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Lung cancer is one of the malignant tumors with high morbidity and mortality, and lung nodules are the early stages of lung
cancer. The symptoms of pulmonary nodules are not obvious in the clinic, and the optimal treatment time is missed due to
the missed diagnosis in the clinic. A parallel U-Net network called APU-Net is proposed. Firstly, two parallel U-Net networks
are used to extract the features of different modalities. Among them, the subnetwork UNet_B extracts the CT image features,
and the subnetwork UNet_A consists of two encoders to extract the PET/CT and PET image features. Secondly, multimodal
feature extraction blocks are used to extract features for PET/CT and PET images in UNet_B network. Thirdly, a hybrid
attention mechanism is added to the encoding paths of the UNet_A and UNet_B. Finally, a multiscale feature aggregation
block is used for extracting feature maps of different scales of decoding path. On the lung tumor 18FDGPET/CT multimodal
medical images dataset, experiments’ results show that the DSC, Recall, VOE, and RVD coefficients of APU-Net are 96.86%,
97.53%, 3.18%, and 3.29%, respectively. APU-Net can improve the segmentation accuracy of the adhesion between the lesion
of complex shape and the normal tissue. This has positive significance for computer-aided diagnosis.

1. Introduction

Lung cancer has become one of the most common cancers,
and it is a cancer with the highest fatality rate at present.
When lung cancer patients are diagnosed, 70% patients has
been already in the middle or advanced stage [1], the five-
year survival rate for lung cancer patients is often less than
15% [2]. Hence, there are great significance for the early
intervention and treatment of lung cancer patients. In the
early stage, the main form of lung cancer is pulmonary nod-
ules. When checked with Computed Tomography (CT), its

imaging manifestations are mainly circular shadows with a
diameter of no more than 30mm [3]. With the improve-
ment of medical image imaging technology, the scale of
medical imaging data has been increased rapidly, which
brings great challenges to the clinical work, and the work-
load of clinicians is greatly increased by judgment of large
amount of medical imaging data. Due to the small area of
pulmonary nodules in the whole medical image and the
low contrast between the lesion and the background, it is
easy to miss a diagnosis. Therefore, the computer-aided
diagnosis system for automatic segmentation of pulmonary
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nodules [4–6] has become a research hotspot. There are out-
standing achievements of deep learning methods in the field
of image semantic segmentation, such as FCNs [7] and Dee-
pLabV3 [8]. Hence, it can be widely used in medical image
segmentation, of which the typical model is U-Net [9]. U-
Net is an encoder and decoder structure, which can achieve
semantic segmentation of the input images [10] and realize a
good segmentation effect in small medical image datasets.
Aiming at the problem that the segmentation performance
of lung CT images is not high, Khanna et al. [11] added
residual blocks to the U-Net network to improve the seg-
mentation performance. Liu et al. [12] input two CT images
of different scales into a residual blocks based on dual-path
network, and the network encoder extracts the global and
local features of the image from residual blocks and rich
contextual information of pulmonary nodules. Aiming at
the problem of the loss of spatial information caused by U-
Net pooling operation, Gridach [13] proposed a pyramid
expansion network, which integrates multiple dilated convo-
lutions with different dilated rates to capture the tiny details
of the image. Channel attention mechanism is added to skip
connection of U-Net for lung parenchymal segmentation by
Wang et al. [14], and the last layer of the network used a
hybrid dilated attention convolution layer. Some researchers
make full use of the target slices and its continuous slices to
provide sequence information of lesions and improving the
segmentation accuracy. Cao et al. [15] proposed a dual-
path residual network for the 3D segmentation of pulmo-
nary nodules. The target slice and two adjacent slices are
input into an encoder with an improved residual structure,
and a weighted sampling strategy is used for unbalanced
training labels. Lee et al. [16] proposed the Mu-net network
to be used for 3D image denoising, the downsampling is
used to generate images of different scales in the input
image, and different scales’ images are input different scales’
U-Net to extract image features of different scales. However,
most of the current segmentation methods only use single-
modal medical images, which ignores the complementarity
of multimodal medical images to lesions. Therefore, in this
paper, a parallel U-Net network is proposed for the lung
lesion segmentation in combination with the different abili-
ties of multimodal medical images to characterize lesions
and uses a hybrid attention mechanism in this paper.

