2. Due to spectral overlap, formation of

additional base pairs can not be ruled out. The oligonucleotides

displayed different patterns of imino proton resonance (Fig. 5,

Table 2). For example, the Dyn A-oligonucleotide spectrum at

4uC contains ten imino proton resonances from three A-T pairs,

four G-C pairs, and three G-T base pairs (Table 2). The observed

hydrogen bonds may derive either from base pairs in a specific

secondary structure, or from multiple secondary structures existing

in equilibrium. Therefore, the type(s) of secondary structure(s)

formed cannot be elucidated from the imino proton data alone.

Methylation of the Dyn A oligonucleotide at one or two CpG

sites leads to NMR spectra with eleven (Dyn A5mC1), nine (Dyn

A5mC2), eleven (Dyn A5mC1,2) and ten (Dyn A5mC1,3) imino

proton resonances/hydrogen bonds (Table 2). The overall higher

number of hydrogen bonds observed in the methylated oligonu-

cleotides may derive from formation of secondary structures with a

larger number of base pairs or from the co-existence of multiple

secondary structures for each oligonucleotide. The imino proton

spectra for Dyn A5mC1, Dyn A5mC2 and Dyn A5mC1,3 are rather

similar to the spectrum of unmethylated Dyn A; the main

difference appears to be one or two additional A-T base pairs in

the methylated oligomers (Fig. 5). The imino proton spectrum of

Dyn A5mC1,2 exhibited larger differences, as it displayed a

plethora of resonances originating from G-T base pairs. Also for

the a-NE and Dyn B oligonucleotides CpG methylation alters the

secondary structure and gives rise to additional base-pair hydrogen

bonds (Fig. 5A, Table 2).

Five mutated Dyn A sequences yielded NMR spectra with

respectively two (Dyn A M2), four (Dyn A M1), seven (Dyn A M5),

eight (Dyn A M4) and ten (Dyn A M3) imino proton resonances/

hydrogen bonds (Table 2). The different hydrogen bond patterns

show that these single nucleotide mutations significantly change

the base pair patterns, and consequently the secondary structure of

the oligonucleotides.

At 37uC wild type and modified Dyn A oligonucleotides

displayed no imino proton resonances with the exception of Dyn A

M5. The loss of imino proton resonances most likely reflects the

loss of secondary structure at this temperature. It should however

be noted that increased temperature also causes more rapid DNA

base-pair opening [45], resulting in faster imino proton exchange

accompanied by line broadening. Hence, at elevated temperatures

some secondary structures might exist even if imino proton

resonances are not observed with NMR spectroscopy. Neverthe-

less, the presence of a distinct mismatch G-T base pair in Dyn A

M5 is evidence of base-pairing in this oligonucleotide at higher

temperatures. Also a-NE, a-NE5mC1 and Dyn B retain some

residual secondary structure at 37uC (Fig. 5B).

Computer modeling
Secondary structure modeling of the Dyn A and Dyn B

sequences with the mFold software yielded a number of different

Table 2. Mobility on native PAGE and number of base-pair hydrogen bonds obtained from NMR experiments for PDYN derived
oligonucleotides.

Oligonucleotide Relative mobility (Rf) on PAGEa
No. of hydrogen-bonded imino protons from base pairs observed
with NMR spectroscopy

