

Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis

Journal of International Medical Research 48(7) 1-25 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0300060520910019 journals.sagepub.com/home/imr

Ziqi Meng, Jiarui Wu 🕑, Xinkui Liu, Wei Zhou, Mengwei Ni, Shuyu Liu, Siyu Guo, Shanshan Jia and Jingyuan Zhang

Abstract

Objective: The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC).

Methods: Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein-protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan-Meier plotter were used to determine expression and prognostic values of hub genes.

Results: We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolismassociated pathways, and hub genes and module I were highly associated with cell cycle pathway. **Conclusions:** In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.

Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China

Corresponding author:

Jiarui Wu, Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chaoyang District, Beijing 100029, China. Email: exogamy@163.com

 \odot \odot

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Keywords

Hepatocellular carcinoma, bioinformatics analysis, differentially expressed genes, survival, Gene Expression Omnibus, hub genes

Date received: 18 October 2019; accepted: 4 February 2020

Introduction

On a global scale, cancer is the main public health problem and liver cancer is a major contributor to both cancer morbidity and mortality.¹ Liver cancer is the sixth most common cancer and the fourth highest cause of cancer-related mortality worldwide.² There were expected to be 42,030 newly diagnosed cases and 31,780 deaths of liver cancer in the United States during 2019.³ Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, comprising 75% to 85% of cases.² The well-recognized risk factors for HCC include chronic infection with hepatitis B (HBV) or hepatitis C virus, exposure to dietary aflatoxin, alcohol-induced cirrhosis, smoking, obesity, and type 2 diabetes.^{2,4} In Asia (especially China), chronic HBV infection is the leading etiologic factor of HCC.⁵ Most HCC patients are diagnosed at an advanced stage, and locoregional treatments (chemoembolization) and surgical treatments are relatively disappointing in terms of overall survival (OS) of patients with advanced disease.⁶ In addition, traditional chemotherapies have not shown promising outcomes in treatment of HCC and have significant toxicity.^{6,7} Meanwhile, the lack of early detection of diagnostic markers and limited treatment strategies increase the risk of poor prognosis and death.⁸ Therefore, there is a pressing need to develop robust diagnostic strategies and effective therapies for HCC patients.⁹

Over the past decades, microarray technology and bioinformatics have been extensively applied to identify the molecular mechanisms of HCC, which provide strong research support for the diagnosis, treatment, and prognosis of HCC.¹⁰ Because of the ability to process a large number of datasets quickly, integrated bioinformatics analysis and microarray techhave allowed researchers nology to comprehensively identify the functions of numerous differentially expressed genes (DEGs) in HCC, and they help researchers explore the complicated process of HCC occurrence and development.^{10,11} A work by He et al.¹² identified four hub genes and two important pathways in the development of HCC from cirrhosis from one Gene Expression Omnibus (GEO) dataset using a bioinformatics method, including DEG screening, enrichment analyses, and construction of a protein-protein interaction (PPI) network. Zhang et al.¹³ screened hub genes and pathways correlated with the occurrence and progression of HCC via a series of bioinformatics analyses incorporating DEGs identification, functional enrichment analyses, PPI network and module analysis, and weighted correlation network analysis. Zhou et al.11 identified the pivotal genes and microRNAs in HCC using a bioinformatics approach, including analysis of raw data via GEO2R, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and construction of PPI network. However, to improve the diagnosis and treatment of HCC, novel diagnostic and prognostic biomarkers for HCC are needed. The flowchart of the study approach is shown in Figure 1.

Figure 1. Flowchart for identification of core genes and pathways for hepatocellular carcinoma (HCC). GEO, Gene Expression Omnibus; DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interaction; GEPIA, Gene Expression Profiling Interactive Analysis.

Materials and methods

Ethical approval

Ethical approval was not required in this study because we analyzed only published data from the GEO database.

Gene expression profile data

Gene expression profile data (GSE36376,¹⁴ GSE39791,¹⁵ GSE41804,¹⁶ GSE54236,^{17,18} GSE57957,¹⁹ GSE62232,²⁰ GSE64041,²¹ GSE69715,²² GSE76427,²³ GSE84005, GSE87630,²⁴ GSE112790,²⁵ and GSE1 21248²⁶) were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/),²⁷ a public data repository, including high-throughput gene expression and other functional genome datasets. The selection criteria for the included datasets were as follows: (1) tissue samples collected from human HCC and corresponding adjacent or normal tissues; and (2) including at least 40 samples.

Integrated analysis of microarray datasets

The matrix data of each GEO dataset were normalized and log₂ transformed using the R software package limma,²⁸ and the DEGs between HCC and corresponding adjacent or normal tissues were also filtered using the limma package. Integration of DEGs identified from the datasets was performed 13 bv RobustRankAggreg package²⁹ in R software. A $|\log_2 \text{ fold change (FC)}| > 1$ and adjusted P-value < 0.05 were considered significant for the DEGs.

