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Abstract: The overactive bladder syndrome and detrusor overactivity are conditions
that can have major effects on quality of life and social functioning. Antimuscarinic drugs
are still first-line treatment. These drugs often have good initial response rates, but
adverse effects and decreasing efficacy cause long-term compliance problems, and
alternatives are needed. The recognition of the functional contribution of the urothelium/
suburothelium, the autonomous detrusor muscle activity during bladder filling and the
diversity of nerve transmitters involved has sparked interest in both peripheral and
central modulation of overactive bladder syndrome/detrusor overactivity pathophysiol-
ogy. Three drugs recently approved for treatment of overactive bladder syndrome/
detrusor overactivity (mirabegron, tadalafil and onabotulinum toxin A), representing
different pharmacological mechanisms; that is, b-adrenoceptor agonism, phosphodi-
esterase type 5 inhibition, and inhibition of nerve release of efferent and afferent trans-
mitters, all seem to have one effect in common: inhibition of the afferent nervous activity
generated by the bladder during filling. In the present review, the different mechanisms
forming the pharmacological basis for the use of these drugs are discussed.

Key words: mirabegron, mucosal signaling, myogenic pathway, onabotulinum toxin
A, tadalafil.

Introduction

The OAB, defined either symptomatically as the OAB syndrome or urodynamically as DO,
is a bladder filling disorder. To exert normal bladder control, adequate sensory input to the
CNS is necessary, and it is well established that changes in sensory mechanisms might give
rise to disturbances in bladder function. It is therefore logical that pharmacological control
of bladder contraction has focused on how afferent nerve activity is generated peripherally
and handled by the CNS. Several factors might contribute to the genesis of OAB, and at least
two afferent signaling pathways in the bladder can be identified, the “myogenic” and the
“urothelial” pathway.1

It is obvious that the mechanisms leading to an increased activity in afferent nerves might
be interesting targets for drugs aimed at controlling sensory and motor activity of the
bladder. It is now widely accepted that antimuscarinic drugs, which are still first line
treatment of OAB/DO, exert effects on afferent signaling important for their clinical effi-
cacy.2 Three novel drugs have recently been approved for treatment of OAB/DO: mirabe-
gron, tadalafil and onabotulinum toxin A. They represent different pharmacological
mechanisms; that is, b-AR agonism, PDE5 inhibition, and inhibition of nerve release of
efferent and afferent transmitters, and why they all are clinically effective has not been
definitely established. In the present review, the mechanisms providing the pharmacological
basis for the use of these drugs are discussed.

Bladder afferent signaling

The bladder mucosa is richly innervated with afferent nerves carrying information from the
bladder to the CNS, but also the detrusor muscle is supplied with such nerves. The fibers
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most important in the control of micturition are myelinated
Ad fibers and unmyelinated C-fibers.1 Ad fibers are mech-
anosensitive, discharging in response to distension of the
bladder wall. C-fibers are normally inactive, but might
respond to, for example, chemical irritation or stretch of the
urothelium. Under pathological circumstances, C-fibers can
be recruited to create new sensory pathways.

As mentioned, afferent fibers in the bladder are activated
through nervous pathways in the detrusor muscle (“myo-
genic”) and the mucosa (“urothelial”).1 During bladder
filling, there is no excitatory parasympathetic outflow from
the CNS,3 but there is a myogenic contractile activity con-
tributing to bladder tone. This contractile activity is most
probably influenced by activity in the sympathetic nerves to
the bladder and in local nervous circuits, resulting in what is
referred to as spontaneous (autonomous) contractile activ-
ity.4,5 The constant afferent output from the bladder gener-
ated by this autonomous activity has been termed “afferent
noise”.6 The urothelium and suburothelial interstitial cells
might exert influence over afferent nerves in response to
stretch or various chemical mediators,7,8 representing
another source of constant afferent input.

