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Abstract: Bacterial ghosts (BGs) are empty cell envelopes of nonliving evacuated bacterial cells.
They are free from their cytoplasmic contents; however, they sustain their cellular 3D morphology
and antigenic structures, counting on bioadhesive properties. Lately, they have been tested as an
advanced drug delivery system (DDS) for different materials like DNA, peptides, or drugs, either
single components or combinations. Different studies have revealed that, BG DDS were paid the
greatest attention in recent years. The current review explores the impact of BGs on the field of
drug delivery and drug targeting. BGs have a varied area of applications, including vaccine and
tumor therapy. Moreover, the use of BGs, their synthesis, their uniqueness as a delivery system and
application principles in cancer are discussed. Furthermore, the safety issues of BGs and stability
aspects of using ghost bacteria as delivery systems are discussed. Future perspective efforts that
must be followed for this important system to continue to grow are important and promising.
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1. Introduction

The term drug delivery can be defined as the approach used to deliver a drug to
the patient to obtain a therapeutic effect [1]. A more specific term used among many
pharmacists is drug targeting, which is an approach used to deliver a drug selectively to
its intended site of action, which can be an organ, a tissue or a cell. This can benefit by
increasing drug activity while reducing side effects [2]. Another idea combining these two
terms is targeted drug delivery, which is the delivery of a drug using methods that will
increase its concentration in some parts of the body, i.e., the site of action, while avoiding
others [3]. A sufficient number of active drugs, for any ideal DDS, must be absorbed
and transferred to the action target site at the right time and at the subsequent input rate.
Moreover, it involves good distribution with selective transport to the site of action [4].
These factors are essential when there is only a slight margin between the toxic and effective
concentrations [4,5].

The needs for targeted DDSs include many rational reasons: (i) enhancing the barrier
permeation, (ii) specific targeting, (iii), decreasing side effects and (iv) enhancing drug
activity; these reasons are similar to traditional delivery systems [6].
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2. Targeted Drug Delivery System
2.1. The Development of a Targeted DDS

Recently, new advancement on the area of drug delivery was seen and more targeted
DDSs are being researched and developed. Paul Ehrlich had discussed the concept of
targeted drug delivery in 1854–1915. He first considered the idea of “magic bullets” and
defined them as compounds or drugs that would have a definite attraction to microor-
ganisms causing disease [7]. The magic bullets could selectively find out these organisms
and devastate them, evading other organisms and having no damaging effects on the
human cells [8–12]. Over the last decade, drug discovery development and advance were
improved by consistent changes in pharmaceutical biotechnology and general pharma-
cological research, which has led to the enhancement of drug delivery scope [13]. New
products using drug targeting technologies are being researched, and their number is
expected to increase over the years [2].

2.2. Advantage of DDS

Targeted drug delivery systems have tremendous advantages, including: enhanced
efficacy of medications, better safety profile, the delivery of specific and calculated amounts
of the drug, ensured availability of the drug in the site of action i.e., selective delivery,
enhanced drug activity at these target sites, lowered amounts of the drug available to other
sites and organs, lowered amounts in systemic circulation, improved therapeutic index,
fewer side effects, reduced toxicity, increased drug stability, lowered number of required
doses and enhanced patient compliance [13].

2.3. Classification and Types of Targeted DDSs

This type of drug delivery can be used for targeting drugs to specific organ, or more
specifically to cells or with even further specificity to cellular organelles [13]. We can
classify targeted DDSs using three different classification methods as described in Table 1:
general classification, based on site of action, and based on mechanism [14]. Each of these
classes can be divided into further subclasses as follows: The first classification, which
classifies targeted drug delivery, in general contains active and passive targeting [15]. The
second class, which is based on the site of action, can be subdivided according to the site,
which can either be an organ, a therapeutic material or a cell. The third class, which is
based on mechanism, includes chemical, physical and biological targeted DDSs. This class
involves using an entire biological system (such erythrocyte and ghost bacteria) or part of
it (such as biologically driven ligands).

Table 1. Classification of targeted DDSs and their subdivisions.

Classes General Classification Site of Action Based on Mechanism

Subclasses

1. Active targeting 1. Organ (colonic targeted DDS) 1. Chemical targeted DDS

2. Passive targeting

2. Therapeutic material (gene carrier) 2. Physical targeted DDS

3. Cellular uptake (endocytosis,
macropinocytosis, and phagocytosis DS) 3. Biological targeted DDS

2.4. Challenges of Targeted DDSs

The main drawback to the development of a targeted DDS is the high cost needed
for development besides the long time consumed while developing such systems [7]. In
addition to the high cost and the long time, other limitations that can limit the use of
targeted DDS are: first, the difficulty of targeting a drug to a specific site; second, the
inability to control the amount of drug reaching non-target organs while using some
delivery systems; third, the need to consider factors that decrease the amount of the drug
reaching non-target sites; fourth, the need to consider both biological and physicochemical
aspects of the drug and the carrier in order to enhance targeting [8]; fifth, selectivity of the
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targeting system may be lower when administered in vivo [2]; sixth, the need for certain
antibodies or ligands to target a drug selectively to the site of action; leventh, the need
for energy in some drug targeting systems e.g., in active transport and in vesicles [9], and
lastly, even after using targeting systems, the probability of drug hydrolysis or degradation
before reaching the target site must be considered [10].

2.5. Biological Targeted DDSs

This type of targeting emphasizes the increasing delivery of the active moiety (i.e., the
drug) to the intended target site by making use of biological interactions, which are site-
specific, such as antigen–antibody interactions and ligand–receptor binding interactions.
Carriers used in active targeting include antibodies and ligands [2]. This kind of targeting
can be used in drug delivery to tumor cells [16]. Recently, BGs have been recognized as
DDSs for many kinds of cancer cells. Moreover, the efficacy of BGs to be targeted and
internalized by leukemia, melanoma, breast cancer and colorectal carcinoma cells has been
shown [17–20].