Enrichment analyses of DEGs

Database for Annotation, Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov/, version, 6.8)³⁰ is a comprehensive functional annotation tool for extracting biological significance from large gene/protein datasets. In this study, the GO and KEGG pathway enrichment analyses for the DEGs were conducted via DAVID. The visualization of enrichment analysis results was conducted by using ggplot2³¹ and the GOplot³² package in the R software.

PPI network and module analysis

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; https://string $db.org/)^{33}$ is a database of known and predicted protein interactions, showing direct and indirect interactions among proteins. This database was applied to obtain potential interactions among the DEGs. PPIs with a confidence score ≥ 0.7 were reserved and imported into Cytoscape software³⁴ to construct the PPI network. Furthermore, the clustering modules in this PPI network using were analyzed the **MCODE** (Molecular Complex Detection) plugin in Cytoscape.³⁵ Pathway enrichment analyses for important modules were also carried out. The visualization of enrichment analysis results was performed by using the imageGP platform (http://www.ehbio.com/ ImageGP/index.php/Home/Index/GOenrich mentplot.html).

Survival analysis of hub genes

Kaplan–Meier plotter (KM plotter; http:// kmplot.com/analysis/) is a database containing clinical data and gene expression data.³⁶ This database is used to further understanding the molecular basis of disease and identifying biomarkers associated with survival.³⁷ The recurrence-free survival and OS information were based on GEO, the European Genome-phenome Archive (EGA), and The Cancer Genome Atlas (TCGA) databases. Hazard ratios (HR) with 95% confidence intervals and log rank *P*-value were calculated to assess the association of gene expression with survival and are shown in plots.³⁸

Expression level analysis and correlation analysis of hub genes

The Gene Expression Profiling Interactive Analysis (GEPIA; http://gepia.cancer pku. cn/index.html)³⁹ is a newly developed webbased tool that applies a standard processing pipeline to analyze gene expression data between tumor and normal tissues. The relationship of expression of hub genes in HCC and normal tissues were visualized by boxplot.³⁸ In addition, correlation analysis was performed by GEPIA to check the relative ratios between two genes.³⁹

Results

Identification of DEGs

In the present study, 13 datasets were downloaded from GEO that included 1100 cancer tissues and 717 corresponding adjacent or normal tissues (Table 1). After integrated analysis, 380 DEGs (293 downregulated and 87 upregulated) were identified (Figure 2a-m and Appendix). Figure 2n shows the top 20 down- and upregulated genes.

GO and KEGG pathway enrichment analyses of DEGs

To deepen our understanding of DEGs, we performed GO and KEGG pathway

Table I.	Information	for the 13	Gene Expression	Omnibus datasets	included in the	current study
----------	-------------	------------	-----------------	------------------	-----------------	---------------

Dataset	Platform	Number of samples (tumor/control)
GSE36376	GPL10558-Illumina HumanHT-12 V4.0 expression beadchip	433 (240/193)
GSE39791	GPL10558-Illumina HumanHT-12 V4.0 expression beadchip	144 (72/72)
GSE41804	GPL570-[HG-UI33_Plus_2] Affymetrix Human Genome UI33 Plus 2.0 Array	40 (20/20)
GSE54236	GPL6480-Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Probe Name version)	161 (81/80)
GSE57957	GPL10558-Illumina HumanHT-12 V4.0 expression beadchip	78 (39/39)
GSE62232	GPL570-[HG-UI33_Plus_2] Affymetrix Human Genome UI33 Plus 2.0 Array	91 (81/10)
GSE64041	GPL6244-[HuGene-I_0-st] Affymetrix Human Gene I.0 ST Array [transcript (gene) version]	125 (60/65)
GSE69715	GPL570-[HG-UI33_Plus_2] Affymetrix Human Genome UI33 Plus 2.0 Array	103 (37/66)
GSE76427	GPL10558-Illumina HumanHT-12 V4.0 expression beadchip	167 (115/52)
GSE84005	GPL5175-[HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [transcript (gene) version]	76 (38/38)
GSE87630	GPL6947-Illumina HumanHT-12 V3.0 expression beadchip	94 (64/30)
GSE112790	GPL570-[HG-UI33_Plus_2] Affymetrix Human Genome UI33 Plus 2.0 Array	198 (183/15)
GSE121248	GPL570-[HG-UI33_Plus_2] Affymetrix Human Genome UI33 Plus 2.0 Array	107 (70/37)

