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Geodermatophilus obscurus Luedemann 1968 is the type species of the genus, which is the 
type genus of the family Geodermatophilaceae. G. obscurus is of interest as it has frequently 
been isolated from stressful environments such as rock varnish in deserts, and as it exhibits 
interesting phenotypes such as lytic capability of yeast cell walls, UV-C resistance, strong 
production of extracellular functional amyloid (FuBA) and manganese oxidation. This is the 
first completed genome sequence of the family Geodermatophilaceae. The 5,322,497 bp 
long genome with its 5,161 protein-coding and 58 RNA genes is part of the Genomic Encyc-
lopedia of Bacteria and Archaea project. 

Introduction 
Strain G-20T (= DSM 43160 = ATCC 25078 = JCM 
3152) is the type strain of the species Geodermato-
philus obscurus, which is the type genus in the family 
Geodermatophilaceae [1,2]. The species name de-
rives from the Latin word ‘obscurus’ meaning dark, 
obscure, indistinct, unintelligible [1]. The genus Geo-
dermatophilus and family Geodermatophilaceae 
were originally proposed in 1968 by Luedemann [1]. 
The genus Geodermatophilus was first described as a 
genus closely related to genus Dermatophilus, but 
being isolated from soil, as indicated by the prefix 
‘geo’, which derives from Greek ‘Gea’ meaning Earth 
[1]. In contrast, members of the genus Dermatophi-
lus originated from skin lesions of cattle, sheep, 

horses, deer, and man [3], as the meaning of the ge-
nus name is ‘skin-loving’. Yet, on the basis of 16S 
rRNA gene sequences, Geodermatophilus proved to 
be only distantly related to Dermatophilus [4] and 
was thus included in 1989 in the family Frankiaceae 
[5], together with the genera Blastococcus and Fran-
kia. In 1996, the genera Dermatophilus and Blasto-
coccus were excluded again from the family Frankia-
ceae [6] and finally formally combined with the ge-
nus Modestobacter in the family Geodermatophila-
ceae again [2]. G. obscurus is the only validly de-
scribed species in the genus Geodermatophilus [7], 
and consists of four subspecies [1] which have never 
been validly published [8]. 
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The type strain G-20T, together with other strains, 
has been isolated from soil in the Amargosa Desert 
of Nevada, USA [3]. Further Geodermatophilus 
strains were isolated from limestone [8,9] and rock 
varnish [10] in the Negev Desert, Israel, from mar-
ble in Delos, Greece [8,9], from chestnut soil in Gar-
dabani, Central Georgia [11], from rock varnish in 
the Whipple Mountains, California, USA [12], from 
orange patina of calcarenite in Noto, Italy [13], 
from gray to black patinas on marble in Ephesus, 
Turkey [13], and from high altitude Mount Everest 
soils [14,15]. Here we present a summary classifi-
cation and a set of features for G. obscurus G-20T, 
together with the description of the complete ge-
nomic sequencing and annotation. 

Classification and features 
Cells of Geodermatophilus produce densely packed 
cell aggregates [8], which are described as a muri-
form, tuber-shaped, noncapsulated, holocarpic thal-
lus consisting of masses of cuboid cells averaging 0.5 
to 2.0 µm in diameter (Table 1 and Figure 1) [1]. The 
thallus breaks up, liberating cuboid or coccoid non-
motile cells and elliptical to lanceolate zoospores [1]. 
The single cell can differentiate further into polar 
flagellated motile zoospores [15]. Thus, cells of Der-
matophilus may express a morphogenetic growth 
cycle in which it switches between a thalloid C-form 
and a motile zoosporic R-form [15]. It has been sup-
posed that tryptose (Difco) contains an unidentified 
factor, M, which controls morphogenesis in Geoder-
matophilus [15], though others could not observe 
the motile, budding zoospores of the R-form [8]. As 
colonies, strains of Geodermatophilus strains exhibit 
usually a dark brownish, greenish, or black pigmen-
tation with a smooth to rough surface and in most 
cases a solid consistency, including minor variations 
in colony shape [8]. Young colonies are almost color-
less, having smooth edges which become distorted 
and lobed in older colonies, where the colony consis-
tency becomes somewhat crumby [8]. The colonies 
become darkly pigmented immediately when they 
started to protrude upwards in the space above the 
agar [8]. Geodermatophilus does not produce hy-
phae, vesicles, outer membranous spore layers or 
capsules [5]. 
Strain G-20T utilizes L-arabinose, D-galactose, D-
glucose, glycerol, inositol, D-levulose, D-mannitol, 
sucrose, and D-xylose as single carbon sources for 
growth, but not D-arabinose, dulcitol, β-lactose, me-
lezitose, α-melibiose, raffinose, D-ribose, and etha-
nol [1,23]. Growth with L-rhamnose is only poor 
[1]. Strain G-20T is negative for β-hemolysis of 