3. Bacterial Ghosts (BGs)
3.1. The Concept and Production

A modern delivery system for drug packing, along with vaccines, exists [21]. Gener-
ally, BGs are classically prepared via the controlled expression of PhiX174 plasmid-encoded
lysis gene E. They are useful for vaccine delivery, and enhance the systemic immune
response, as well as the mucosal immune system found in the gastrointestinal tract, repro-
ductive and respiratory systems [22]. The cytoplasmic contents are ejected through the
development of a transmembrane tunnel structure located in the cell wall of the used cell.
The producing vacuous cell envelopes (BGs) hold minor DNA and share functional and
antigenic determinants with their living counterparts, which mean that antigenic epitopes
existing on the living cell are reserved on the resultant ghost [23]. BGs were prepared by
different methods (Figure 1), including:

The controlled expression of lysis gene E of bacteriophage PhiX174 [24].

1. Sponge-Like protocol [25]. using different chemicals (Figure 1).
2. Green fluorescent protein (GFP)-dependent [26].
3. Mild high-pressure Shock [27].
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Figure 1. Schematic illustration of bacterial ghost preparations.

3.2. Structure of BGs

Based on the analytical investigations of the hydropathic regions of protein E, an E-
specific lysis tunnel spanning both the inner (IM) and outer membrane (OM) was indicated.
Through this lytic tunnel, the formation of the BGs was promoted by evacuating all internal
content of the treated cells to the surrounding environment while keeping the periplasmic
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contents attached to the cell envelope [28]. The successful imaging of the E-mediated
lysis tunnel in E-lysed E. coli was achieved using transmission electron microscopy [29].
Further scanning electron microscopy (SEM) images revealed that the formation of the
transmembrane tunnel in E. coli resulted in a fusion of the outer and inner membrane,
closing the periplasmic space (PPS). Moreover, it was reported that the lytic tunnels were
located at either the center or the tip of the bacteria [30] (Figure 2).
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Recently the Sponge-Like Protocol was introduced [25]. The protocol describes the use
of the known concentration of some used chemical agents for microbial cells evacuation.
Those compounds are SDS, NaOH, NaHCO3 and H2O2. To produce bacterial ghosts, the
full and reduced Plackett–Burman optimization and randomization experimental design
was applied to select the best physical and chemical conditions [25,31,32]. The protocol en-
ables the evacuation of microbial cells while maintaining their 3D structure. The resulting
unviable ghost cells with retained immunogenicity could be used as an immunostimu-
lant [33,34]. Microbial ghosts prepared by this protocol can also be applied as a DDS [35].
The chemical protocol (Sponge-like) was evolved to yield cell based microbial ghosts from
Gram-negative [25,31,32]. and Gram-positive [36,37] bacteria, Candida, Saccharomyces
cerevisiae and filamentous fungi [38,39].

4. Application

BGs have a wide range of biomedical applications (Figure 3). Different reports have
shown that BG applicant vaccines are an extremely immunizing agent (Table 2) and, in
many cases, prompt protecting immunity versus mortal challenge in animals [40]. Owing
to their specific nature of being bacterial envelope developments, BGs are clever with
fundamental natural adjuvant impact. They are capable of stimulating the innate and
adaptive immune system without any exogenous adjuvant support (Table 3). Even though
the usage of plasmid-encoded genetic material is crucial for the definitive structure of BGs,
they are not classified as genetically manipulated bacteria, because they are lifeless and
deficient of genetic information.

The final feature of BGs is of excessive significance for safety; there is no pathogenic
island or antimicrobial resistance cassettes able to transmitted to other bacteria via gene
transference. Freeze-dried preparations of BGs vaccine are stable for a long time (years)
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at an appropriate temperature. Similarly, it could be used as a DNA, protein carrier or as
transporter and delivery vehicles for cytotoxic agents in tumor therapy [41]. As a result of
the definite and specific targeting of cancer cells, BGs allow advanced treatment specificity
and a reduction of the amounts of applied drugs [42]. As per enzymatic activity carrier,
BGs can be applied for a novel concept of probiotics that can produce active agents from
environmental substrates where they are clinically used with a specific favorite effect for
the GIT [43].
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i. BGs as a drug delivery system

BGs can be utilized either to target dendritic cells, macrophages [44], microvascular
endothelial cells [45] and ocular surface diseases [46] or as an expression system in gene
transfer to melanoma cells [47]. Applying Chang conjunctival epithelial cell line and
primary cells derived from human epithelial cells of conjunctiva, BGs’ targeting potential
toward these cells was studied. High degrees of BGs’ internalization into corneal cells lines,
along with no cytotoxicity, were observed. Via their bioadhesive properties, BGs are able
to connect with host cells and thus deliver their encapsulated payload of biomolecules or
drugs at the target site [21].

ii. BGs for proteins and peptides delivery

The E. coli ghosts-mediated delivery of hepatitis B virus core 149 [HBcAg-149] proteins
tethered to the IM or the OM of E. coli was examined in female BALB/c mice. Data showed
that BGs succeeded in delivering HBcAg-149 to the mice used [48]. Additionally, BGs
also provide a promising approach for plasmid DNA immobilizations, making them a
novel carrier characterized by the intrinsic immunogenicity of the Gram-negative bacterial
cell envelope [49,50]. All of these biological particles have found different applications
as veterinary vaccinations and medical applications for cancer treatment and several
infectious diseases.

iii. Delivery of nucleic acid via BGs

BG technology can be innovatively used in vaccine development for their response to
and uptake by various types of immune cells like macrophages, monocytes and dendritic
cells [51]. Therefore, nucleic acids can simply be incorporated inside a BGs’ system for
gene transfer.

iv. Immunization by BGs

The immunogenic potential of P. multocida and M. haemolytica ghosts was evaluated
and compared to standard marketed vaccines. Results showed that ghosts effectively
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protected the animal models [52]. These evoked immune responses were attributed to
the presence of immunostimulating components on ghost surface, especially (Pathogen
Associated Molecular Pattern) PAMPs, such as peptidoglycan, lipopolysaccharides and
monophosphoryl lipid A [53].

v. As a delivery system for anticancer drugs (PK/PD)

Pathogenic bacteria can colonize a huge diversity of niches in the human body. In
order for pathogenic bacteria to adhere to the milieu surface of several organs, different
adherence mechanisms can be used through which bacteria can obtain access to deeper
tissues by crossing the mucosal barriers and arriving at the bloodstream. This represents
the principal entry portal for almost all host organs and is associated with unavoidable
clinical symptoms.