Figure 2. Identification of DEGs. Volcano plots of Gene Expression Omnibus datasets (a) GSE36376, (b) GSE39791, (c) GSE41804, (d) GSE54236, (e) GSE57957, (f) GSE62232, (g) GSE64041, (h) GSE69715, (i) GSE76427, (j) GSE84005, (k) GSE87630, (l) GSE112790, and (m) GSE121248; (n) heat map of DEGs. Blue indicates lower expression levels, red indicates higher expression levels, and white indicates no differentially expression among the genes. Each column represents one dataset and each row represents one gene. The number in each rectangle represents the normalized gene expression level. The gradual color ranged from blue to red represents the changing process from downregulation to upregulation. DEG, differentially expressed gene.

enrichment analyses. Thirty-one significantly enriched GO terms were selected based on a false discovery rate (FDR) < 0.05(Figure 3a and Appendix). In the GO terms were 13 terms for biological process, mainly related to metabolic process, P450 pathway, and oxidation-reduction process; 12 terms for molecular function, highly involved with multiple enzyme activities, heme binding, iron ion binding and oxygen binding; and 6 terms for cellular components, associated with organelle membrane, extracellular exosome, extracellular region, extracellular space, blood

Figure 3. Enrichment analysis of DEGs. (a) GO enrichment analysis of DEGs, (b) top 5 terms of GO enrichment, and (c) KEGG pathway analysis of DEGs. DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.

microparticle, and membrane attack complex.

In the KEGG pathway enrichment analyses, we screened nine pathways according to FDR < 0.05. Figure 3c shows the results of KEGG analysis; the DEGs primarily participated in diverse metabolism-associated signaling pathways, such as metabolic pathways, retinol metabolism, drug metabolismcytochrome P450, among others.

PPI network establishment and module analysis

The PPI network of DEGs comprised 242 nodes and 1267 interactions (Figure 4a); degree was calculated to identify candidate key nodes. Finally, 11 potential key nodes were identified, the degrees of which were all more than four times the corresponding average values: *CDK1*, *CCNB2*, *CDC20*, *CCNB1*, *TOP2A*, *CCNA2*, *MELK*, *PBK*,

TPX2, KIF20A, and AURKA (Table 2). Moreover, to determine important clustering modules in the PPI network, module analysis was performed using MCODE, and the two modules with the highest scores (score >10) were obtained (Figure 4b, 4c). The enrichment pathways of module 1 and module 2 are shown in Figure 5. Module 1 was highly associated with cell cycle and oocyte meiosis; module 2 was closely connected to drug metabolism-cytochrome P450, linoleic acid metabolism, chemical carcinogenesis, arachidonic acid metabolism, retinol metabolism. metabolism of xenobiotics bv cytochrome P450, and metabolic pathways.

Survival analysis, expression, and correlation analysis of hub genes

Survival analysis of 11 hub genes was performed using the KM plotter. The results

Figure 4. PPI network and hub clustering modules. (a) The PPI network of DEGs, (b) module 1 (MCODE score = 38.769), and (c) module 2 (MCODE score = 10.364). Blue circles represent downregulated genes and red circles represent upregulated genes. PPI, protein–protein interaction; DEG, differentially expressed gene; MCODE, Molecular Complex Detection.

showed that high expression of CDK1 (HR = 2.15,95% CI: 1.52 - 3.06;P = 1.1e - 05, CCNB2 (HR = 1.91, 95%) CI: 1.28 - 2.87;P = 0.0013), CDC20 (HR = 2.49, 95%)CI: 1.72–3.59; P =5.1e-07), CCNB1 (HR = 2.34, 95% CI: 1.55-3.54; P = 3.4e - 05), TOP2A

(HR = 1.99, 95% CI: 1.39–2.86; P = 0.00012), CCNA2 (HR = 1.92, 95% CI: 1.36–2.72; P = 0.00018), MELK (HR = 2.22, 95% CI: 1.5–3.27; P =3.7e–05), PBK (HR = 2.24, 95% CI: 1.5– 3.34; P = 4.8e-05), TPX2 (HR = 2.29, 95% CI: 1.62–3.24; P = 1.4e-06), KIF20A (HR = 2.33, 95% CI: 1.63–3.32; P = 1.8e-06), and AURKA (HR = 1.77, 95% CI: 1.25–2.5; P = 0.0011) was related to unfavorable OS for HCC patients (Figure 6). Furthermore, GEPIA was adopted to analyze the different expression level of hub genes in HCC and normal tissues and the 11 hub genes were confirmed to be highly expressed in HCC tissues (Figure 7). The correlations between hub genes were also analyzed by GEPIA,

 Table 2. Upregulated hub genes with high degrees.