46C 376C 46C 376C

A-T C-G G-T or nonspecific

a-NE 1.05 1.01 2 5 1 2 G-C

a-NE5mC1 1.05 1.01 2 4 3 2 A-T; 2 G-C

Dyn A 1.13 1.03 3 4 3 -

Dyn A5mC1 0.97 1.01 5 3 3 -

Dyn A5mC2 1.13 1.01 3 3 3 -

Dyn A5mC1,2 0.97 1.03 4 3 4 -

Dyn A5mC1,3 0.98 1.02 4 3 3 -

Dyn A M1 1.11 1.02 2 1 1 -

Dyn A M2 1.07 1.00 1 1 - -

Dyn A M3 1.12 1.02 3 3 4 -

Dyn A M4 1.14 1.09 2 3 3 -

Dyn A M5 0.99 1.03 2 2 3 1 G-T

Dyn A (AS) 1.02 1.03 n/a n/a n/a n/a

Dyn B 1.09 1.10 2 3 6 1 G-C

Dyn B5mC1 1.06; 1.09b 1.04; 1.08b 2 5 7 -

Dyn B (AS) 1.06 1.05 n/a n/a n/a n/a

The oligonucleotide sequences and corresponding names are given in Table 1.
a, standard deviation for relative mobility values calculated using data of 2–6 experiments did not exceed 0.02.
-, no imino protons were observed.
n/a, no measurements were carried out.
b, Rf was calculated for dominant bands, except Dyn B5mC1, where calculation was carried out for the lower (left value) and upper (right value) bands showing similar
intensity (see Fig. 2).
doi:10.1371/journal.pone.0039605.t002
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conformations (Figures S3 and S4). Two examples of Dyn A

structures are shown in Fig. 6, and the thermodynamic properties

of the most favourable secondary structures of the Dyn A- and

Dyn B-coding sequences are presented in Tables S2 and S3. The

calculated melting temperatures range between 24uC and 42uC for

Dyn A, and between 42uC and 54uC for the more stable Dyn B

sequences. These results show that for both sequences, a large

number of conformations are possible at lower temperatures. As

expected, the structures containing non-canonical G-T base pairs,

such as Dyn A structures F and G, are only stable at low

temperatures.

For the Dyn A sequence, the overall most favourable energetics

is exhibited by Dyn A structure B, which consists of one large and

one small stem-loop. Dyn A structure A is a variant of structure B,

where the smaller stem-loop has melted. Dyn A structure A and C

are very similar as they both involve a single loop with a CGC/

GCG stem, but the particular bases included in the stem differ

between the two structures. In structures A and B bases 8–10 are

paired with bases 25–27, while in structure C bases 8–10 and 28–

30 are paired together (Fig. 6). Interestingly, although structure B

is more stable than structure C at 5 and 31uC, mFold predicts

structure C to be more stable at temperatures above 31uC (Table

S2). This indicates a fine equilibrium between structures B and C,

Figure 2. Analysis of [c-32P]-labeled PDYN-derived oligonucleotides using PAGE (see Table 1 for sequences). Reference
oligonucleotides (RO) included 26-, 37- and 54-mer oligomers. Samples were preheated for 10 min at 95uC, incubated in loading buffer (20 mM
Tris/HCl pH 7.5, 37.5% glycerol, 15 mM MgCl2 and 50 mM NaCl) at 4uC (A, B, E,) or at 37uC (C, D, F, G) for 30 minutes before loading on native (A–F) or
denaturing 7.5 M urea (G) 15% polyacrylamide gel, and resolved at 4uC (A, B, E,) or at 37uC (C, D, F, G). Images shown were taken from the same gel;
equal amounts of radioactive oligonucleotides were loaded.
doi:10.1371/journal.pone.0039605.g002
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suggesting that the relative order of stability between these two

conformations may vary with factors such as temperature. Fig. 6

shows the positions of the cytosine methylation sites and the

mutated bases in Dyn A structures B and C. For structure B, all

methylated cytosines are base-paired and located in the two stems,

as are two of the five mutated bases. Thus, at least the two

mutations, and possibly also the cytosine methylations, are

expected to induce conformational changes in this structure. For

Dyn A structure C, two methylated cytosines and no mutated

bases are base-paired.

The Dyn B structures are generally more stable than the Dyn A

structures, mostly because the Dyn B sequence has the capacity to

form stable stem-loop structures with long stems. The most stable

Dyn B conformation – structure A – has four consecutive G-C

base pairs followed by an A-T pair in the stem, giving this

structure a melting temperature of 53.8uC. Also for the Dyn B

sequence, there is a structure – number C – that is energetically

very favourable at low temperatures, but rather unfavourable at

higher temperatures (Table S3). This again shows that the

equilibrium determining the proportions between the different

conformations will vary with the temperature. And again, as the

methylated cytosine positions are involved in base-pair formation

(Fig. 6), it appears plausible that such methylation may affect the

conformational equilibrium as well.