Host colonization through bacterial adhesion to host surfaces is a crucial stage as it
protects pathogens from mechanical clearance, conferring a notable advantage towards the
endogenous microbiome. Accordingly, bacteria have displayed a diversity of molecular
strategies allowing them to target and attach to host cells (Figure 4). The polymeric hair-like
organelles known as pili are regarded as the first class of molecular structures involved
in the adherence of bacteria to host cells [54]. Via pyelonephritis-associated (P) pili at
their surface, uropathogenic strains of E. coli (UPEC) colonize the urinary tract, resulting
in kidney infections. Other UPEC strains have type I pili at their surface, which binds
specifically to D-mannose receptors residing on the lining of the bladder. Additionally,
another class of adhesive surface structures, type IV pili, are expressed by different Gram-
negative bacteria [47].
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BGs possess similar natural cellular morphology as that of the native cells as it remains
protected against denaturation throughout the entire lysis process. Therefore, their natural
intrinsic antigenic properties that can trigger immune responses are maintained. BGs’
antigenic elements are known as PAMPs, including lipopolysaccharides (LPS), lipid A [55]
and peptidoglycan or flagella. In addition to their recognition by toll-like receptors (TLR),
BGs’ PAMPs can initiate innate immune reactions as a first response as well. In experimental
animals, carrying those intrinsic adjuvant properties by BGs stands for their multipurpose
use in inducing both humoral and cellular immune responses. Selection of the right
bacterial strain and transformation of it into ghosts contributes to treating the target
organ [30].
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Table 2. Examples of BGs as delivery system and biological carrier for recent experimental anticancer drugs.

Ghost Bacteria Active Compound Target Cells Proof of Principle Findings/Outcomes Ref.

Escherichia coli NM522 DNA Human melanoma cells Tissue culture
BGs exhibit a high transfection efficiency; up to 82% of

melanoma cells expressed the plasmid-encoded reporter
gene delivered by BGs.

[17]

Mannheimia haemolytica DOX Caco-2 cells Tissue culture Higher antiproliferative effects of DOX on Caco-2 cells were
mediated by the specific drug targeting properties of the BGs. [56]

E. coli 5-FU Caco-2 cells Tissue culture 69.2% of the ghost-associated 5-FU was released with a
significant antiproliferative effect. [42]

Salmonella typhimurium DOX HepG2 Tissue culture

The death rate of HepG2 reached 64.5% by using of 4 µg/mL
while it was about 51% using the same concentration of the
free DOX. The proliferative inhibitory concentration of the
DOX-loaded BG was about one third of the IC50 of the free
DOX. Combined DOX showed more accumulation in early

and late apoptosis than that of free DOX.

[57]

E. coli BL21 (DE3) DOX HT-29 cells Tissue culture DOX loaded in BG showed more apoptosis (55%) than the
control and DOX solution. [58]

Lactobacillus acidophilus PG HCT116 CRC cells Tissue culture
PG was highly bound to LAGs cell wall with a stable

bioactive entity (PG-LAGs) active against HCT116 CRC cells
at the cellular and molecular levels.

[59]

E. coli NM522 & M.
haemolytica A23 plasmid pEGFP-N1 SK-Mel-28 & A-375 cells Tissue culture

High capability of cell lines to bind BGs was observed, and
the Bowes cells exhibited a high expression level of GFP and

the incubation of cells with plasmid-loaded BGs led up to
82% transfection efficiency.

[17]

E. coli Nissle1917 5-FU & zoledronic acid 4T1 tumor cells and
RAW264.7 macrophages

Tissue culture &
Animal studies

High loading levels of 5FU (8.8%) and ZOL (10.5%) are
achieved, as well as high retention rates of bacterial viability
(87%) and motion velocity (88%), leading to the accumulation

of 5-FU and increases in its chemotherapeutic effect on
tumors inhibition.

[22]

E. coli Nissle1917 Oxaliplatin
CT26 murine colon

carcinoma cells
(CRL-2638)

Tissue culture &
Animal studies

The combination treatment has showed strong synergistic
anticancer activity against the CT26 allograft, resulting in
prolonged survival with complete remission in a murine

model of CRC carcinomatosis.

[60]

DOX: doxorubicin; Caco-2: human colorectal adenocarcinoma cells; HepG2: human liver cancer cell line; HT-29 cells: human Caucasian colon adenocarcinoma; HCT116 CRC: colorectal cancer cells; 5-FU:
5-fluorouracil; PG: prodigiosin.
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Table 3. Examples of BGs application as delivery system for recent experimental vaccine.

Ghost Bacteria Active Compound Target Cells Proof of Principle Finding/Outcomes Ref.

Helicobacter pylori Plain BGs Immune cells Oral vaccination

Coadministration of ghosts with cholera toxin as a mucosal
adjuvant resulted in a complete protection of 10 of 10 and 8 of 8

mice against H. pylori challenge, with three animals
showing sterile immunity.

[61]

E. coli OmpA-HbcAg-149
Protein Immune cells Subcutaneous

immunizations

Induced significant immune responses against HBcAg-149 in mice
were observed, indicating that BGs provide an excellent carrier

system for antigen delivery.
[62]

Salmonella
typhimurium–LTB MontanideTM ISA 70VG Immune cells Intramuscular

immunization

Injection of S. typhimurium-LTB ghost with or without
Montanide(TM) ISA70VG adjuvant is capable of inducing

protective immunity against the virulent S. typhimurium infection
in chickens.

[63]

E. coli O157:H7 staphylococcal nuclease A Immune cells Oral immunization

Immunized mice showed 86% protection against lethal challenge
with a heterologous EHEC strain after single-dose oral

immunization and 93.3% protection after one booster at day 28,
whereas the controls showed 26.7% and 30% survival, respectively.
These results indicate that it is possible to develop an efficacious

single-dose oral EHEC BG vaccine.