Gene	Degree	Туре	MCODE Cluster
CDKI	47	up	Module I
CCNB2	46	up	Module I
CDC20	45	up	Module I
CCNBI	45	up	Module I
TOP2A	44	up	Module I
CCNA2	44	up	Module I
MELK	43	up	Module I
PBK	43	up	Module I
TPX2	43	up	Module I
KIF20A	43	up	Module I
AURKA	43	up	Module I

which showed that the 11 hub genes were significantly correlated with each other. Figure 8 showed that the increase in expression of *CDK1* was strongly associated with increased expression of the other 10 hub genes.

Discussion

HCC is the most common type of malignancy and one of the leading causes of cancer-related mortality worldwide.40,41 Although much research has been done on HCC, its early diagnosis and treatment remains difficult because of a lack of understanding of the molecular mechanisms associated with HCC occurrence and development.⁴¹ Therefore, in-depth studies of the etiological factors and molecular mechanisms of HCC are of critical importance for HCC diagnosis and treatment.¹¹ Currently, bioinformatics analysis and microarray technology are developing rapidly and this approach can be used to identify therapeutic targets for diagnosis, therapy, and prognosis of a variety of

Pathway analysis of two modules

Figure 5. Pathway analysis of the two modules with the highest scores. The y-axis shows significantly enriched KEGG pathways, and x-axis shows the two modules. KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.

Figure 7. Analysis of expression levels of 11 hub genes in human HCC. The red and gray boxes represent cancer and normal tissues, respectively. (a) *CDK1*, (b) *CCNB2*, (c) *CDC20*, (d) *CCNB1*, (e) *TOP2A*, (f) *CCNA2*, (g) *MELK*, (h) *PBK*, (i) *TPX2*, (j) *KIF20A*, and (k) *AURKA*. HCC, hepatocellular carcinoma; LIHC, liver hepatocellular carcinoma.

neoplasms.42 In this research, we identified 380 DEGs, including 293 downregulated and 87 upregulated genes, between HCC and corresponding adjacent or normal tissues. Enrichment analyses indicated that the DEGs were mostly associated with metabolic processes, such as metabolism of retinol, drugs, xenobiotics, tyrosine, tryptophan, and histidine, as well as fatty acid degradation. This indicated that metabolic dysregulation is closely related to HCC. In addition, we obtained 11 hub genes (CDK1, CCNB2, CDC20,CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) in the PPI network, which were upregulated in HCC tissues compared with normal tissues; expression of the first hub gene, CDK1, was strongly correlated with that of the other hub genes. Overexpression of the 11 hub genes was correlated with worse OS.

Recent evidence implies that tumor cells need specific interphase cyclin-dependent kinases (CDKs) to proliferate.43 Cyclindependent kinase 1 (CDK1) belongs to the CDK family, a member of the serine/threonine protein kinases, and it is crucial for the cell cycle phase transitions G_1/S and G_2/M . 44,45 CDK1 is required for cell proliferation because it is the only CDK that can initiate mitosis.⁴⁶ The deregulation of CDK1 is likely related to HCC tumorigenesis.⁴⁷ Research has found that high expression of CDK1 is correlated with poor OS of HCC.⁴⁵ Cyclins act as the regulatory subunits of the CDKs, regulating temporal transitions among various stages of the cell cycle via CDK activation.⁴⁸ Cyclin-A2 (CCNA2), cyclin-B1 (CCNB1), and cyclin-B2 (CCNB1), encoded by the CCNA2, CCNB1, and CCNB2 genes, respectively, all belong to the cyclin family. CCNA2 activates CDK1 at the end of interphase to facilitate the onset of mitosis, and CCNA2 overexpression has been reported in numerous types of cancers.⁴⁹ A previous study indicated that CCNA2 amplification and

overexpression is associated with carcinogenesis of transgenic mouse liver tumors.⁵⁰ Moreover, research has demonstrated that inhibition of CCNA2 can arrest HCC cell proliferation and tumorigenesis.⁵¹ High expression of CCNA2 is associated with reduced survival in patients with breast HCC. 52,53 cancer and CCNB1 and CCNB2 are the principal activators of CDK1 and, together with CDK1, they promote the G₂/M transition.^{54,55} Expression of CCNB1 changes periodically throughout the cell cycle, and is a crucial initiator of mitosis.⁵⁶ Decreased CCNB1 expression is related to inhibition of HCC occurrence and development, and activation of CCNB1 expression can promote proliferation in human HCC cells.^{56,57} Furthermore, previous research has shown that CCNB1 is closely connected to prognosis of HCC patients. 56,58 The dimerization of CCNB2 with CDK1 is an essential component of the cell cycle regulatory machinery, and an increase in expression of CCNB2/CDK1 could promote tumor cell proliferation.55 Furthermore, CCNB2 is highly expressed in several malignant tumors and overexpression of CCNB2 is related to poor prognosis in HCC.⁵⁹ Cell division cycle protein 20 (encoded by CDC20) is a regulator of cell cycle checkpoints, which plays a crucial role in anaphase initiation and exit from mitosis.^{60,61} It degrades several important substrates, including cyclin A and CCNB1, to regulate cell cycle progression.^{62,63} CDC20 overexpression is related to progression and poor prognosis in various malignant tumors.^{64–67} Thus, it is a potential target in multiple cancer treatments.⁶⁸ A recent study found that increased expression of CDC20 is related to HCC development and progression.⁶⁷ Additionally, research has indicated that silencing expression of CDC20 and heparanase can activate cell apoptosis; thus, targeting inhibition of both CDC20 and