blood agar (10% human blood) [1]. Also, nitrate 
reduction occurs only sporadically with both inor-
ganic or organic nitrate broth [1]. Strain G-20T hy-
drolyses starch, is weakly positive for gelatin lique-
faction and negative for casein utilization [23]. 
Strain G-20T showed a remarkable production of 
extracellular functional bacterial amyloid (FuBA), 
which is accessible to WO2 antibodies without sapo-
nification [24]. The WO2 antibody has been shown to 
bind only to amyloid and not to other kinds of protein 
aggregates [20,24]. One strain of G. obscurus was de-
scribed as having a lytic activity on yeast cell walls 
[12]. Another strain from rock varnish was shown to 
exhibit very strong resistance to UV-C light (220 J×m-

2) [12]. Two strains from rock varnish in the Negev 
Desert were able to oxidize manganese [10]. 
Only three G. obscurus isolates have 16S rRNA gene 
sequences with >98% sequence similarity to strain G-
20T: isolate G18 from Namibia, 99.1% [2], isolate 
06102S3-1 from deep-sea sediments of the East Pacif-
ic and Indian Ocean (EU603760) 98.5%, and G. obscu-
rus subspecies utahensis DSM 43162, 98.03% [8]. The 
highest degree of sequence similarity in environmen-
tal metagenomic surveys, 93.3% was reported from a 
marine metagenome (AACY020064011) from the 
Sargasso Sea [25]. (January 2010). 
Figure 2 shows the phylogenetic neighborhood of for 
G. obscurus G-20T in a 16S rRNA based tree. The se-
quences of the three 16S rRNA gene copies in the ge-
nome of G. obscurus G-20T do not differ from each 
other, but differ by 24 nucleotides from the previous-
ly published 16S rRNA sequence obtained from DSM 
43160 (X92356). These considerable discrepancies 
are most likely due to sequencing errors in the latter 
sequence. Genbank accession L40620, which was ob-
tained from ATCC 25078, differs by only one single 
nucleotide from the 16S rRNA gene copies in the ge-
nome obtained from DSM 43160. 

Chemotaxonomy 
The major fatty acids of strain G-20T are iso-C15:0 
(19.0%), iso-C16:0 (16.2%), C16:1 cis9 (13:0%), C17:1 
(10.4%), C18:1 cis9 (6.6%), and anteiso-C15:0 (5.7%). All 
other fatty acids (iso-C14:0, C15:0, C15:1, C16:0, C17:0, iso-
C17:0, and anteiso-C17:0) were each below 4% [33]. 
Qualitatively, these values are largely congruent 
with other sources [4,34]. Strain G-20T contains 
tetrahydro-menaquinones with nine isoprene units 
[MK-9(H4)] as sole component [4]. No whole cell 
wall sugar was found in strain G-20T, which contains 
only small amounts of galactose, glucose, and ribose 
[4,35]. The cell wall type is IIIC, and contains meso-
2,6-diaminopimelic acid [35]. 
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Figure 1. Scanning electron micrograph of G. obscurus G-20T 

 

 
Figure 2. Phylogenetic tree highlighting the position of G. obscurus G-20T relative to the other type strains within the 
suborder Frankineae. The tree was inferred from 1,364 aligned characters [26,27] of the 16S rRNA gene sequence 
under the maximum likelihood criterion [28] and rooted with the type strain of the order Actinomycetales. The 
branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support 
values from 350 bootstrap replicates [29] if larger than 60%. Lineages with type strain genome sequencing projects 
registered in GOLD [30], such as the GEBA organism Nakamurella multipartita [31] are shown in blue. Important 
non-type strains are shown in green [32], and published genomes in bold. 
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Table 1. Classification and general features of G. obscurus G-20T according to the MIGS recommendations [16] 
MIGS ID Property Term Evidence code 

 Current classification 
 

Domain Bacteria TAS [17] 
Phylum Actinobacteria TAS [18] 
Class Actinobacteria TAS [19] 

Subclass Actinobacteridae TAS [19] 