[64]

Salmonella enteritidis flagellin (FliC) antigen Immune cells Intramuscular
immunization

pJHL184:fliC ghost can generate significantly high antigen-specific
IgY and cell-mediated immune responses and cytokine responses
elicited by stimulated splenic T-cells. The elimination of both SE

and ST in chicken organs ensures the immunization of the present
SE. The ghost vaccine be beneficial in preventing enteric infections

in humans.

[65]

Salmonella enteritidis pVAX1-nspA plasmid Immune cells Oral immunization
Coadministration of SE ghosts (pVAX1-nspA) and SE ghosts

(pVAX1-porB) elicited significant specific humoral and cellular
immune responses.

[66]

Streptococcus suis Plain BGs Immune cells Subcutaneous
immunization

S.suis ghosts as candidate vaccine showed the excellent
immunogenicity and provided protection against S.suis challenge

in mice model.
[67]

Streptococcus iniae Plain BGs Immune cells Intraperitoneal
immunization

Immunization with S. iniae ghosts induces immune responses and
provides protection against a virulent S. iniae challenge. [68]
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Table 3. Cont.

Ghost Bacteria Active Compound Target Cells Proof of Principle Finding/Outcomes Ref.

E. coli O157:EDL 933 pOEVP1 and pOCVP1
plasmids Immune cells Intraperitoneal

immunization

The VP1 chimeric antigens of BGs are target candidates for a new
type of vaccine against hand-foot-and-mouth disease. This vaccine
strategy also elicited a stronger immune response against E. coli

O157:EDL 933.

[69]

E. coli O78:K80 pmET32b plasmid Immune cells Subcutaneous
immunization

The O78:K80 BGs vaccine triggered higher proinflammatory
cytokine expression including IL-6, IL-1β and TNFSF15; a higher
level of antibody-dependent humoral (IgY and IgA) and cellular

immune responses (IFNγ and lymphocyte proliferation).

[70]

Brucella abortus GEM-7Zf+-gntR-SacB-λE Immune cells Subcutaneous
immunization

The 2308∆gntR ghost induced high protective immunity in
BALB/c mice against challenge with S2308, and elicited an

anti-Brucella-specific immunoglobulin G (IgG) response and
induced the secretion of interferon gamma (IFN-γ) and

interleukin-4 (IL-4). Additionally, 2308∆gntR ghosts demonstrated
strong spleen CD4+ and CD8+ T cell responses.

[71]

Salmonella typhimurium DENV-EDIII protein Immune cells Oral immunization

Significantly elevated titers of EDIII-specific IgG, IgG1 and IgG2a
were observed in the immunized mice. Furthermore, lymphocyte

proliferative activity and CD3+CD4+ T-cell subpopulations
increased significantly in vitro in re-pulsed splenic T cells

compared with those from non-immunized mice.

[72]

Salmonella enteritidis
(JOL2114) HA1 protein Immune cells Intramuscular & Oral

immunization

Protective humoral and cell-mediated immune responses were
effectively elicited against both Salmonella and

influenza challenge.
[73]

Neisseria gonorrhoeae pVAX1-porB Immune cells Oral immunization
Oral immunization with the BGs vaccine candidate elicited greater

CD4+ and CD8+ T cell responses and induced higher IgG
responses than N. gonorrhoeae DNA vaccine alone.

[74]

Actinobacillus
pleuropneumoniae Plain BGs Immune cells Intramuscular

immunization

A significant systemic increase of IgM, IgA, IgG(Fc’), or IgG(H+L)
antibodies reactive with A. pleuropneumoniae was measured in

GVPs and BVPs.
[75]

Vibrio cholera V. cholerae ghosts
expressing rVCG-MOMP Immune cells Intramuscular

immunization

rVCG-MOMP vaccine induced increased local genital mucosal, as
well as systemic, Th1 responses. Moreover, T cells from

immunized mice could transfer partial protection
against C. trachomatis.

[76]
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5. Clinical Trials

A large number of clinical trials for veterinary uses have been conducted (Table 4)
using BGs as an adjuvant for immunization against number of infectious diseases, including
avian influenza, chicken salmonellosis, Salmonella typhimurium immunization and boosting
anti-mycobacterial protective immunity [77–79]. In addition, BGs have been shown to work
as an adjuvant for DNA vaccines, successfully immunizing both mucosal and systemic
tissues [34]. Moreover, BGs were conducted for hand-foot-and-mouth disease caused by
caused by the Enterovirus genus, such as Enterovirus 71 and the Coxsackie virus [69]. The
BG vaccines have been defined in several pathogens, such as E. coli O157:H7, Vibrio cholera
and H. pylori [61,80,81]. The safety and immunogenicity of BG-formulated vaccine have
been established in clinical trials with veterinary uses [40].

Table 4. Clinical significance/Outcomes of BGs.

Bacterial Ghosts Disease Target Cells Outcomes/Conferred Protection Developer/
Pharm. Company

Edwardsiella tarda Edwardsiellosis Fish
E. tarda BGs showed a significant systemic and

mucosal Ag-specific humoral
immune response.

BIRD-C

Actinobacillus
pleuropneumoniae

Porcine
pleuropneumonia Pig

Ag-specific humoral immune response;
increased T helper cytotoxic T cell ratio;

complete protection against clinical disease
BIRD-C

Pasteurella multocida,
Mannheimia
haemolytica

Bovine respiratory
disease Cattle

Protective immunity against homologous
challenge; cross-reactivity to various

Pasteurella serotypes.
BIRD-C

Salmonella enteritidis Salmonellosis/Enteritis
and systemic disease Chicken

Double-immunized chickens showed
protection against the intestinal, liver, splenic

and ovarian colonization of S. enteritidis;
Ag-specific lymphocyte proliferative response

in immunized chickens.