heparanase expression is an ideal approach for the treatment of HCC.⁶⁹

Aurora kinase A (encoded by AURKA) is involved in centrosome duplication, spindle formation, chromosomal amplification and segregation, and cytokinesis, and it plays a significant role in centrosome maturation and mitotic commitment in the late G₂ phase.^{70,71} Abnormal activity of AURKA promotes tumorigenic progression and transformation via defective control at the checkpoint of mitotic spindle.⁷² Meanwhile, AURKA is highly expressed in a variety of human cancers, including breast cancer,⁷³ lung cancer,⁷⁴ gastrointestinal cancer,75 bladder cancer,76 and oral cancer.⁷⁷ A study demonstrated that genetic variations in AURKA might be a reliable predictor of early-stage HCC and a crucial for HCC development.⁷⁸ biomarker Moreover, other research has indicated that AURKA contributes in metastasis and invasiveness of HCC.79 Therefore, AURKA might represent a new therapeutic target for HCC. Topoisomerase II alpha (TOP2A), a potential biomarker for cancer therapy, has been detected in various types of cancer.^{80–82} It participates in chromosome condensation and chromatid separation.⁸⁰ TOP2A encodes topoisomerase II alpha⁸¹ and is reported to be overexpressed in HCC tissues.⁸³ Furthermore, a study has shown that TOP2A has prognostic value in HCC and its reactive agents can be used in HCC therapy.⁸⁴ Maternal embryonic leucine zipper kinase (encoded by MELK) is a member of the AMP protein kinase family of serine/threonine kinases, which affect many stages of tumorigenesis.85 Several studies have shown that MELK is an oncogenic kinase essential for early HCC recurrence, and its expression is upregulated in HCC.^{86–88} Furthermore, MELK inhibition is associated with suppression of tumor growth, indicating that MELK is a potential therapeutic target for HCC.⁸⁹ PDZbinding kinase (encoded by PBK) can regulate cell cycle processes.⁹⁰ Although PBK is barely detectable in normal somatic tissues, it is often elevated in various tumor tissues and is therefore an important target for cancer screening and targeted therapy.^{91,92} Recent research has shown that PBK overexpression promotes migration and invasion of HCC, and it could be a therapeutic target for HCC metastasis.93 Targeting protein for Xklp2 (TPX2) expression is modulated by the cell cycle, and it is detected in G₁/S phase and disappears after cytokinesis.^{94,95} Several studies have indicated that TPX2 is highly expressed in different types of cancers.^{96,97} Additionally, expression of TPX2 is related to proliferation and apoptosis in HCC.98 TPX2 overexpression promotes the growth and metastasis of HCC.99 Kinesin family member 20A (KIF20A) is required during mitosis for the final step of cytokinesis.^{100,101} Studies have found that high expression of KIF20A is correlated with progression or poor prognosis of many types of cancers.^{102–104} Furthermore. KIF20A is aberrantly expressed in HCC tissues and its expression may be associated with poor OS.¹⁰⁵

According to enrichment analyses of two modules, we found that module 1 was mostly associated with cell cycle and module 2 was closely related to metabolic pathways. Furthermore, all 11 hub genes belonged to module 1 and most are associated with cell cycle and enriched in the "cell cycle" pathway. A number of studies have elucidated that cell cycle disorders are closely related to human cancer.⁴³ Therefore, the carcinogenesis and progression of HCC may be associated with the cell cycle pathway, and we might be able to suppress HCC cell cycle progression, inhibit HCC cell proliferation, and reduce HCC malignancy by downregulating expression of the 11 hub genes identified herein.

Compared with previous studies, this work has several advantages, as follows.

First, the current integrated microarray data used a relatively large sample size from several GEO datasets (GSE36376,14 GSE39791,¹⁵ GSE41804,¹⁶ GSE54236,^{17,18} GSE57957,¹⁹ GSE62232,²⁰ GSE64041,²¹ GSE69715,²² GSE76427,²³ GSE84005, GS E87630,²⁴ GSE112790,²⁵ and GSE121 248²⁶). Second, functional enrichment analyses were performed to identify the main biological functions and pathways regulated by DEGs. Third, we established PPI networks, conducted module analysis, discovered potential biomarkers for diagnosis and prognosis of HCC, and performed correlation analysis of hub genes.