Discussion

The results obtained from native PAGE, CD and NMR

spectroscopy are in general agreement and demonstrate that the

PDYN-derived oligonucleotides form secondary structures that a)

are stabilized by canonical A-T and G-C and non-canonical G-T

base pairing, b) display characteristic CD melting profiles, and c)

show differential mobility on a native gel. Cytosine methylation

appears to induce the formation of novel conformers or shift the

equilibrium between existing conformational variants. The effects

of CpG methylation are nucleotide sequence dependent, compa-

rable in strength with those induced by point mutations, and are

manifested at 4uC but not at 37uC.

PAGE analysis demonstrated that Dyn A, Dyn B and Dyn B

(AS) oligonucleotides may adopt compact conformations charac-

terized by higher mobility on a native gel, that are evident at 4uC
(Dyn A), or at both 4uC and 37uC (Dyn B and Dyn B (AS)). The a-

NE oligomer may be present either in an unstructured form, or in

a structured form that does not differ in mobility from those of the

reference oligonucleotides at 4uC and 37uC. Methylation of the

Dyn B oligonucleotide and of the Dyn A oligomer at the first CpG

site (Dyn A5mC1) substantially decreased the mobility at 4uC or at

both temperatures, respectively. In contrast, methylation of the a-

Figure 4. Normalized thermal melting profiles of PDYN-derived
oligonucleotides recorded with CD spectroscopy (275 nm)
between 56C and 606C. Normalization was performed using the
formula, (St2S60uC)/(S5uC2S60uC), where St, S5uC and S60uC are the signal
intensities at 275 nm at a given temperature, 5uC, and 60uC,
respectively. A. Black – Dyn A; Blue – Dyn B; Green – Dyn B5mC1; Red
– a-NE; Turquoise – a-NE5mC1. B. Black – Dyn A; Blue – Dyn A5mC1;
Green – Dyn A5mC2; Red – Dyn A5mC1,2; Turquoise – Dyn A5mC1,3. C.
Black – Dyn A; Blue – Dyn A M1; Green – Dyn A M2; Red – Dyn A M3;
Turquoise – Dyn A M4; Orange - Dyn A M5.
doi:10.1371/journal.pone.0039605.g004

Figure 3. Effects of excess of unlabeled Dyn A and Dyn A5mC1

oligonucleotides on migration of [c-32P]-labeled Dyn A5mC1

oligonucleotide on a native gel. Samples were preheated for
10 min at 95uC, mixed with loading buffer (20 mM Tris/HCl pH 7.5,
37.5% glycerol, 15 mM MgCl2 and 50 mM NaCl), incubated for
30 minutes at 4uC, and resolved on native 15% polyacrylamide gel at
4uC. Lane 1, [c-32P]-labeled a-NE5mC1 oligonucleotide; lane 2, [c-32P]-
labeled Dyn A5mC1 oligonucleotide; lane 3, double-stranded (ds)
oligonucleotide produced by preincubation of [c-32P]-labeled Dyn A
oligonucleotide with the corresponding antisense oligonucleotide;
lanes 4 to 6 and 7 to 9, [c-32P]-labeled Dyn A5mC1 oligonucleotide
preincubated with 0.7, 7.0 or 700.0 ng of unlabeled Dyn A5mC1 or Dyn A
oligonucleotide.
doi:10.1371/journal.pone.0039605.g003
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NE oligomer and the Dyn A oligonucleotide at the second CpG

site (Dyn A5mC2) did not affect the native gel mobility. Although

methylation- and structure-dependent base stacking interactions of

the oligonucleotides with the polyacrylamide matrix can not be

completely ruled out as a cause for the mobility differences, it

appeared more likely that the methylation-induced mobility

Figure 5. 1D 1H NMR spectra showing the imino proton region of the PDYN-derived oligonucleotides. Hydrogen-bonded imino protons
originating from A-T base pairs (14–15 ppm), G-C base pairs (12–13 ppm) and G-T base pairs (10–12 ppm) are observed. Spectra were recorded at
4uC (A) or 37uC (B). The oligonucleotide abbreviations used in the figure are presented in Table 1.
doi:10.1371/journal.pone.0039605.g005

CpG Methylation Effects ssDNA Conformation

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e39605



differences arise from conformational differences between the un-

methylated and methylated molecules.