BIRD-C

Aeromonas hydrophila Hemorrhagic
septicemia Fish

Oral immunization with A. hydrophila BGs
elicits systemic and mucosal

immune responses.
BIRD-C

E. coli 0157:H7 EHEC carrier status
Diarrhea Cattle

Induction of EHEC specific antibodies,
significant reduction of both duration and total

shedding of EHEC offer oral challenge
BIRD-C

Heamophilus parasuis Glässer’s disease Pig
Piglets immunized with H. parasuis BGs
exhibited higher levels of T helper cells

relevant for protection.
BIRD-C

Escherichia coli Hemorrhagic
septicemia Fish Ag-specific immune response; protection after

challenge (>80%) BIRD-C

Bordetella
bronchiseptica Kennel cough Dog

BbBG vaccine showed equivalent results when
compared to the positive control vaccine

(Bronchicine CAe) in terms of
safety and efficacy.

BIRD-C

Flavobacterium
columnare Columnaris disease Fish

Ctenopharyngodon idellus immunized with F.
columnare BGs showed a significantly higher

Ag-specific immune response.
BIRD-C

Salmonella
typhimurium E. coli colibacillosis Pig

Oral immunization of piglets with S.
typhimurium BGs ETEC fimbriae provides

protection to E. coli colibacillosis.
BIRD-C

Salmonella gallinarium Fowl typhoid Chicken
Significant Ag-specific systemic IgG response;

increased mRNA level of Th1 cytokines
(IFNγ and IL-2).

BIRD-C

Klebsiella pneumoniae Mastitis Pig Cross reactivity to related subspecies and clear
protection against virulent bacteria BIRD-C

Streptococcus iniae Streptococcosis Fish

Tilapia (Oreochromis niloticus) immunized with
S. iniae BGs showed better protection and
higher bactericidal activity as compared to

formalin-killed vaccines.

BIRD-C

Ag: Antigen; EHEC: Enterohemorrhagic E. coli; ETEC: enterotoxigenic E. coli; IgG: Immunoglobulin G; IFNγ: interferon gamma; IL-2:
interleukin 2; BGs: Bacterial ghosts.
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6. Uniqueness of BGs as Delivery System

The BG system is an unusual innovative system for delivery that combines outstanding
natural intrinsic properties. The bacterial cell structure was well-studied, revealing many
biochemical principles that were subsequently applied to other organisms. Despite the
simplicity of the bacterial structure, it has a well-built cell construction which is responsible
for many of their unique biological assemblies. As a result of their intrinsic cellular tissue
orbit capabilities and ease of manufacture, BGs derived from living bacterial cells have
significant advantages as a delivery systems. The uniqueness of BGs as a DDS is the natural
constitutes of the cell envelope. The cell envelope contains the plasma membrane and
the cell wall. Each has specific structure features that provide particular benefits to the
delivery system. BGs represent empty non-denaturated envelopes. The bucket maintains
the bioadhesive properties of the natural cell as the ghost preserves the cellular morphology
and native surface antigenic structures; these components are responsible for properties
like attachment and adhesion, motility and avoiding immune attack. Dissecting bacterial
cell envelopes will illustrate details of the main components of both OM and IM help to
better understand how the cell wall retains specific properties.

6.1. Structural Integrity

Almost every type of bacterial genus has a cell wall, as it is the carbohydrate-containing
rigid construction that surroundings the bacterial cell. This exoskeleton provides all
prokaryotes several benefits such as the integrity, shape and permeability of the cells.
More importantly, it protects the cell from any encircling environments and acts as a filter,
allowing selected materials to enter the cells, excluding large and harmful molecules. The
core component of the wall is the complexed peptidoglycan molecules that consist of
alternating units of N-acetylglucosamine and N-acetylmuramic acid cross-linked by short
peptides [56]. The result is a complexed rigid crossed pattern that is very hard and firm,
yet porous, allowing movement across the wall.

Bacterial strains are categorized into two groups and differentiated by the thickness
of peptidoglycan. Gram-positive bacteria have a multiple peptidoglycan layers form-
ing a thick rigid structure. Spanning this layer is teichoic acid, which is only found in
Gram-positive strains. The cell walls of Gram-negative bacteria differ in that they con-
tain a thin peptidoglycan layer covered by an outer lipid layer rich in LPS content [82].
The peptidoglycan layer covers and protects the plasma membrane; the semipermeable
phospholipid-bilayer encloses the cytoplasmic content. Sandwiched between the bacterial
OM and IM of Gram-negative walls is a periplasmic space, a highly viscus aqueous cellular
compartment that is mostly condensed with proteins [83]. The difference in structural be-
tween Gram-positive and Gram-negative cell walls allows the optimal selection of bacterial
strains for the production of BG delivery system.

The production of the BGs using the E-lysis protein process leads to the fusion of
the OM and IM forming a tunnel [84,85]. This process works only on Gram-negative
strains. Studies have shown that the total structure of the cell wall is not altered by
the E-mediated process. Moreover, the E-specific transmembrane-formed tunnel is not
randomly distributed over the cell envelope but is restricted to areas of potential division
sites, primarily in the center of the cell or at polar sites [86]. The tunnel sealed by the
movement of the C-terminal end of the E-lysis protein from the inner side to the outer
side all over the envelope composite straddles the entire pore and fuses the IM and OM at
distinct areas [87–89].

After expelling the contents of the cytoplasm, the remaining empty sac (ghost) of
the bacteria is empty of nucleic acids, ribosomes and other constituents, whereas the
IM and OM structures of BGs are well conserved [90]. The well-maintained vessel can
be used as a carrier of a variety of medications, antigens and vaccinations. In all BG
vaccine applications, regardless the immunization route, addition of adjuvants is not
essential. It has been claimed that LPS and peptidoglycan layers, which are portion of the
BGs envelope, act as adjuvants. Furthermore, BGs are totally inactivated and therefore
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incapable of replication. They are DNA-free and consequently do not present a hazard
of horizontal gene transmission. What is more, the produced BGs are extremely stable.
The stability of BGs against host lysosomes are mainly due to the composition of the OM;
the Gram-positive cell wall is almost completely destroyed by lysozymes, yet, with the
application of lysozyme to Gram-negative cells, generally the wall is not destroyed to
the same extent as in Gram-positive cells [14]. Regarding the stability of BGs, they can
be stored at proper temperatures after lyophilization for many years without losing their
characteristics [30].