Order Actinomycetales TAS [19] 

Suborder Frankineae TAS [19] 
Family Geodermatophilaceae TAS [2] 
Genus Geodermatophilus TAS [1] 
Species Geodermatophilus obscurus TAS [1] 
Type strain G-20 TAS [1] 

 Gram stain gram positive TAS [1] 

 Cell shape cuboid or coccoid nonmotile cells and 
elliptical to lanceolate zoospores TAS [1] 

 Motility motile zoospores TAS [1] 
 Sporulation unknown TAS [1] 
 Temperature range 18°C–37°C TAS [20] 
 Optimum temperature 24°C-28°C TAS [20] 
 Salinity does not grow at 3% or more NaCl TAS [20] 
MIGS-22 Oxygen requirement aerobic TAS [20] 
 Carbon source soluble sugars TAS [1] 
 Energy source chemoorganotroph TAS [8] 

MIGS-6 Habitat worldwide distribution in soil, on rock 
surfaces, and deep sea marine sediments TAS [2,8] 

MIGS-15 Biotic relationship free-living TAS [1,8,10,12,14] 
MIGS-14 Pathogenicity no NAS 
 Biosafety level 1 TAS [21] 
 Isolation soil TAS [1] 
MIGS-4 Geographic location Amargosa Desert, Nevada, USA TAS [1] 
MIGS-5 Sample collection time 1968, or before TAS [1] 
MIGS-4.1 
MIGS-4.2 

Latitude 
Longitude 

36.48 
-116.50 NAS 

MIGS-4.3 Depth unknown  
MIGS-4.4 Altitude unknown  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for 
the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). 
These evidence codes are from of the Gene Ontology project [22]. If the evidence code is IDA, then the property 
was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position, and is part of the 
Genomic Encyclopedia of Bacteria and Archaea 
project. The genome project is deposited in the 
Genome OnLine Database [30] and the complete 

genome sequence is deposited in GenBank. Se-
quencing, finishing and annotation were per-
formed by the DOE Joint Genome Institute (JGI). A 
summary of the project information is shown in 
Table 2. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
One 8kb pMCL200 genomic library 
One 454 pyrosequencing standard library 
and one Illumina library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX, Illumina GA 
MIGS-31.2 Sequencing coverage 8.0× Sanger; 21.8× pyrosequencing 
MIGS-30 Assemblers Newbler version 1.1.02.15, phrap 
MIGS-32 Gene calling method Prodigal, GenePRIMP 
 INSDC ID CP001867 
 Genbank date of release January 19, 2010 
 GOLD ID Gc01190 
 NCBI project ID 29547 
 Database: IMG-GEBA 2502171147 
MIGS-13 Source material identifier DSM 43160 
 Project relevance Tree of Life, GEBA 

 
Growth conditions and DNA isolation 
G. obscurus G-20T, DSM 43160, was grown in 
DSMZ medium 65 [36] at 28°C. DNA was isolated 
from 0.5-1 g of cell paste using Qiagen Genomic 
500 DNA Kit (Qiagen, Hilden, Germany) with a 
modified protocol for cell lysis, (procedure st/L), 
and one hour incubation at 37°C, according to Wu 
et al. [37]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing performed at the JGI can be found at the JGI 
website (http://www.jgi.doe.gov/). 454 Pyrose-
quencing reads were assembled using the Newb-
ler assembler version 1.1.02.15 (Roche). Large 
Newbler contigs were broken into 5,725 overlap-
ping fragments of 1,000 bp and entered into as-
sembly as pseudo-reads. The sequences were as-
signed quality scores based on Newbler consensus 
q-scores with modifications to account for overlap 
redundancy and adjust inflated q-scores. A hybrid 
454/Sanger assembly was made using the parallel 
phrap assembler (High Performance Software, 
LLC). Possible misassemblies were corrected with 
Dupfinisher or transposon bombing of bridging 
clones [38]. A total of 1,530 Sanger finishing reads 
were produced to close gaps, to resolve repetitive 
regions, and to raise the quality of the finished se-
quence. Illumina reads were used to improve the 
final consensus quality using an in-house devel-
oped tool (the Polisher). The error rate of the 

completed genome sequence is less than 1 in 
100,000. Together, the combination of the Sanger 
and 454 sequencing platforms provided 29.8× 
coverage of the genome. The final assembly con-
tains 48,209 Sanger reads and 353,553 pyrose-
quencing reads. 