2. Methods

In this study, the paper proposed an attention mechanism
parallel U-Net. It could be used for doctors to segment lung
lesions and reduce missed diagnoses.

2.1. Dataset and Preprocessing. A total of 90 clinical patients
with lung tumors are collected, confirmed by surgical
pathology, including 32 females and 58 males, between Jan-
uary 2018 and June 2019 at the nuclear medicine depart-
ment of a hospital in Ningxia. The patients ranged in age
from 20 to 87 years, with a mean age of 61:2 ± 13:6 years,
the patient’s blood glucose is controlled to normal, patients
are forbidden to eat for 6 hours and are injected with 18F-
FDG (18F-Nuorodeoxyglucose) 0.11~0.13mci/kg (18F-FDG
is automatically synthesized by the HM-10 accelerator of
Sumitomo, Japan, with a radiochemical purity greater than
95%), and the imaging is performed after approximately 60
minutes of lying down. Before imaging, drink 500ml of
water. To ensure the lesions are annotated correctly, the
ground truth is annotated by radiologists with 30 years of
experience. After data augmentation processing, such as
rotation and mirror image, the final sample number of the
three modal image datasets is 1026, respectively, including
909 PET/CT, CT, and PET images as the training set, and
117 PET/CT, CT, and PET images as the testing set. The
image labels are manually drawn by clinicians. Figure 1
shows the contrast between PET/CT and CT images.

To solve the problem that pulmonary nodules occupy
too few pixels of the whole image in the original image,
ROI extraction based on Hough transform [17] is used to
cut the original image to a pixel size of 50 × 50. And an
image enhancement method based on exposure fusion [18]
is used to improve the contrast between pulmonary nodules
and background. The cross-entropy loss function is used for
both subnetworks. Adam optimizer is used, training time is
150, the learning rate is initialized to 0.005, and batch size
is 8. To prevent network overfitting, dropout is added to
the network layer.

2.2. APU-Net. Two parallel U-Net (UNet_A and UNet_B)
networks are used to extract multimodal medical image fea-
tures of PET/CT (Positron Emission Tomography/Computed
Tomography), CT (Computed Tomography), and PET (Posi-
tron Emission Tomography). UNet_A is composed of two
encoders (encoder1_A and encoder2_A), which extracts med-
ical image features of PET/CT and PET. UNet_B network
extracts the features of CT images. Master network, which is
composed of UNet_B, provides rich anatomical structure
information for lesion segmentation. These features, that are
extracted from the two subnetwork encoder paths, are
concatenated and input into the decoder paths through the
hybrid attention mechanism. Hence, a mutual image fusion
method is realized about multimodal medical image features,
to take full advantage of the complementarity of multimodal
medical images. PET/CT and PET images are input into the
UNet_A encoders, as shown in Figure 2. CT images are input
into the UNet_B encoder, as shown in Figure 2. A hybrid
attention mechanism is proposed in the skip connection of

(a) (b)

Figure 1: (a) Lung CT image. (b) Lung PET/CT image.
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the network. Input features of UNet_A and UNet_B encoder
paths are processed by the attention mechanism and input
into decoder_A and decoder_B, respectively. Multiscale fea-
ture maps of two decoder paths are aggregated by multiscale
feature aggregation blocks, and segmentation results are better
than others.

The UNet_A consists of two encoders and one decoder.
The UNet_A structure is shown in Figure 3. PET images and

PET/CT images are input Encoder1_A and encoder2_A,
respectively. The two encoders have the same parameters,
and there are five layers. Each encoder layer of UNet_A
includes two convolutional blocks, which consist of 3 × 3
convolutional blocks, Batch Normalization (BN), and ReLU
activation function. To reduce the parameters of parallel U-
Net, the number of convolutions at the first layer of the net-
work is 16. With the deepening of the network, the number
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Figure 2: APU-Net network.
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of convolution kernels at each layer increases by two times.
The convolutional kernel number of the encoder1_A and
encoder2_A is 16, 32, 64, 128, and 256, respectively. After
each convolution layer, the downsampling operation is con-
nected, and the downsampling operation is the 2 × 2 maxi-
mal pooling, and the image size is reduced to half
comparing with the beforeimage when each downsampling.
At the last layer of the UNet_A network, two-modal medical
image features of extracting by the two encoders are
summed, and the summed feature maps are input into the
decoder_A. Decoder_A consists of four layers, and there
are two convolution blocks in each layer, the convolution