6.2. Bioadhesive and Attachments for Targeted Colonization

Various cellular components are related to bacterial cell adhesion and attachment to
the host tissues in both pathogenic and non-pathogenic strains of Gram-negative bacteria.
As such, the adhesive OM proteins and the components that are used for attachment
and movement such as pili, cilia and fimbriae are maintained within BG [91–93]. The
production process of BGs retains the cellular morphology and envelope sub-component
profile of bacteria, while losing some of the functionality of these entities [94,95]. The
major component of the OM of Gram-negative bacteria is the LPS, constituting the outer-
most molecules, which is composed of two biosynthetic units: the lipid A-core and the
O-polysaccharide [96,97]. Most biological effects of LPS are related to these two compo-
nents that play a significant role in the effective colonization of host tissues and adhesion.
BGs are nonliving envelopes, in which certain entities are reserved and can play their role
in making the BGs an effective drug carrier [98]. Moreover, the presence of a polysaccharide
capsule mediates interactions between the bacterium and its direct environment. Moderat-
ing capsule expression is a consequence of bacterial growth; conversely, in BGs, this capsule
is not present, as a result of killing the bacterial cells where more or less capsule expression
will dictate the likely survival of the bacteria in a hostile environment [96,97]. OM vesi-
cles are naturally produced from pathogenic bacterial adhesions and immunomodulatory
fusions, and they facilitate bacterial cell-binding and invasion directly. They are effective
bacterial virulence factors, as they share in the diverse aspects of the host–pathogen in-
teraction; however, BGs devoid of such virulence as bacterial vesicles are made by active
growing cells, not yields of cell lysis or cell death [99–102].

6.3. Immunogenicity

Generally, the immune system is able to exactly distinguish the antigenic biological
polymer (glycolipids and/or proteins) and present it to T cells via the major histocompati-
bility complex proteins. These immune responses (adaptive) have long been considered
the ground of antigenic proteins, while polysaccharides are considered T-cell-independent
antigens and are not recognized by the adaptive mechanism requiring the action of hu-
moral immunity. Normally, carbohydrates are not recognized by the immune system, thus
bacteria have developed polysaccharide capsules, though the latest finding that sugars play
a role in immune recognition makes them more attractive targets in the search for antigenic
epitopes [103–105]. BGs have maintained some antigenic features that are responsible for
additional uniqueness as a delivery system.

LPS is the major component in BGs, is known to be toxic and is classified as an endo-
toxin that elicits a strong immune response when introduced to a host [103–106]. All BG
composites of LPS, including protein-A, O-antigens and peptidoglycan, which are part of
the BG envelope complex, act as immunogenicity modulators stimulating humoral as well
as cellular immunity [107]. It is assumed that a vaccine that inhibits the microorganism
from colonizing the host and that possesses all significant antigenic cell surface factors re-
flects the most promising way to avoid infection. BGs represent the ideal vaccine candidate
for pathogenic bacterial strains, for example enterohemorrhagic E. coli (EHEC) strains [64].
BGs also are one of the best vaccine delivery systems, merging targeting of antigen com-
ponents and offering essential adjuvant activity without the need for further additions.
Additionally, BG studies suggest that using BGs as a vaccine candidate effectively stimulate
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monocytes and macrophages to induce the immune responses. Moreover, stimulating den-
dritic cells by BGs can be used for active immunization and immunotherapy in situ [108].
As a vaccine candidate and/or carrier BGs, can be used for immunization using various
routes: parenteral, oral, buccal and aerosol. Immunization with BGs does not cause clinical
side-effects, while providing full protection against clinical disease. All these advantages
qualify BGs as a promising carrier and adjuvant for target antigens and vaccinations.

6.4. Compartmentalization and Placement of Antigens and/or Medications within BGs

Knowing all about the principles of BGs and structural components will allow their
potent and specific application; either BG will be used as a primal form of the empty bucket
or it can be recombinantly modified to produce site-specific or directed delivery. BGs are
perfectly suited as carriers for target antigens of diverse origin [109]. Similarly, they can
be used as delivery vehicles for DNA-Based vaccines [110]. Antigens can be anchored
within the IM and OM, in the periplasmic space along with in the inner lumen of BGs. For
example, foreign target antigens can be displayed on the surface of BGs as fusion protein
with pili or with outer-membrane proteins [109]. Furthermore, BGs can be loaded with
active compounds, signifying ideal, target-oriented drug delivery vehicles. Ghosts have
a sealed periplasmic compartment and the transfer of proteins into this space massively
extends the capacity of BGs or recombinant BGs to function as transporters of foreign
antigens, immunomodulators or other medications [109]. Foreign target antigens can be
filled within the periplasmic space of BGs or embedded on a recombinant S-layer that
filled the periplasm of BGs. S-layer proteins forming shell-like self-assembly structures can
be expressed in the selected candidate vaccine strains prior to E-mediated lysis. Foreign
epitopes of up to 600 amino acids can be inserted within the flexible surface loop areas of
the S-layer, extending the possibilities of ghosts as carriers of foreign epitopes. Moving
toward the IM foreign antigens can be anchored to the IM by E′ or L′ anchor sequences or
combined E′-L′ anchor sequence or biotinylated streptavidin sequence. Moreover, foreign
antigens can be filled into the cytoplasmic bucket of the ghost using recombinant S-layer or
any bioactive compounds. Matrices like dextran that are also used to fill the internal lumen
of ghosts can be substituted with various ligands to bind the subunit or other materials
of interest [30,109,110]. This fact clarifies the higher superiority of BGs when parallel to
other inactivated vaccines. Also, there is no foreign antigen size limitation to be implanted,
and the capacity of all spaces, including the membranes when used as carriers of foreign
antigens and internal lumen of the BGs can be fully utilized.