The limitations of this work were as follows: First, our results need to be verified by corresponding experimental studies. Second, we obtained data from the GEO database, and data quality cannot be verified. Finally, our study focused on genes that are typically identified as significant changes in diverse datasets, without regard to sex, age, or grading and staging of tumors from which the samples were derived.

Conclusion

In the present work, we identified 11 hub genes (*CDK1*, *CCNB2*, *CDC20*, *CCNB1*, *TOP2A*, *CCNA2*, *MELK*, *PBK*, *TPX2*, *KIF20A*, and *AURKA*) associated with the development and poor prognosis of HCC by integrated bioinformatics analysis. However, because our study was based on data analysis only, further experiments are required to confirm the results. Our findings will provide evidence and new insights to enhance approaches for the early diagnosis, prognosis, and treatment of HCC.

Declaration of conflicting interest

The authors declare that there is no conflict of interest.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81473547, 81673829) and the Young Scientists Training Program of Beijing University of Chinese Medicine.

ORCID iD

Jiarui Wu (D) https://orcid.org/0000-0002-1617-6110

References

- Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? *Cancer Commun (Lond)* 2019; 39: 22. DOI: 10.1186/s40880-019-0368-6.
- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2018; 68: 394–424. DOI: 10.3322/caac.21492.
- Siegel RL, Miller KD and Jemal A. Cancer statistics, 2019. *CA Cancer J Clin* 2019; 69: 7–34. DOI: 10.3322/caac.21551.
- Toh TB, Lim JJ and Chow EK. Epigenetics of hepatocellular carcinoma. *Clin Transl Med* 2019; 8: 13. DOI: 10.1186/s40169-019-0230-0.
- Ogunwobi OO, Harricharran T, Huaman J, et al. Mechanisms of hepatocellular carcinoma progression. *World J Gastroenterol* 2019; 25: 2279–2293. DOI: 10.3748/wjg. v25.i19.2279.
- Chen S, Cao Q, Wen W, et al. Targeted therapy for hepatocellular carcinoma: challenges and opportunities. *Cancer Lett* 2019; 460: 1–9. DOI: 10.1016/j.canlet.2019.114428.
- Eatrides J, Wang E, Kothari N, et al. Role of systemic therapy and future directions for hepatocellular carcinoma. *Cancer Control* 2017; 24: 1073274817729243. DOI: 10.1177/1073274817729243.
- 8. Wang X, Liao Z, Bai Z, et al. MiR-93-5p promotes cell proliferation through downregulating PPARGC1A in hepatocellular carcinoma cells by bioinformatics analysis and experimental verification. *Genes*

(*Basel*) 2018; 9: pii: E51. DOI: 10.3390/ genes9010051.

- Li C, Zhou D, Jiang X, et al. Identifying hepatocellular carcinoma-related hub genes by bioinformatics analysis and CYP2C8 is a potential prognostic biomarker. *Gene* 2019; 698: 9–18. DOI: 10.1016/j.gene. 2019.02.062.
- Liu S, Yao X, Zhang D, et al. Analysis of transcription factor-related regulatory networks based on bioinformatics analysis and validation in hepatocellular carcinoma. *Biomed Res Int* 2018; 2018: 1431396. DOI: 10.1155/2018/1431396.
- Zhou L, Du Y, Kong L, et al. Identification of molecular target genes and key pathways in hepatocellular carcinoma by bioinformatics analysis. *Onco Targets Ther* 2018; 11: 1861–1869. DOI: 10.2147/OTT.S156737.
- He B, Yin J, Gong S, et al. Bioinformatics analysis of key genes and pathways for hepatocellular carcinoma transformed from cirrhosis. *Medicine (Baltimore)* 2017; 96: e6938. DOI: 10.1097/MD.00000 00000006938.
- Zhang C, Peng L, Zhang Y, et al. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. *Med Oncol* 2017; 34: 101. DOI: 10.1007/ s12032-017-0963-9.
- Lim HY, Sohn I, Deng S, et al. Prediction of disease-free survival in hepatocellular carcinoma by gene expression profiling. *Ann Surg Oncol* 2013; 20: 3747–3753. DOI: 10.1245/s10434-013-3070-y.
- Kim JH, Sohn BH, Lee HS, et al. Genomic predictors for recurrence patterns of hepatocellular carcinoma: model derivation and validation. *PLoS Med* 2014; 11: e1001770. DOI: 10.1371/journal.pmed.1001770.
- 16. Hodo Y, Honda M, Tanaka A, et al. Association of interleukin-28B genotype and hepatocellular carcinoma recurrence in patients with chronic hepatitis C. *Clin Cancer Res* 2013; 19: 1827–1837. DOI: 10.1158/1078-0432.CCR-12-1641.
- 17. Villa E, Critelli R, Lei B, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from

a prospective study. *Gut* 2016; 65: 861–869. DOI: 10.1136/gutjnl-2014-308483.