block is same as the encoder1_A. The convolution kernel
number is 128 at the first upsampling, and the number of
convolution kernels is reduced to half and the image size is
doubled at each upsampling. The upsampling operation of
the decoder_A is a 2 × 2 transpose convolution. A two-
modal medical image feature extraction block is used for
each layer of PET feature maps and PET/CT feature maps
of the UNet_A encoder. This feature extraction block is used
to extract relevant information by an attention gate from the
PET image and PET/CT image, and these feature maps are
transmitted to the hybrid attention mechanism of skip con-
nection. The input feature maps of skip connection not only

Table 1: Network parameters of UNet_A.

Encoder path Feature size Kernel size Decoder path Feature size Kernel size

Block1 50 × 50 3 × 3, 16½ � × 2 U1 50 × 50 3 × 3, 16½ � × 2
Block2 25 × 25 3 × 3, 32½ � × 2 U2 25 × 25 3 × 3, 32½ � × 2
Block3 12 × 12 3 × 3, 64½ � × 2 U3 12 × 12 3 × 3, 64½ � × 2
Block4 6 × 6 3 × 3,128½ � × 2 U4 6 × 6 3 × 3,128½ � × 2
Block5 3 × 3 3 × 3,256½ � × 2

Table 2: Network parameters of UNet_B.

Encoder path Feature size Kernel size Decoder path Feature size Kernel size

Block1 50 × 50 3 × 3, 32½ � × 2 U1 50 × 50 3 × 3, 32½ � × 2
Block2 25 × 25 3 × 3, 64½ � × 2 U2 25 × 25 3 × 3, 64½ � × 2
Block3 12 × 12 3 × 3,128½ � × 2 U3 12 × 12 3 × 3,128½ � × 2
Block4 6 × 6 3 × 3,256½ � × 2 U4 6 × 6 3 × 3,256½ � × 2
Block5 3 × 3 3 × 3,512½ � × 2
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contain the feature maps Fhybrid en of the UNet_A encoder
but also receive the feature maps FCT en of UNet_B which
makes the underlying features fuse with each other and real-
ize feature reuse. The UNet_A parameters are shown in
Table 1.

The UNet_B has five layers, and the numbers of convo-
lutional kernels for encoder are 32, 64, 128, 256, and 512,
respectively. Each layer of the network consists of two 3 ×
3 convolutional blocks, Batch Normalization (BN), and acti-
vation function ReLU. Downsampling uses a 2 × 2 maximal
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pooling, and the size of the feature maps is halved after
downsampling. There are four layers in decoder_B, and con-
volutional kernel numbers of each layer are 256, 128, 64, and
32, respectively. Hybrid features Fhybrid en and the UNet_B
encoder feature maps FCT en are input into the decoding
paths of two subnetworks through the attention mechanism.
Table 2 describes the UNet_B network parameters, and the
UNet_B structure is shown in Figure 4.

2.2.1. Two Modal Medical Image Feature Extraction Block. In
the UNet_A, the two-modal medical image feature extrac-
tion block is used to extract complementary feature maps
of PET and PET/CT. This block includes two input feature
maps, namely, χl

1 and χl
2, as shown in Figure 5.First, χl

1
and χl

2 are concatenated, then 1 × 1 convolution and ReLU
are performed on the concatenated feature maps, and then,
1 × 1 convolution and sigmoid functions are performed to
compress the weight of the feature maps to between 0 and
1. Finally, the output weights after sigmoid function are mul-
tiplied with the concatenated feature maps. The feature
maps are inputted into the skip connection after multiplica-
tion, and the formula is expressed as equation (1).