7. Cell, Tissue Uptake and Cellular Inflammatory Response

BG membranes contain a number of microbial-PAMP, including LPS, peptidoglycan
or flagella, that are recognized and taken up by various immune (dendritic cells (DCs),
macrophages, B and T cells) and non-immune cells (epithelial cells, fibroblasts and ker-
atinocytes). The interaction of these envelope structures with TLR located on the innate
immune cells results in the stimulation of stronger adaptive immune responses [111]. Typi-
cally, the adjuvant activity of BGs is driven by the interaction of their TLR agonists with
either TLR2 or TLR4, resulting in the induction of the innate immune system through the
activation and maturation of DCs [112]. The DC-mediated uptake of BG results in the
stimulation of proinflammatory cytokines, especially IL-12, which in turn stimulates NK
and Th1 cells [113]. Due to the presence of LPS, BGs enhance the antigen-presenting ability
of DCs to CD8+ and T-cells, which produces potent cytotoxic cell responses. Additionally,
BGs have the ability to trigger the release of cytokine and chemokine in lymphoid and
non-lymphoid cells to maximize the recognition of foreign antigens and the development
of efficient immune responses [87]. Abtin et al. demonstrated that the endocytosis of
flagellated E. coli BGs by the non-APCs, keratinocytes, was higher than that of mutated
non-flagellated E. coli BGs and also with the stronger induction of cytokines [114]. The
overall effect of the stimulation of these cell types, along with the release of proinflamma-
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tory factors, results in the comprehensive recruitment of innate and adaptive immune cells
in addition to the efficient induction, maturation and phagocytic ability of APCs.

8. Ideal Drugs to Be Loaded into BGs

BGs possess cellular morphology similar to that of native bacteria, and entire cell
surface structures, including OM proteins, adhesions, LPS and the peptidoglycan layer, are
conserved [111]. These remarkable bio-recognitive characteristics play a key role in BGs’
adherence to different surfaces of body tissues. Additionally, the BGs’ platform system
provides a new promising approach for the delivery of drugs and other biologically active
substances. Thus, when it comes to the selection of a drug for loading into/onto BGs to be
delivered to a particular site of action, it is very necessary to be taken into consideration
that the selected drug is safe to the cell structure of BGs. They are free of any internal
content so this lumen can be occupied with interested different drugs as liquid or absorbed
to the lipid compartment or specifically anchored to receptors presented in the BGs.

Different studies showed that the lethal action of cytotoxic drugs on the bacterial cell
wall requires the active growth of the organisms [115,116]. Since the BGs are nonliving
bacterial cell envelopes, in general, it can be said that very little or no effect is expected
from the use of drugs that inhibit the synthesis of the bacterial cell wall. As proof of that,
M. haemolytica ghosts were utilized for the in vitro delivery of the moderate hydrophilic
cytostatic drug, doxorubicin (DOX), to human colorectal adenocarcinoma (Caco-2) cells;
the improved antiproliferative and cytotoxic activities in the Caco-2 cells were 2 to 3 times
more effective compared to the DOX alone [117].

Our recent investigations of the effect of the sparingly water-soluble cytotoxic drug
5-fluorouracil (5-FU) on the cell wall of E. coli ghosts revealed that there was no significant
impact of 5-FU in 50, 100, 500 and 1000 µg/mL concentrations on the nature and quality
of the cell walls of the ghost cells in comparison to untreated ghosts [118]. These findings
emphasize what was reported from preceding studies on E. coli K12, that 5-FU exerts its
lethal action only on living (growing) bacterial cells. In another delivery model, the water-
soluble substance calcine was used, and lysis holes were plugged with bacterial membrane
vesicles [95]. The polyphenolic compound resveratrol was used to bind unspecifically
to the membrane compartments of BGs. An enhanced binding of biotinylated alkaline
phosphatase or biotinylated fluorescence-labeled dextrans to a membrane-anchored strep-
tavidin matrix on the IM of BGs showed successful binding within the inner lumen of
BGs [21]. Protective and curative effects versus agricultural plant pathogens were reported
when P. cypripedii ghosts were used as delivery systems for pesticide with the lipophilic
fungicide tebuconazole [119].

Under physiological conditions, most bacteria have a net-negative surface charge,
making them more likely to adhere to positively charged surfaces [120]. Because of high
proportions of phosphatidylserine (negatively charged) on the surface of cancer cells
compared to normal cells, a number of amphipathic cationic antimicrobial peptides (CAPs)
could be an effective source of cytotoxic agents that could be a potential candidate for BGs
delivery [121]. Nevertheless, further investigations are required to discover whether or not
CAPs are safe enough for the cell wall of BGs.

Membrane-active agents and surfactants may cause an alteration in the fluidity and/or
permeability of the cell membranes, leading to a loss of function [122]. Surfactants and
other soluble amphiphiles seem to be bind to a membrane even at very low concentrations,
though they may involve subtle alterations in the membrane permeability and membrane
lysis and fusion at higher concentrations [122]. As a result, the use of surfactants with BGs
should be completely avoided. The use of antimicrobial agents targeting the cell wall might
be appropriate for BG delivery unless future studies prove that they have a deleterious
effect on BGs’ cell walls.
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9. Safety Issues of Using BGs

The prevalence of BGs uses in combination with the low manufacturing costs make
the BG platform technology a safe and suitable for a targeted DDS, especially for vaccines
and active compounds, along with carriers of immobilized enzymes for biotechnology
applications. Safety is one of the most important factors for accepting and approving these
medical applications. The main source of bacterial virulence is the genetic materials and
the typical surface receptors of the BGs, and their living counterparts are being exploited
for specific cellular and tissue targeting [109]. For protection causes, researchers inactivated
all remaining bacterial DNA in the BG-making process. This may be achieved by the
use of staphylococcal nuclease A and/or treatment with β-propiolactone [30]. One of the
important BG advantages is that they are dead and do not have a genetic material.

9.1. Human Risk of BGs as DNA Vaccine Carriers

Today, a DNA vaccine has been permitted for applications in veterinary field [123].
For human uses, DNA vaccines still need more investigation and developments before
use and before they are deemed safe. The FDA still has not approved DNA vaccines
using BGs as carriers. This may be due to the necessity of excessive plasmid dosages
and little immunogenicity that are most normally attributed to the lack of an effective
delivery system [124]. In the last few years, several studies have utilized the BGs as a
carrier to deliver DNA vaccines using a simple technique for loading BGs with plasmid
DNA [125–128].