- Zubiete-Franco I, Garcia-Rodriguez JL, Lopitz-Otsoa F, et al. SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. *EBioMedicine* 2019; 40: 406–421. DOI: 10.1016/j.ebiom.2018. 12.031.
- Mah WC, Thurnherr T, Chow PK, et al. Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis. *PLoS One* 2014; 9: e104158. DOI: 10.1371/journal.pone.010 4158.
- Schulze K, Imbeaud S, Letouze E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. *Nat Genet* 2015; 47: 505–511. DOI: 10.1038/ ng.3252.
- Makowska Z, Boldanova T, Adametz D, et al. Gene expression analysis of biopsy samples reveals critical limitations of transcriptome-based molecular classifications of hepatocellular carcinoma. *J Pathol Clin Res* 2016; 2: 80–92. DOI: 10.1002/cjp2.37.
- 22. Sekhar V, Pollicino T, Diaz G, et al. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma. *PLoS Pathog* 2018; 14: e1006916. DOI: 10.1371/journal. ppat.1006916.
- Grinchuk OV, Yenamandra SP, Iyer R, et al. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma. *Mol Oncol* 2018; 12: 89–113. DOI: 10.1002/ 1878-0261.12153.
- Woo HG, Choi JH, Yoon S, et al. Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. *Nat Commun* 2017; 8: 839. DOI: 10.1038/s41467-017-00991-w.
- 25. Shimada S, Mogushi K, Akiyama Y, et al. Comprehensive molecular and immunological characterization of hepatocellular

carcinoma. *EBioMedicine* 2019; 40: 457–470. DOI: 10.1016/j.ebiom.2018.12.058.

- 26. Wang SM, Ooi LL and Hui KM. Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma. *Clin Cancer Res* 2007; 13: 6275–6283. DOI: 10.1158/1078-0432.CCR-06-2236.
- Clough E and Barrett T. The Gene Expression Omnibus database. *Methods Mol Biol* 2016; 1418: 93–110. DOI: 10.1007/978-1-4939-3578-9_5.
- Ritchie ME, Phipson B, Wu D, et al. *limma* powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* 2015; 43: e47. DOI: 10.1093/nar/gkv007.
- Kolde R, Laur S, Adler P, et al. Robust rank aggregation for gene list integration and meta-analysis. *Bioinformatics* 2012; 28: 573–580. DOI: 10.1093/bioinformatics/ btr709.
- Huang da W, Sherman BT and Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 2009; 4: 44–57. DOI: 10.1038/nprot.2008.211.
- Ito K and Murphy D. Application of ggplot2 to pharmacometric graphics. *CPT Pharmacometrics Syst Pharmacol* 2013; 2: e79. DOI: 10.1038/psp.2013.56.
- Walter W, Sanchez-Cabo F and Ricote M. GOplot: an R package for visually combining expression data with functional analysis. *Bioinformatics* 2015; 31: 2912–2914. DOI: 10.1093/bioinformatics/btv300.
- Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: qualitycontrolled protein-protein association networks, made broadly accessible. *Nucleic Acids Res* 2017; 45: D362–D368. DOI: 10.1093/nar/gkw937.
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 2003; 13: 2498–2504. DOI: 10.1101/gr.1239303.
- 35. Bader GD and Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. *BMC Bioinformatics* 2003; 4: 2.