Fl
hybrid en = χl

1 + χl
2

� �
⊗ σ Conv3×3 Conv1×1 χl

1 + χl
2

� �� �� �
,

ð1Þ

where χl
1 represents the layer l PET/CT feature maps

extracted by UNet_A, χl
2 represents layer l PET feature maps

extracted by UNet_A, Conv1×1ð·Þ represents 1 × 1 convolu-
tion operation and ReLU function, Conv3×3ð·Þ represents 3
× 3 convolution operation, “σ” represents sigmoid function,
and Fl

hybrid en represents the two-modality medical image

feature representation of the l layer Fl
hybrid en extracted by

UNet_A.

2.2.2. Hybrid Attention Mechanism. Hybrid attention mech-
anism [19] includes spatial attention mechanism and chan-
nel attention mechanism. The spatial attention mechanism
focuses on the lesion in the feature map and suppresses irrel-
evant information such as the background information.
Channel attention can assign larger weight coefficients to
important channel feature maps, so it is necessary to process
the attention mechanism of the three modal image features
of the skip connection.

(1) Spatial Attention Mechanism. First, the UNet_A feature
maps Fhybrid en and UNet_B feature maps FCT en are
concatenated and perform the maximal pooling and average
pooling on the concatenated feature maps, respectively. The

average pooling denoise the lung tumor image, and the max-
imal pooling highlights the lung tumor in the medical image.
Then, the two pooled feature maps are concatenated, 3 × 3
convolution operation is performed on the concatenated fea-
ture maps, using sigmoid function to compress the feature
coefficients range from 0 to 1, and the original feature maps
are multiplied by the weight coefficients, as shown in
Figure 6.

Specifically as shown in equation (2), where “σ” repre-
sents the sigmoid function, “+” represents the concatenating
the feature maps. Fl

hybrid en is the two modal medical images

feature maps of layer 1 extracted by UNet_A, and Fl
CT is the

feature maps extracted by UNet_B. The two-modality med-
ical image feature maps Fl

hybrid en and the CT feature maps

Fl
CT en are concatenated, named as χl. “ ⊕ ” represents the

summed of the channels feature maps, “ ⊗ ” represents the
multiplication, and SAð·Þ represents the spatial attention
mechanism operation.

SAl Fð Þ = χl ⊕ χl ⊗ σ Conv3×3 AvgPool χl
� �

+MaxPool χl
� �� �� �� �h i

:

ð2Þ

(2) Channel Attention Mechanism. First, to utilize more fea-
ture information, the average pooling and the maximal pool-
ing are used to process the concatenate feature maps χl to
obtain two 1 × 1 × C weight coefficients. Then, using the
MultiLayer Perceptron (MLP) which composed of two fully
connected layers and ReLU function to implement nonlinear
transformation of features, the neuron numbers are 1/3 of
the number of feature maps channel in the first fully con-
nected layer, activation function is the ReLU function, and
the neuron numbers are the feature map channels number
in the second fully connected layer. Finally, the two results
obtained by MLP are summed, and “α” weight coefficient
is obtained through sigmoid function, and “α” weight coeffi-
cients and χl feature maps are multiplied and obtained the
weighted feature maps, named as R. Then channel attention
feature maps are obtained through sum weighted feature
maps R and feature maps χl. These processing are as shown
in Figure 7, and the formula is expressed as

CAl Fð Þ = χl ⊗ σ MLP avgPool χl
� �� �

⊕MLP max Pool χl
� �� �� �� �

⊕ χl:

ð3Þ

2.3. Multiscale Feature Aggregation Block. The network
decoder contains low-level semantic feature information,
and this information plays a vital role in lesion segmenta-
tion. Due to their different sizes in different scale feature
maps, feature maps have different relevance in different
scales to the object. Inspired by the reference [20], a multi-
scale feature aggregation (MFA) block is used to automati-
cally determine the scale-wise weight for each pixel. The
MFA block is illustrated in Figure 8. We concatenate each
layer feature maps of decoder_A and decoder_B, and then,
bilinear interpolation is used to resample the feature maps

Table 3: Model segmentation index results.

Model DSC (%) Recall (%) VOE (%) RVD (%)

U-Net 95.16 94.99 2.53 2.74

MEU-Net 95.20 95.13 2.59 2.76

PU-Net 95.48 95.91 2.72 2.81
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of different scales to a size of50pixel × 50pixel, and1 × 1
convolution operation is used to compress the four scale fea-
ture map channels into 16, and the feature maps were
denoted as F. Avg-pooling and MLP are performed to obtain
the channel coefficients, similar to the channel attention
mechanism. The formula is expressed as equation (4).
Where “σ” represent sigmoid function, and “α” represent
channel coefficient.