The CD analyses revealed secondary structure formation in the

PDYN-derived oligonucleotides at low temperatures. When the

temperature is increased these structures melt into unstructured or

alternative conformations. The pathogenic M1–M3 mutations had

a large impact on the Dyn A oligonucleotide secondary structures

and increased their thermostability. In contrast, cytosine methyl-

ation did not substantially affect the thermal stabilities of the

oligomers. NMR spectroscopy identified canonical A-T and G-C,

and non-canonical G-T base-pairing in all PDYN-derived oligo-

nucleotides at 4uC. These secondary structures melt upon

increased temperature, as expected, although some oligonucleo-

tides retain secondary structure elements also at 37uC. Both the

CD and NMR experiments were carried out in an environment

containing monovalent ions only, therefore we expect the observed

structures to display higher thermal stability in vivo, i.e. in an

environment containing stabilizing proteins and divalent ions. The

NMR, CD, and computer modeling results all showed the

presence of multiple secondary structures with different melting

temperatures, co-existing in equilibrium. The NMR results at 4uC
show that both cytosine methylation and nucleotide mutation

affects the base pairing patterns, indicating that both single

cytosine methylations and single nucleotide mutations can shift the

conformational equilibrium in the ssDNA oligonucleotides. This

strongly suggests that the methylated cytosines form base pairs in

the observed structures. The mFold structure calculations indicate

that the three energetically most favourable Dyn A structures

contain a loop-stem involving two methylated cytosines. This loop-

stem consists of bases 8–10 (CGC) paired either with bases 25–27

(GCG) in structures A and B, or with bases 28–30 (GCG) in

structure C (Fig. 6). Rather similar free energies are obtained by

base-pairing with either the 25–27 GCG or the 28–30 GCG

sequence, and it is conspicuous that both central cytosines, C26

and C29, constitute methylation sites. It is plausible that

methylation of C26 and/or C29 can affect the preference of

bases 8–10 to form pairs with the 25–27 or the 28–30 GCG triad.

Hence, even though the actual secondary structures cannot be

elucidated from current experiments, and even though the current

computational tools for structure prediction of ssDNA can not

evaluate impact of cytosine methylation, the mFold results

together with spectroscopic data make it likely that slightly

different base-pairing properties of 5-methylcytosine compared to

normal cytosine influences the secondary structure formation of

ssDNA. Density functional theory (DFT) calculations have

demonstrated improved stacking energies for 5-methylcytosine

[46], which might make a loop-stem with 5-methylcytosine

energetically more favourable than a loop-stem with unmethylated

cytosine.

Such a methylation effect is particularly evident for the Dyn B

sequence, where the NMR results show an increased number of

G-C and G-T base pairs as a result of 5mC1-methylation (Fig. 5).

In total 14 imino proton resonances corresponding to Watson-

Crick base pairs are observed, and it appears but impossible to

observe so many base pairs in one structural conformation of the

Dyn B sequence. Thus, the increased number of observed base

pairs indicates that 5mC1-methylation has caused an increase in the

number of stable conformations (at 4uC). The existence of multiple

conformations in the Dyn B5mC1 NMR sample provides a simple

explanation for the two bands observed on the PAGE gel for the

same sequence (Fig. 2, Table 2).

CpG sites in the dynorphin-coding segment of the PDYN gene

are differentially methylated in human tissues [47]. Methylation of

the first CpG site in the Dyn A sequence, but not of other sites in

the CpG-rich segment covering the a-NE and Dyn sequences, is

conserved between human subjects, but strongly differs between

brain and peripheral human tissues, and also between tissues and

cultured human cell lines. This site is furthermore located within a

Figure 6. Predicted secondary structures of the Dyn A-coding sequence, calculated with the mFold software (shown as B and C on
Fig. S3). Methylated cytosines are shown in red letters, and mutated bases are shown in blue circles.
doi:10.1371/journal.pone.0039605.g006
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mutational ‘‘hot spot’’ and is destroyed by two pathogenic

missense mutations that induce human neurodegenerative disor-

der SCA23 ([35], manuscript in preparation). Taken together,

these observations suggest that methylation of this CpG dinucle-

otide has epigenetic regulatory consequences, possibly caused by

the ssDNA secondary structure effects that we observe with PAGE

and NMR analysis.