There are many theories regarding the pathogenesis of
OAB (Fig. 1), but it is likely that abnormally increased sig-
naling through afferent pathways might be involved.
Therefore, pharmacological manipulation of the mecha-
nisms generating these signals might be effective in the
treatment of OAB. It should be emphasized that the affer-
ent signals generated by the bladder have to be processed
in the CNS (Fig. 1). This is an important step in OAB
pathophysiology, and a promising but challenging thera-
peutic target.

Pharmacological control of bladder
afferent nerve activity

b-AR agonism

In the human detrusor, the b3-AR has been found to be the
predominant subtype.9–11 The b3-AR, likely along with
b2-AR, is directly involved in detrusor smooth muscle
relaxation.4,10,11 How this effect can be translated into the in
vivo effects of b3-AR stimulation seen in numerous preclini-
cal studies and clinical trials – increased bladder capacity
without change in micturition pressure or residual volume –
has not been clearly established. The normal stimulus for
activation of the micturition reflex is distension of the
bladder. This initiates activity in “in series”-coupled, low-
threshold mechanoreceptive (Ad) afferents.12 If the compli-
ance of the bladder is increased, the response to distension is
decreased; and to recruit afferent activity sufficient to initi-
ate micturition, greater filling volumes are needed – thus
bladder capacity increases. One of the factors that generates
bladder tone is the autonomous contractile, phasic activity
of the detrusor smooth muscle that occurs during filling.
These contractions are believed to generate afferent input
from both Ad- and C-fibers, which together with the activity
initiated by distension, will start the voiding reflex.

The autonomous activity of the detrusor is effectively
reduced by b3-AR agonists,13 and this reduces the afferent
output from the bladder. In fact, Aizawa et al. showed in rats
that the b3-AR agonist, CL316243, could inhibit filling-
induced activity not only in mechanosensitive Ad-fibers, but
also in C-fiber primary bladder afferents provided that these
fibers were stimulated by PG E2.14 Even if b3-AR agonists in
vitro might be able to relax detrusor muscle contracted by
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Fig. 1 Pathophysiology of the OAB. In
the bladder, increased afferent activity
generated in the detrusor or mucosa
through different mechanisms initiate
involuntary detrusor contractions. Such
contractions can be initiated independ-
ently of changes in afferent activity by
changes in the CNS.
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muscarinic receptor stimulation using high concentrations
of, for example, ACh or carbachol, they are not very effec-
tive. The voiding contraction is caused by a massive release
of contractant transmitters (ACh and ATP), and this might
be the reason why it is not affected by b3-AR agonists.
Providing further evidence that b3-AR agonists might influ-
ence the sensory regulation of micturition, Gillespie et al.
found that mirabegron (b3-AR agonist) inhibited only non-
voiding activity in a rat model of OAB, whereas tolterodine
(antimuscarinic) inhibited non-voiding activity, as well as
the amplitude of voiding contractions.15

Immunohistochemical staining has identified b3-AR not
only on detrusor muscle, but also on the afferent terminals
of the dorsal root ganglia of L6-S116, suggesting that b3-AR
agonism might directly affect afferent transmission. Several
studies have shown b-AR agonist-mediated disruption of
afferent nerve signals. As mentioned, Aizawa et al. showed
that the b3-AR agonist, CL316243, was able to inhibit
filling-induced Ad-fiber signaling and C-fiber mediated
hyperactivity caused by PG E2.14 These results were sup-
ported by the study by Kanai et al., who found that the
b3-AR agonist, BRL37344, directly inhibited stretch-
induced afferent firing in spinal cord transected mouse
bladder sheets.16