α = σ MLP avgPool Fð Þð Þð Þ: ð4Þ

After the channel coefficients “α” are multiplied by the
concatenated feature maps F, 3 × 3 convolution operation,
ReLU function, 1 × 1 convolution operation, and sigmoid
function are performed to obtain the coefficients “β”, as
shown in

β = σ Conv1×1 Re LU Conv3×3 F ⋅ αð Þð Þð Þð Þ: ð5Þ

Finally, the residual connection is used to connect the
features. The specific process is shown in

FMFA = F ⋅ α ⋅ β + F ⋅ α + F: ð6Þ

3. Experimental Results

3.1. Implementation and Evaluation Models. All models are
based on the PyTorch framework, cross entropy loss is used
for training of UNet_A and UNet_B, Adaptive Moment
Estimation (Adam) is used to train the model, and the value
of the initial parameter is the following: initial learning rate
is 0.005, batch size is 8, weight decay is 10-7, iteration epochs
are 150, and the model is implemented on one NVIDIA
Geforce GTX 1080 Ti GPU.

In order to evaluate the network performance, the DSC,
Recall, Volumetric Overlap Error (VOE), and Relative Vol-
ume Difference (RVD) are used. The specific formula are
as follows. In this paper, the positive values of VOE and
RVD are taken, the smaller the value of these two variables
are the better. In order to be able to unify these four evalua-
tion indicators, the two indicators of VOE and RVD use the
method of calculating the absolute value with 1. The calcula-
tion methods of VOE and RVD indicators are as follows:

DSC = 2 × P ∩Gj j
Pj j + Gj j , ð7Þ

Re call = TP
TP + FN

, ð8Þ

150

100

50

0

150

100

50

0

200
250

150
100

50
0

Width
Width

WidthHeight
Height

Height

Pi
xe

l v
al

ue

Pi
xe

l v
al

ue

Pi
xe

l v
al

ue

50 40
30 20

10 0

50 50 40
30 20 10

0

40
30 20

10 00 10 20 30
40 50

0 10
20

30
40

50

0 10
20

30 40
50

150

100

50

0

200

150

100

50
0

200
250

150
100

50
050

40
30

Width Width WidthHeight Height
Height

20
10

Pi
xe

l v
al

ue

0

50
40

30
20 10

0

50 40 30
20 10 00

10
20 30

40
50

0
10 20 30

40
50

0 10 20 30
40 50

Pi
xe

l v
al

ue

Pi
xe

l v
al

ue

Figure 9: CT image three-dimensional gray value.
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VOE = abs 1 − P ∩ G
P ∪ G

����
����

� �
, ð9Þ

RVD = abs
P
G

− 1
� �

, ð10Þ

where the correct segmentation of the lesion area is
defined as True Positive (TP), the normal tissue area is seg-
mented as the lesion area is defined as False Positive (FP),
and the normal area is segmented as True Negative (TN).
Segmentation of the focal area into a normal area is defined
as False Negative (FN). P represents the target pixel pre-
dicted by the model, and G represents the target pixel in
the ground truth.

3.2. Performance of the Model

3.2.1. Network Architecture. In experiment 1, the network
model is U-Net. 909 CT images are used as the training sets,
and 117 CT images are used as the testing set. In experiment
2, the network model is multiencoder U-Net (MEU-Net),
this network is based on U-Net. PET, CT, and PET/CT med-
ical images are input into three encoders, respectively. In the
last layer of the network, the feature maps of the three
encoders are summed, and the parameters of MEU-Net
every layer are the same as U-Net, each network layer uses
two 3 × 3 convolution blocks, and convolutional kernels’
numbers of each layer are 1024, 512, 256, 128, and 64,
respectively. In MEU-Net, we sum the feature maps of the
three encoding paths and transmit them to the decoding
path through the skip connection. 909 PET/CT, CT, and
PET images are used as the training sets, and 117 PET/CT,
CT, and PET images are used as the testing set. In experi-
ment 3, the network model is a parallel U-Net network
(PU-Net), PU-Net is a network in which APU-Net removes
the two-module medical image extraction block, hybrid
attention mechanism, and multiscale feature aggregation
block. The segmentation results of the UNet_A and UNet_
B are summed as the final segmentation result of the PU-
Net network. 909 PET/CT, CT, and PET images are used
as the training set, and 117 PET/CT, CT, and PET images
are used as the testing set. PET/CT and PET images are
input into the encoder1_A and encoder2_A, respectively,
and CT images are input by the encoder_B. The feature