Formation of non-canonical ssDNA structures may affect DNA-

protein and DNA-DNA interactions, and consequently stimulate

or repress transcription, DNA repair, recombination or replication

[1–5]. Such structures may be formed by ssDNA under conditions

of DNA supercoiling that affects gene regulation in pro- and

eukaryotes [48–50]. One example is the p53 tumor repressor

protein which displays stronger binding to its DNA target site

when the latter adopts a stem-loop conformation [51]. Our data

indicate that cytosine methylation affects the conformational

flexibility of short ssDNA molecules and their propensity to form

secondary structures, both at 4uC and 37uC. Given these results, it

becomes important to examine whether cytosine methylation may

interfere with the conformational flexibility of ssDNA segments in

vivo in a chromatin context under conditions of a crowded

intranuclear environment and DNA superhelical stress. Such

effects may be relevant for the processes with which double-

stranded DNA unwinds to ssDNA during gene transcription, DNA

replication, and recombination.

Supporting Information

Figure S1 Mass spectrum for (A) Dyn A and (B) Dyn
A5mC1 oligonucleotides.
(TIF)

Figure S2 CD spectra between 220 and 340 nm for
selected Dyn oligonucleotides in 10 mM sodium

phosphate buffer, pH 7.3, at 46C (solid lines) and at
606C (dashed lines). The oligonucleotide abbreviations
used in the figure are presented in Table 1.

(TIF)

Figure S3 Seven Dyn A secondary structures, which
thermodynamic properties were calculated using mFold
software [36] and listed in Table S2.

(TIF)

Figure S4 Six Dyn B secondary structures, which
thermodynamic properties were calculated using the
mFold software [36] and listed in Table S3.

(TIF)

Table S1 Mass of oligonucleotides used in the study
determined by mass spectrometry.
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Table S2 Melting temperature (Tm), number of G-C, A-
T, and G-T base pairs, and folding energies (DG)
between 5 and 376C for seven different secondary
structures of the Dyn A-coding sequence.
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Table S3 Melting temperature (Tm), number of G-C, A-
T, and G-T base pairs, and folding energies (DG)
between 5 and 556C for seven different secondary
structures of the Dyn B-coding sequence.

(DOC)

Author Contributions

Conceived and designed the experiments: GB AG. Performed the

experiments: MMT SKTSW OY FM IB JL. Analyzed the data: AG GB

MMT SKTSW RZ DV. Wrote the paper: AG GB MMT SKTSW OY.

References

1. Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombina-

tion from the RecA-ssDNA/dsDNA structures. Nature 453: 489–484.

2. Swamynathan SK, Nambiar A, Guntaka RV (1998) Role of single-stranded

DNA regions and Y-box proteins in transcriptional regulation of viral and

cellular genes. FASEB J 12: 515–522.

3. Masai H, Arai K (1997) Frpo: a novel single-stranded DNA promoter for

transcription and for primer RNA synthesis of DNA replication. Cell 89: 897–

907.

4. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of

RPA-ssDNA complexes. Science 300: 1542–1548.

5. Jackson SP (2002) Sensing and repairing DNA double-strand breaks.

Carcinogenesis 23: 687–696.

6. Patel SS, Pandey M, Nandakumar D (2011) Dynamic coupling between the

motors of DNA replication: hexameric helicase, DNA polymerase, and primase.

Curr Opin Chem Biol.

7. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a

G-quadruplex in a promoter region and its targeting with a small molecule to

repress c-MYC transcription. Proc Natl Acad Sci U S A 99: 11593–11598.

8. Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells RD (2001) Sticky

DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of

the frataxin gene, inhibits transcription. J Biol Chem 276: 27171–27177.

9. Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M (1996) Inverted

repeats, stem-loops, and cruciforms: significance for initiation of DNA

replication. J Cell Biochem 63: 1–22.

10. Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM (2000) Triple-helix

formation induces recombination in mammalian cells via a nucleotide excision

repair-dependent pathway. Mol Cell Biol 20: 990–1000.

11. Napierala M, Parniewski P, Pluciennik A, Wells RD (2002) Long CTG.CAG

repeat sequences markedly stimulate intramolecular recombination. J Biol Chem

277: 34087–34100.

12. Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends

Biochem Sci 32: 271–278.

13. Lada AG, Waisertreiger IS, Grabow CE, Prakash A, Borgstahl GE, et al. (2011)

Replication protein A (RPA) hampers the processive action of APOBEC3G

cytosine deaminase on single-stranded DNA. PLoS One 6: e24848.

14. Biyani M, Nishigaki K (2005) Single-strand conformation polymorphism (SSCP)

of oligodeoxyribonucleotides: an insight into solution structural dynamics of

DNAs provided by gel electrophoresis and molecular dynamics simulations.

J Biochem 138: 363–373.

15. Liang X, Kuhn H, Frank-Kamenetskii MD (2006) Monitoring single-stranded

DNA secondary structure formation by determining the topological state of

DNA catenanes. Biophys J 90: 2877–2889.

16. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of

polymorphisms of human DNA by gel electrophoresis as single-strand

conformation polymorphisms. Proc Natl Acad Sci U S A 86: 2766–2770.

17. Tomasko M, Vorlickova M, Sagi J (2009) Substitution of adenine for guanine in

the quadruplex-forming human telomere DNA sequence G(3)(T(2)AG(3))(3).

Biochimie 91: 171–179.

18. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell

128: 669–681.

19. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, et al. (2010)

Conserved role of intragenic DNA methylation in regulating alternative

promoters. Nature 466: 253–257.

20. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription.

Genes Dev 25: 1010–1022.

21. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev

16: 6–21.

22. Ballestar E, Wolffe AP (2001) Methyl-CpG-binding proteins. Targeting specific

gene repression. Eur J Biochem 268: 1–6.

23. Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, et al. (2009)

Developmental programming of CpG island methylation profiles in the human

genome. Nat Struct Mol Biol 16: 564–571.

24. Mayer-Jung C, Moras D, Timsit Y (1998) Hydration and recognition of

methylated CpG steps in DNA. EMBO J 17: 2709–2718.

25. Hodges-Garcia Y, Hagerman PJ (1992) Cytosine methylation can induce local

distortions in the structure of duplex DNA. Biochemistry 31: 7595–7599.

26. Zacharias W, Jaworski A, Wells RD (1990) Cytosine methylation enhances Z-

DNA formation in vivo. J Bacteriol 172: 3278–3283.

27. Severin PM, Zou X, Gaub HE, Schulten K (2011) Cytosine methylation alters

DNA mechanical properties. Nucleic Acids Res.

CpG Methylation Effects ssDNA Conformation

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e39605



28. Geahigan KB, Meints GA, Hatcher ME, Orban J, Drobny GP (2000) The

dynamic impact of CpG methylation in DNA. Biochemistry 39: 4939–4946.

29. Derreumaux S, Chaoui M, Tevanian G, Fermandjian S (2001) Impact of CpG

methylation on structure, dynamics and solvation of cAMP DNA responsive

element. Nucleic Acids Res 29: 2314–2326.

30. Meints GA, Drobny GP (2001) Dynamic impact of methylation at the M. Hhai

target site: a solid-state deuterium NMR study. Biochemistry 40: 12436–12443.

31. Nathan D, Crothers DM (2002) Bending and flexibility of methylated and

unmethylated EcoRI DNA. J Mol Biol 316: 7–17.

32. Mergny JL, Lacroix L (2003) Analysis of thermal melting curves. Oligonucle-

otides 13: 515–537.