The concept of using BGs prepared from different Gram-negative bacteria as applicant
vaccines developed owing to the need for both effective and safe new vaccines. Traditional
bacterial delivery systems and viral vaccines with high transaction effectiveness may
combine with a risk of return to their original pathogenic hazard. An attenuated bacterial
system as DNA complexes and nucleoporation is safer than a viral system due to effective
transfection reduction [129]. The new BGs system introduces a new, extremely efficient
gene delivery platform as an alternate to existing methods in vaccine development. The
safety of BGs is one of the major advantages. A recent in vitro study showed that BGs
have no cytotoxic or genotoxic effect on different types of human cells using different BGs
species [30]. Moreover, BGs offer a safe, easy to operate and produce an alternate to the
traditional antigen bacterial carrier system, with all of the advantages of the later.

9.2. Controlling the Risk

Generally, for controlling the risk of the production and loading of BGs with plasmid
DNA, researchers use an effective protocol for clear safety. Briefly, self-immobilizing plas-
mids (pSIP) were introduced as a one step in-vivo and cost-effective procedure. Through
this method, the plasmid DNA carrying an operator sequence is bound to a specific DNA
binding protein existing in the bacterial IM [130]. In gene therapy, the bacterial backbone
sequences and antibiotic-resistant genes are considered a biological safety risk for DNA
vaccination and plasmid DNA [30]. To beat this problem, sophisticated versions of pSIP
BG-DNA-vaccines, based on minicircle DNA empty of such biologically risky remnants
were established. The developed version of pSIP is based on the ParA resolvase system to
produce mcDNA, which is bound to the IM receptor.

10. Stability Aspects of Using BGs as Delivery Systems

For the purposes of minimizing the undesirable side-effects and maximizing the
therapeutic activity, the production of intelligent DDSs is continuously improved [104].
The stability of those intelligent drug delivery systems is one of the biggest challenges that
confront pharmaceutical scientists. Despite the robust and well-known immunological
advantages of bacterial delivery vectors, there are safety and stability limits with the
carrier-based delivery systems [109]. For instance, despite liposomes being promising
drug delivery systems, the major disadvantage of liposomal formulation is related to its
stability [131,132]. Generally, liposomal chemical instability (hydrolysis and oxidation
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of lipids) and physical instability (change in size distribution and leakage of entrapped
materials) are faced by liposomes upon storage [133]. By contrast, BGs have significant
advantages over other carrier-based delivery particles in terms of stability. Owing to the
fact that lyophilized BGs remain stable at ambient temperature for several years, they can
be kept as lyophilized preparations at 25 ◦C for long periods without a lack of efficiency [30].
Unlike the currently utilized vaccines that are called chain dependent, BGs-based vaccines
can be processed and stored without refrigeration [134].

11. Generation vs. Species

BGs are obtained mainly from Gram-negative bacteria, as the lysis process for BGs pro-
duction works only with Gram-negative bacteria via the fusion of the IM and OM, produc-
ing a specific transmembrane-tunnel structure through which all the cytoplasmic content is
expelled. On the contrary, Gram-positive bacteria can be killed but not by gene E-lysis due
to OM missing [30]. BGs were generated from varied species of different Gram-positive
bacteria such as E. coli K12 and BL21 strains, Helicobacter pylori, Klebsiella pneumoniae, Acti-
nobacillus pleuropneumoniae, Erwinia cypripedii, Bordetella bronchiseptica, Pseudomonas putida,
Ralstonia eutropha, Mannheimia haemolytica, Pasteurella multocida, Salmonella typhimurium,
Salmonella enteritidis and Vibrio cholera [135]. Recently, a new protocol “Sponge-like” for BGs
preparation was established. By means of applying different chemical compounds to the
target bacterial cells in a series of consecutive treatments, BGs were produced from different
E. coli strains using the latter Sponge-like protocol and Sponge-like reduced protocol for
the preparation of E. coli JM109 BGs [136,137].

12. Future Prospective

Nowadays, BGs are considered a promising technology platform for different areas:
as novel vaccines, as drug carriers for therapeutic approaches in tumor treatment and
as novel probiotics. The future of BGs would be based on their great ability to deliver a
drug to target sites. However, a number of problems like their immunogenicity, reduced
drug concentration available at target sites and the poor internalization of the ghost into
cells may be encountered. Subsequently, it is highly important to optimize, validate and
authenticate the overall production process of BGs. Simultaneously and for reproducible
results, it would also be an urgent need to evaluate the production variables. Safety is one
more point of concern associated with bacterial ghosts, as they appear to be inappropriate
for immunocompromised patients. Therefore, overall a lot of work is required to be done.

13. Conclusions

Targeted DDSs, including biological targeted DDS, offer the enhanced delivery and
availability of medication moieties to many different target cells or tissues resulting in a
higher efficacy with a better safety profile. BGs represent a unique biological drug carrier
for their remarkable features of being non-living cells maintaining all the natural constitutes
of the cell envelope. They can be produced either from Gram-negative or Gram-positive
bacteria using different approaches like gene E-mediated lysis or Sponge-like protocol,
mild high-pressure shock. BGs could be utilized in the biomedical field to serve as drug
delivery vehicles, adjuvants or vaccines for the immunogenic strustures avaialable on the
surface, protein and antigen carriers, and as a diagnostic tool. BG-based immunization
can be achieved to produce significant humoral and cellular immune responses using
various routes of administrations without clinical side effects. Since safety is one of the
most important factors for accepting and approving BG medical applications and that
the main sources of bacterial virulence are the genetic materials and the typical surface
receptors, BGs have proved to be safe and suitable for the targeted DDS as they are dead
cells and without genetic materials. Moreover, BGs have significant advantages over other
carrier-based delivery particles in terms of stability, since lyophilized BGs remain stable
at ambient temperature for several years without a lack of efficiency. Unlike the currently
marketed vaccines that are cold-chain-dependent, BG-based vaccines can be processed
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and stored without refrigeration. From the above, it can be concluded that BGs stand as
a promising technology platform for different areas, comprised of novel vaccines, drug
carriers for therapeutic approaches in tumor treatment and novel probiotics.
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