(a) (b) (c) (d) (e) (f) (g)

Figure 10: Network segmentation results. (a) CT image. (b) PET/CT image. (c) and (d) PET image. (d) Ground truth. (e) U-Net
segmentation result. (f) MEU-Net segmentation result of the three encoders. (g) PU-Net segmentation result.

Table 4: Segmentation index results.

Model DSC (%) Recall (%) VOE (%) RVD (%)

PU-Net 95.48 95.91 2.72 2.81

SAPU-Net 95.79 96.35 2.87 2.9

CAPU-Net 95.78 96.47 2.88 2.89

MFPU-Net 95.81 96.92 2.9 2.94

APU-Net 96.86 97.53 3.18 3.29
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maps of encoder_A and encoder_B are concatenated and
transmitted to the corresponding decoder_A and decoder_
B through skip connection. The segmentation results of the
two subnetworks UNet_A and UNet_B are summed as the
segmentation result of the PU-Net. The evaluation indexes
of segmentation result are shown in Table 3. Figure 9 is
the CT image three-dimensional gray value and Figure 10
is the network segmentation results.

Figure 10 shows the segmentation results of U-Net,
MEU-Net, and PU-Net. It can be seen that the lesion seg-
mentation results of PU-Net are more accurate than U-Net
and MEU-Net. In the third row of Figure 10, comparing
with the ground truth of lesion in CT image, PU-Net is supe-
rior to the other two networks in delineating the lung tumor
lesion shape. It is proved that the parallel U-Net is effective
in improving the performance of multimodal medical
images segmentation.

3.2.2. Attention Mechanism Module. Four experiments are
conducted to evaluate segmentation performance of atten-
tion mechanisms and multiscale feature aggregation blocks
on APU-Net. All experiments are based on the PU-Net,
and 909 PET/CT, CT, and PET images are used as the train-
ing sets, and 117 PET/CT, CT, and PET images are used as
the testing set. In experiment 1, the network model is PU-
Net. In experiment 2, the network model is PU-Net based

on the spatial attention mechanism and named as SAPU-
NET. The feature maps Fhybrid en and FCT en are
concatenated and input into the spatial attention mechanism
of skip connection. In experiment 3, the network is PU-Net
based on the channel attention mechanism and named as
CAPU-Net. The feature maps Fhybrid en and FCT en are
concatenated and input to the channel attention mechanism
of skip connection. In experiment 4, the parallel U-Net is
based on multiscale feature aggregation block and named
as MFPU-Net, and the feature maps of the UNet_A and
UNet_B decoder are concatenated and input into the multi-
scale feature aggregation block. The evaluation indexes of
segmentation result are shown in Table 4. Figure 11 is the
CT image three-dimensional gray value and Figure 12 shows
the segmentation results of different networks.

As can be seen from Figure 12, segmentation perfor-
mances are improved by spatial attention mechanism, channel
attention mechanism, and multiscale feature aggregation
block. SAPU-Net, CAPU-Net, and MFPU-Net are superior
to PU-Net in the lung cancer segmentation with complex
shapes. As can be seen from the second and fourth row of
the Figure 12, the there are some under-segmented phenome-
non in PU-Net network, and the segmentation accuracy of
APU-Net for the complex shape lesions is better than the net-
work with a single attention mechanism. As can be seen from
Table 4, comparing with those of the benchmark network PU-
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Figure 11: CT image three-dimensional gray value.
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Net, the DSC, Recall, VOE, and RVD coefficients of SAPU-
Net, CAPU-Net, and MFPU-Net are improved. Compared
with spatial and channel attention mechanism, the evaluation
indexes of MFPU-Net are the highest among the three mech-
anisms, these are 95.81%, 96.92%, 2.9%, and 2.94%, respec-