33. Vondruskova J, Kypr J, Kejnovska I, Fialova M, Vorlickova M (2008) Role of

loops in the guanine quadruplex formation by DNA/RNA hybrid analogs of

G4T4G4. Int J Biol Macromol 43: 463–467.

34. Skolakova P, Bednarova K, Vorlickova M, Sagi J (2010) Quadruplexes of

human telomere dG(3)(TTAG(3))(3) sequences containing guanine abasic sites.

Biochem Biophys Res Commun 399: 203–208.

35. Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C,

et al. (2010) Prodynorphin mutations cause the neurodegenerative disorder

spinocerebellar ataxia type 23. Am J Hum Genet 87: 593–603.

36. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res 31: 3406–3415.

37. Nishigaki K, Husimi Y, Tsubota M (1986) Detection of differences in higher

order structure between highly homologous single-stranded DNAs by low-

temperature denaturant gradient gel electrophoresis. J Biochem 99: 663–671.

38. Diekmann S, Lilley DM (1987) The anomalous gel migration of a stable

cruciform: temperature and salt dependence, and some comparisons with curved

DNA. Nucleic Acids Res 15: 5765–5774.

39. Han H, Langley DR, Rangan A, Hurley LH (2001) Selective interactions of

cationic porphyrins with G-quadruplex structures. J Am Chem Soc 123: 8902–

8913.

40. Laporte L, Thomas GJ, Jr. (1998) A hairpin conformation for the 39 overhang of

Oxytricha nova telomeric DNA. J Mol Biol 281: 261–270.

41. Owen BA, Yang Z, Lai M, Gajec M, Badger JD, 2nd, et al. (2005) (CAG)(n)-

hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch
recognition. Nat Struct Mol Biol 12: 663–670.

42. Shea RG, Ng P, Bischofberger N (1990) Thermal denaturation profiles and gel

mobility shift analysis of oligodeoxynucleotide triplexes. Nucleic Acids Res 18:
4859–4866.

43. Yu A, Dill J, Wirth SS, Huang G, Lee VH, et al. (1995) The trinucleotide repeat
sequence d(GTC)15 adopts a hairpin conformation. Nucleic Acids Res 23:

2706–2714.

44. Zhuang XY, Tang J, Hao YH, Tan Z (2007) Fast detection of quadruplex
structure in DNA by the intrinsic fluorescence of a single-stranded DNA binding

protein. J Mol Recognit 20: 386–391.
45. Warmlander S, Sen A, Leijon M (2000) Imino proton exchange in DNA

catalyzed by ammonia and trimethylamine: evidence for a secondary long-lived
open state of the base pair. Biochemistry 39: 607–615.

46. Acosta-Silva C, Branchadell V, Bertran J, Oliva A (2010) Mutual relationship

between stacking and hydrogen bonding in DNA. Theoretical study of guanine-
cytosine, guanine-5-methylcytosine, and their dimers. J Phys Chem B 114:

10217–10227.
47. Bakalkin G, Kononenko O, Taqi M, Watanabe H, Krishtal O, et al. (2010)

Methylation of the enkephalin-encoding sequences in the human prodynorphin

gene: Specific patterns in brain and peripheral tissues. Program No. 167.16.
2010 Neuroscience Meeting Planner. San Diego,CA: Society for Neuroscience.

Online.
48. Wright BE, Schmidt KH, Hunt AT, Lodmell JS, Minnick MF, et al. (2011) The

roles of transcription and genotoxins underlying p53 mutagenesis in vivo.
Carcinogenesis 32: 1559–1567.

49. Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM (1999) Large-scale

effects of transcriptional DNA supercoiling in vivo. J Mol Biol 292: 1149–1160.
50. Hernandez M, Wright SD, Cai TQ (2007) Critical role of cholesterol ester

transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem
Biophys Res Commun 355: 1075–1080.

51. Gohler T, Reimann M, Cherny D, Walter K, Warnecke G, et al. (2002) Specific

interaction of p53 with target binding sites is determined by DNA conformation
and is regulated by the C-terminal domain. J Biol Chem 277: 41192–41203.

CpG Methylation Effects ssDNA Conformation

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e39605