Investigations of the bladder mucosa have shown that the
mechanism of b3-AR agonism might involve interaction
with the urothelium/suburothelium. The b3-AR shows
intense immunohistochemical staining in the urothelium
and suburothelial interstitial cells.17,18 It has been shown that
norepinephrine can stimulate the release of nitric oxide from
the urothelium,19 but b3-AR stimulation might also release
other factors. Murakami et al. studied the inhibition of
carbachol-induced pig detrusor contractions by isoprenaline
and concluded that the relaxation responses did not involve
the urothelium, and was not caused by NO.20 A similar study
by Otsuka et al. found that the presence of the urothelium
caused a right-ward shift of the concentrations–response
curve for isoprenaline.21 They suggested that this was a
result of b-AR mediated release of an inhibitory factor from
the urothelium, which inhibited the b-AR agonist-induced
relaxation of the detrusor. However, the influence of stimu-
lation of urothelial b3-AR on detrusor muscle contraction
and on afferent signaling requires further study.

Mirabegron is a b3-AR selective agonist that has
recently been approved for the treatment of OAB in Japan
and the USA, and is under consideration in Europe. Phase
IIa, IIb and III drug trials have shown that mirabegron con-
sistently improved the mean number of micturitions in
24 h, and the number of continence episodes in 24 h.22–25

The reported adverse events were similar in placebo and
mirabegron groups, and included hypertension, headache,
gastrointestinal symptoms, dyspepsia and nausea. There
was also a small increase in pulse rate in both trials, but no
adverse cardiovascular events were reported. These studies

clearly establish b3-AR agonism as an effective treatment
of OAB.

PDE5 inhibition

LUTS in men include storage symptoms. It is well docu-
mented that PDE5 inhibitors improve male LUTS, whether
or not these symptoms are associated with erectile dysfunc-
tion.26 The exact mechanisms by which these beneficial
effects are exerted have still not been established,27 but this
has stimulated research activities with respect to the differ-
ent signaling pathways controlling the function of the LUT.
PDE5 is expressed and has biological activity in all parts of
the genitourinary tract, but with respect to its role in LUTS
pathophysiology, focus has been on the prostate, bladder and
urethra.26,28,29 Although PDE5 inhibition in vitro can relax
the smooth muscle of the LUT, and specifically the outflow
region, symptom improvements have not been associated
with significantly improved urinary flow rates,30 implying
that there might be some other mechanism(s) involved.
PDE5 inhibitors have several effects on the LUT, and as
discussed by, for example, Andersson et al.,27 they have
shown effects not only on smooth muscle, but also on
endothelial cell proliferation, nerve activity and tissue per-
fusion, all factors that might impact LUTS in men. Interest-
ingly, the mucosal effects of PDE5 inhibitors do not seem to
have been studied specifically.

Several in vitro studies on LUT smooth muscle have high-
lighted the involvement of the NO/cGMP pathway in the
mechanism of action of PDE5 inhibitors. Oger et al. inves-
tigated the effect of sildenafil on the smooth muscle of the
human bladder dome contracted by carbachol and found that
sildenafil had a direct relaxant effect.31 However, high con-
centrations of the drug were needed. The relaxant effects
were suggested to involve the cGMP pathway, as well as K+

channels. As the relaxation remained unaltered in the pres-
ence of the NO donor, sodium nitroprusside, the authors
questioned the role of NO and the CGMP system in human
bladder dome smooth muscle. This site of action might not
be predictive of the in vivo effects of the PDE5 inhibitors.

In smooth muscle isolated from the periurethral and tran-
sition zones of non-diseased human prostates, Ückert et al.
carried out in vitro studies showing that PDE5 inhibitors
caused a dose-dependent decrease of the tension induced by
norepinephrine.32 The relaxant effect, which was associated
with increases in cGMP concentrations, varied between 17
and 52%. In isolated human female urethral smooth muscle,
the contraction induced by noradrenaline was relaxed in
response to sildenafil, vardenafil and tadalafil,33 but high
concentrations of the drugs were needed. However, nerve-
induced relaxations were enhanced at low drug concentra-
tions. In isolated preparations from the human male
proximal penile urethra, the relaxation of norepinephrine
contracted preparations produced by sildenafil, vardenafil
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and tadalafil were modest (20–35%), and associated by
elevations in cGMP.34 The predictive value of these experi-
ments for estimating the effects on human urethral pressure
do not seem convincing.