tively, and because the multiscale feature aggregation block is
to aggregate the feature maps of decoder_A and decoder_B,
MFPU-Net automatically learns the image-specific weight of
different scales. In conclusion, this experiment shows that
the hybrid attention module and multiscale feature
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 12: Segmentation results. (a) CT image. (b) PET/CT image. (c) PET image. (d) Ground truth. (e) PU-Net segmentation result. (f)
SAPU-Net segmentation result. (g) CAPU-Net segmentation result. (h) MFPU-Net segmentation result. (i) APU-Net segmentation result.
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aggregation block used in the network are effective in improv-
ing the segmentation performance of the lung tumor.

3.2.3. Comparison with Other Networks. In order to the
effectiveness of the APU-Net, we compared it with SegNet
[21], Wnet [22], and Attention Unet [23]. The encoder net-
work in SegNet [21] is the convolution layer of VGG-16,
decoder network is to map the low resolution encoder fea-
ture maps to full input resolution feature maps for pixel-
wise classification, and the pooling indices are used to com-

pute nonlinear upsampling in decoder. Wnet [22] is that two
cascade U-Net networks are used for the segmentation of
systemic bone lesions in PET/CT images of myeloma. The
first U-Net network has 5 layers, and CT images are the
input, while the second U-Net network has 3 layers, and
the segmentation results which are the first U-Net and
PET images acted as input of the second U-Net network.
Attention Unet [23] is used to segment pancreatic CT
images lesions, it is an unembedded attention gates in the
skip connection, the size and shape of the segmentation tar-
get are automatically learned through a self-attention gate,
and feature maps in encoder path and decode path are input
into self-attention gate. Figure 13 is CT image three-
dimensional gray value, the segmentation results of APU-
Net and other models are shown in Figure 14, and the eval-
uation indexes of segmentation result are shown in Table 5.

As can be seen from Table 5, the DSC, Recall, VOE, and
RVD coefficients of SegNet [21] are 94.82%, 95.11%, 1.81%,
and 2.04%, respectively. SegNet only uses CT single-mode
images for the lesion segmentation, and the segmentation

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 14: Comparison of segmentation results of different algorithms (a) CT image. (b) PET/CT image. (c) PET image. (d) Ground truth.
(e) Segmentation results of SegNet [21]. (f) Segmentation results of Wnet [22]. (g) Segmentation results of Attention Unet [23]. (h) APU-
Net segmentation results.

Table 5: Comparison results between APU-Net and other
networks.

Model DSC (%) Recall (%) VOE (%) RVD (%)

SegNet [21] 94.82 95.11 1.81 2.04

Wnet [22] 94.73 95.98 2.08 2.17

Attention Unet [23] 95.69 96.17 2.64 2.73

APU-Net 96.86 97.53 3.18 3.29

11BioMed Research International



effect is not good for lesions adhered to normal tissues. As
can be seen from Figure [14], there are some under-
segmentation in SegNet, such as the 1st row and eth column,
there are some oversegmentation, such as last row and eth

column, there are some tissue adhesions. DSC, Recall, VOE
and RVD coefficients of Wnet [22] are 94.73%, 95.98%,
2.08%, and 2.17%, respectively, and its most coefficients are
better than SegNet [21], such as Recall, VOE, and RVD coef-
ficients. Final output feature maps of the first network are
input into the second network by this Wnet, by making full
use of the details of CT images which helps locate systemic
bone lesions and PET images which can provide the meta-
bolic information of systemic bone lesions. However, since
the second network of Wnet is very shallow, and medical
image feature information cannot be extract well, and
lesions’ edge is fuzzy in PET images, segmentation result is
not good of Wnet comparing with attention mechanism.
In the 2nd row and fth column in Figure 14, there are some
under-segmentation in Wnet.

For lesions with complex shapes in the 3rd and 7th rows,
the Wnet segmentation results are not good. As Attention
Unet [23] automatically focuses on the lesion by attention
gates in the skip connection, the segmentation effect is better
than SegNet [21] and Wnet [22]. However, there is no met-
abolic information provided by PET images for lesions with
complex shapes, such as the 6th row and ath column, and
lesions adhered to normal tissues, such as the last row and
ath column.