Genome annotation 
Genes were identified using Prodigal [39] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [40]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [41]. 

Genome properties 
The genome is 5,322,497 bp long and comprises 
one main chromosome with a 74.0% GC content 
(Figure 3 and Table 3). Of the 5,219 genes pre-
dicted 5,161 were protein coding genes, and 58 
RNAs. In addition, 350 pseudogenes were also 
identified. The majority of the protein-coding 
genes (69.8%) were assigned with a putative func-
tion while those remaining were annotated as hy-
pothetical proteins. The distribution of genes into 
COGs functional categories is presented in Table 4. 
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Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 

Comparison with closest related genomes 
Table 5 provides an overall comparison of the ge-
nomes of G. obscurus strain G-20T with the closest 
available genomes, that is, Acidothermus celluloly-
ticus 11BT, Frankia alni ACN14A and N. multiparti-
ta Y-104T. The total length of (non-overlapping) 
high-scoring segment pairs (HSPs) and the num-
ber of identical base pairs within these HSPs were 
determined using the GGDC web server [42] by 
directly applying NCBI Blastn to the genomes 
represented as nucleotide sequences [43].  

Number and proportion of shared homologs were 
determined using the 'Phylogenetic Profiler' func-
tion of the IMG system [41] using default values. 
While the relative order of 16S rRNA difference 
does not correspond to the genomic similarities, 
the four genome-based measures uniformly indi-
cate that N. multipartita Y-104T possesses the ge-
nome most similar to the one of G. obscurus G-20T, 
followed by F. alni ACN14A and A. cellulolyticus 
11BT. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 5,322,497 100.00% 
DNA coding region (bp) 4,756,139 89.36% 
DNA G+C content (bp) 3,937,802 73.98% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 5,219 100.00% 
RNA genes 58 1.11% 
rRNA operons 3  
Protein-coding genes 5,161 98.89% 
Pseudo genes 350 6,71% 
Genes with function prediction 3,640 69.75% 
Genes in paralog clusters 896 17.17% 
Genes assigned to COGs 3,408 65.30% 
Genes assigned Pfam domains 3,584 68.67% 
Genes with signal peptides 793 15.19% 
Genes with transmembrane helices 1,105 21.17% 
CRISPR repeats 0  

 

Table 4. Number of genes associated with the general COG functional categories 
Code Value %age Description 

J 166 3.2 Translation, ribosomal structure and biogenesis 
A 1 0.0 RNA processing and modification 
K 309 6.0 Transcription 
L 196 3.8 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 27 0.5 Cell cycle control, mitosis and meiosis 
Y 0 0.0 Nuclear structure 
V 51 1.0 Defense mechanisms 
T 242 4.7 Signal transduction mechanisms 
M 213 4.1 Cell wall/membrane biogenesis 
N 43 0.8 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 52 1.0 Intracellular trafficking and secretion 
O 96 1.9 Posttranslational modification, protein turnover, chaperones 
C 277 5.4 Energy production and conversion 
G 267 5.2 Carbohydrate transport and metabolism 
E 313 6.1 Amino acid transport and metabolism 
F 87 1.7 Nucleotide transport and metabolism 
H 180 3.5 Coenzyme transport and metabolism 
I 188 3.6 Lipid transport and metabolism 
P 164 3.2 Inorganic ion transport and metabolism 
Q 127 2.5 Secondary metabolites biosynthesis, transport and catabolism 
R 552 10.7 General function prediction only 
S 295 5.7 Function unknown 
- 1,811 35.1 Not in COGs 
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Table 5. Percent-wise 16S rRNA sequence divergence 1 

 

16S rRNA 
GGD 

formula 1 
GGD 

formula 2 
GGD 

formula 3 

Number of 
shared 

homologs %age 

A. cellulolyticus 11BT 
(NC_008578) 6.45% 0.930 0.231 0.946 2,309 44.7% 

F. alni ACN14A 
(NC_008278) 5.81% 0.915 0.212 0.933 3,124 60.5% 

N. multipartita Y-104T 
(NC_013235) 6.76% 0.886 0.212 0.910 3,300 63.9% 

1Percent-wise 16S rRNA sequence divergence compared to genomic similarity for the three closest 
available genomes to G. obscurus strain G-20T. GGD formulas: formula 1, length of sequence 
fragments not in HSPs per average total genome length; formula 2, number of non-identical bases 
per total HSP length; formula 3, number of non-identical bases within HSPs per average total 
genome length. 
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