In vivo studies have suggested that NO or its downstream
signaling could modulate the micturition reflex by reducing
the excitability of bladder afferents. Caremel et al. evaluated
the role of the NO/cGMP signaling pathway on the mictu-
rition reflex in a model of bladder hyperactivity associated
with C-fiber activation in the rat.35 They confirmed previous
studies36,37 that compounds inhibiting the NO/cGMP
pathway increased bladder overactivity, whereas compounds
activating the NO/cGMP pathway inhibited it. Similar
studies have found that nitric oxide generation of cGMP
might be the key step in the NO/cGMP pathway responsible
for PDE5 inhibition of bladder overactivity.38,39

Several lines of evidence further suggest that PDE5 inhi-
bition might affect afferent signaling. PDE5 increases the
accumulation of cGMP, which in turn stimulates the activity
in PKG. Increased PKG activity might decrease influx
through N-type voltage-gated Ca2+ channels in afferent
nerve terminals, resulting in decreased neuropeptide
release.40,41 This would also reduce positive feedback on
presynaptic NK1 and NK2 receptors, which in turn might
decrease afferent firing.41–43 Studies have shown direct inhi-
bition of afferent nerve transmission. For example, in a
model of bladder hyperactivity involving unanesthetized,
decerebrate SCI rats, Behr-Roussel et al. found that admin-
istration of vardenafil reduced bladder afferent nerve firing,
as well as non-voiding contractions.44 Minagawa et al. found
that tadalafil decreased afferent signaling in Ad and C-fibers
in response to both bladder filling and hyperactivity caused
by acrolein-induced cystitis with no change in bladder tone.45

This decrease in afferent signaling seemed to be related
to PDE5 inhibitor-mediated increased activity in the
NO/cGMP pathway, as the administration of L-arginine
inhibited Ad and C-fiber firing, whereas the NOS inhibitor,
L-NAME, increased afferent activity.46 It might be ques-
tioned if a direct effect on afferent nerves is the only mecha-
nism by which PDE5 inhibitors influences afferent signaling.
Assuming that pelvic ischemia contributes to LUTS,
improvement of blood flow to the LUT would be expected to
also improve LUT function. In a model of chronic bladder
ischemia where vascular occlusion was produced by
balloon-induced endothelial injury of the iliac arteries com-
bined with a high cholesterol diet, Nomiya et al. found that
chronic treatment with tadalafil, even if it did not prevent
neo-intimal formation and luminal occlusion, had beneficial
effects on bladder function.47 It reduced bladder overactivity,
decreased indicators of bladder ischemia, normalized
changes in NOS activity (decreases of nNOS and eNOS,
increase of iNOS) and prevented collagen deposition.

Thus, there might be several mechanisms by which PDE5
inhibitors affect the bladder, all resulting in reduced afferent

signaling, which seem to be the final common pathway of
relevance for the generation of LUTS.

To date, only tadalafil has been approved for the treat-
ment of LUTS secondary to BPH. RCT have shown sig-
nificant improvement in urinary symptoms, and the drug is
well tolerated.48–52 However, further studies on the long-
term effects are required, and whether or not the drug
can improve storage symptoms in women remains to be
established.

Botulinum toxin

BoNT, the neurotoxin produced by Clostridium botulinum,
comprises seven subtypes, of which subtype A (BoNT-A),
which has the longest duration of action, is clinically the
most relevant. BoNT-A is available in three different
commercial forms, which differ in their relative potency:
onabotulinum toxin A, abobotulinum toxin A and incobotu-
linum toxin A. Although there are differences in potency
between the forms, there are no reasons to believe that their
basic mechanisms of action is different. Most of the infor-
mation available preclinically and clinically derives from the
use of onabotulinum toxin A.