4. Discussion

It is well known that, for patients with lung cancer, delin-
eation of lung lesions plays an important role in the cus-
tomization of treatment plan and recovery of prognosis
[24]. In this study, we proposed an attention mechanism
parallel U-Net which enables accurate segmentation for
lung cancer. We make full use of multimodal medical
images to complement lesion features and use CT images
to provide anatomical information of lesions and PET
images to provide functional information of lesions. We
use the radar chart to show the various segmentation
result indicators of each experiment. The radar chart can
clearly show the various comparison result indicators of
different networks. Figure 15 is the radar chart of the seg-
mentation index of the basic network architecture. From
the chart, it can be seen that PU-Net’s DSC, Recall,
VOE, and RVD coefficients are all higher than U-Net
and MEU-Net, and the parallel network architecture can
extract more features than U-Net.

Figure 16 is a radar chart of the segmentation index of
each attention mechanism network. It can be seen from
the figure that except for APU-Net, the coefficients of
MFPU-Net are higher than other networks. DSC and Recall
coefficients increased from 95.48% to 95.91% and 95.81% to
96.92%, and VOE and RVD coefficients increased from
2.72% to 2.9% and 2.81% to 2.94%. The parallel networks
with the attention mechanism are all higher than the
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Figure 15: Radar chart of evaluation index of segmentation result.
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benchmark PU-Net, so it can be concluded that the atten-
tion mechanism is effective and improves the segmentation
performance of the network.

Figure 17 is a radar chart of different model segmenta-
tion indicators, and we compared SegNet, Wnet, Attention
Unet, and APU-Net, respectively. The DSC, Recall, VOE,
and RVD coefficients of Attention Unet [23] are 95.69%,
96.17%, 2.64%, and 2.73%, respectively. Compared with
Wnet, the DSC and Recall coefficients are increased by
0.96% and 0.19%, and VOE and RVD coefficients are
increased by 0.56%, respectively. It can be seen from the
Figure 14 that the evaluation index coefficients of APU-Net
are superior to other networks. PET, CT, and PET/CT mul-
timodal medical image features are not used in the networks
of SegNet [21] and Attention Unet [23], and single-modal
medical images are only used, ignoring the complementary
advantages of multimodal medical images. It is feasible to
improve the segmentation performance by using multi-
modal medical images, and the DSC and Recall coefficients
of APU-Net are increased by 0.46% and 0.26%, respectively,
and VOE and RVD coefficients are increased by 0.18% and
0.23%, respectively. It is very necessary to use a parallel net-
work to learn the features of medical images. In addition, the
hybrid attention mechanism selects important feature maps
and focuses on the lesions in the feature maps, which can
improve the performance of network segmentation and pro-
vide a more accurate medical images segmentation, and the
segmentation results are closer to the ground truth.

The paper explored two network architectures for
extracting complementary information from multimodal
medical images to lung tumor. The network based on multi-
encoder U-Net and the network based on parallel U-Net.
After the adjusting parameters of the two networks, the seg-
mentation performance shows that the based on the parallel
network is superior to the network based on the three
encoders. It is guessed that the parallel U-Net network has
more semantic features on the decoding path than the
three-encoder network, and the network has a certain
impact on the performance of segmentation. Therefore, the
model for extracting multimodal medical image information
needs further exploration.

Due to the noninvasive characteristics of medical imag-
ing equipment, it has become a tool for doctors to diagnose
diseases [25, 26]. At present, medical image data is increas-
ing explosively, due to their own ethical issues, medical
images are difficult to obtain, and the parameters of different
hospital imaging equipment are different, resulting in incon-
sistent medical images obtained [27]. The abovementioned
problems lead to certain difficulties in feature extraction of
many medical images. Therefore, the standardization of
medical image data is one of the important development
directions in the future.

In the future, the paper will further expand the dataset
and extend the model to the segmentation of 3D lung
tumors. The paper will further standardize the prescanning
and scanning procedures of 18F-FDG PET/CT and optimize
the postprocessing of data reconstruction, in order to maxi-
mize the clinical application of 18F-FDG PET/CT in lung
malignant tumors.
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