The details of the mechanisms of action of BoNT in the
nerve terminal are well-outlined elsewhere.53,54 Briefly, it
involves cleavage of the attachment proteins involved with
the mechanism of fusion of synaptic vesicles to the cyto-
plasmatic membrane necessary for neurotransmitter release.
Attachment proteins (the SNARE complex) include SNAP
25, synaptobrevin (vesicle associated membrane protein)
and syntaxin. BoNT-A cleaves SNAP 25, rendering the
SNARE complex inactive.53,54 In striated muscle, paralysis is
produced by inhibition of ACh release from cholinergic
motor nerve endings.53

In the human bladder, SNAP-25 expression has been
shown in parasympathetic, sympathetic and sensory fibers.55

Blockade of ACh release is believed to play an essential role
in the detrusor hypo- or acontractility that follows BoNT-A
injection in the bladder. Supporting this view, in normal or
SCI animals, BoNT/A treatment decreased the bladder
contractions evoked by electrical stimulation of spinal
nerves without altering autonomous contractile activity.56

However, BoNT-A might also have effects on sensory fibers,
as approximately half of the peptidergic sensory fibers
express SNAP 25.55 It has been well documented that
BoNT-A can inhibit release from sensory nerves both in the
CNS and peripherally.57–60 BoNT-A was found to reduce
afferent firing from bladder afferents and antidromic release
of neuropeptides.56

Although SNAP 25 immunoreactivity has not been
detected in urothelial cells,55 urothelial function also seems
compromised after BoNT-A administration. BoNT-A has
been shown to inhibit ATP release from the urothelium in
animal models of spinal cord injury.61,62
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In addition to its effect on neurotransmitter release,
BoNT-A, injected into the bladder wall seems to influence
the receptor profile of important neurotransmitters. Aposto-
lidis et al. found that the mucosal levels of P2X3 and TRVP1
were decreased 4 weeks after BoNT-A injection, and even
more so after 16 weeks.63 The decrease in the levels of these
receptors seemed to correlate with those patients who expe-
rienced decreased urgency after the injection. Datta et al.
found that patients with OAB had decreased levels of mus-
carinic receptors in the urothelium/suburothelium and that
the levels of muscarinic receptors 1 and 3 were normalized
after treatment with BoNT-A.64 Furthermore, they found an
inverse association with receptor level and patient-reported
symptoms. The relationship between mucosal receptor
profile and patient symptoms indicates that this might be an
important effect mechanism of BoNT-A.

Available evidence thus suggests that BoNT-A, by action
on both the motor part of the myogenic (release of contract-
ant transmitters) and on the mucosal (release of sensory
transmitters) activation pathways, decreases the afferent
nervous activity generated by the bladder during filling.

Several RCT have documented the clinical effects of
BoNT-A in both neurogenic and idiopathic DO,65 where the
drug decreases incontinence episodes, frequency and
urgency, and improves quality of life.66–68 However, success-
ful OAB treatment with BoNT-A does not appear to be
related to the existence of DO. No differences in outcomes
were found between those with and those without baseline
DO.69,70 BoNT-A is also effective in patients with OAB syn-
drome not responding to antimuscarinic drugs.69,70

The major adverse effects are urinary retention, some-
times requiring clean intermittent catherization, and urinary
tract infections. Beneficial effects were shown not to be
dose-dependent, whereas side effects might be lessened at
lower doses.71

Conclusions

OAB is a filling disorder in which abnormal sensations leads
to urinary urgency, frequency and incontinence. The afferent
signaling pathways that regulate micturition play a central
role in the pathogenesis of OAB, and thus represent impor-
tant targets for therapy. The three drugs discussed, mirabe-
gron, tadalafil and BoNT-A (although acting through
different mechanisms), share a central theme – inhibition of
afferent signaling from the bladder.
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