- 36. Hou GX, Liu P, Yang J, et al. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan-Meier plotter. *PLoS One* 2017; 12: e0174515. DOI: 10.1371/journal.pone.0174515.
- Lacny S, Wilson T, Clement F, et al. Kaplan-Meier survival analysis overestimates cumulative incidence of healthrelated events in competing risk settings: a meta-analysis. J Clin Epidemiol 2018; 93: 25–35. DOI: 10.1016/j.jclinepi.2017.10.006.
- Sun C, Yuan Q, Wu D, et al. Identification of core genes and outcome in gastric cancer using bioinformatics analysis. *Oncotarget* 2017; 8: 70271–70280. DOI: 10.18632/ oncotarget.20082.
- 39. Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. *Nucleic Acids Res* 2017; 45: W98–W102. DOI: 10.1093/nar/gkx247.
- 40. Hage C, Hoves S, Ashoff M, et al. Characterizing responsive and refractory orthotopic mouse models of hepatocellular carcinoma in cancer immunotherapy. *PLoS One* 2019; 14: e0219517. DOI: 10.1371/journal.pone.0219517.
- Mou T, Zhu D, Wei X, et al. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis. *World J Surg Oncol* 2017; 15: 63. DOI: 10.1186/s12957-017-1127-2.
- Xu Z, Zhou Y, Cao Y, et al. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis. *Med Oncol* 2016; 33: 130. DOI: 10.1007/s12032-016-0840-y.
- Malumbres M and Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. *Nat Rev Cancer* 2009; 9: 153–166. DOI: 10.1038/nrc2602.
- 44. Doree M and Hunt T. From Cdc2 to Cdk1: when did the cell cycle kinase join its cyclin partner? J Cell Sci 2002; 115: 2461–2464.
- 45. Wu CX, Wang XQ, Chok SH, et al. Blocking CDK1/PDK1/beta-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib

treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. *Theranostics* 2018; 8: 3737–3750. DOI: 10.7150/thno.25487.

- Bednarek K, Kiwerska K, Szaumkessel M, et al. Recurrent CDK1 overexpression in laryngeal squamous cell carcinoma. *Tumour Biol* 2016; 37: 11115–11126. DOI: 10.1007/s13277-016-4991-4.
- Zhao J, Han SX, Ma JL, et al. The role of CDK1 in apoptin-induced apoptosis in hepatocellular carcinoma cells. *Oncol Rep* 2013; 30: 253–259. DOI: 10.3892/or.2013. 2426.
- 48. Kim DH, Park SE, Kim M, et al. A functional single nucleotide polymorphism at the promoter region of cyclin A2 is associated with increased risk of colon, liver, and lung cancers. *Cancer* 2011; 117: 4080–4091. DOI: 10.1002/cncr.25930.
- 49. Kabir MF, Mohd Ali J and Haji Hashim O. Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated with *Melicope ptelefolia* leaf extract reveals transcriptome profiles exhibiting anticancer activity. *PeerJ* 2018; 6: e5203. DOI: 10.7717/peerj.5203.
- Haddad R, Morrow AD, Plass C, et al. Restriction landmark genomic scanning of mouse liver tumors for gene amplification: overexpression of cyclin A2. *Biochem Biophys Res Commun* 2000; 274: 188–196. DOI: 10.1006/bbrc.2000.3124.
- 51. Yang F, Gong J, Wang G, et al. Waltonitone inhibits proliferation of hepatoma cells and tumorigenesis via FXRmiR-22-CCNA2 signaling pathway. *Oncotarget* 2016; 7: 75165–75175. DOI: 10.18632/oncotarget.12614.
- 52. Bukholm IR, Bukholm G and Nesland JM. Over-expression of cyclin A is highly associated with early relapse and reduced survival in patients with primary breast carcinomas. *Int J Cancer* 2001; 93: 283–287.
- 53. Zhang L, Huang Y, Ling J, et al. Screening and function analysis of hub genes and pathways in hepatocellular carcinoma via bioinformatics approaches. *Cancer*

Biomark 2018; 22: 511–521. DOI: 10.3233/ CBM-171160.

- Huang Y, Sramkoski RM and Jacobberger JW. The kinetics of G2 and M transitions regulated by B cyclins. *PLoS One* 2013; 8: e80861. DOI: 10.1371/journal.pone.008 0861.
- 55. Gao CL, Wang GW, Yang GQ, et al. Karyopherin subunit-alpha 2 expression accelerates cell cycle progression by upregulating CCNB2 and CDK1 in hepatocellular carcinoma. *Oncol Lett* 2018; 15: 2815–2820. DOI: 10.3892/ol.2017.7691.
- 56. Gu J, Liu X, Li J, et al. MicroRNA-144 inhibits cell proliferation, migration and invasion in human hepatocellular carcinoma by targeting CCNB1. *Cancer Cell Int* 2019; 19: 15. DOI: 10.1186/s12935-019-0729-x.
- 57. Chai N, Xie HH, Yin JP, et al. FOXM1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1. *Biochem Biophys Res Commun* 2018; 500: 924–929. DOI: 10.1016/j.bbrc.2018.04.201.
- Weng L, Du J, Zhou Q, et al. Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection. *Mol Cancer* 2012; 11: 39. DOI: 10.1186/1476-4598-11-39.
- Li R, Jiang X, Zhang Y, et al. Cyclin B2 overexpression in human hepatocellular carcinoma is associated with poor prognosis. *Arch Med Res* 2019; 50: 10–17. DOI: 10.1016/j.arcmed.2019.03.003.
- 60. Yu H. Cdc20: a WD40 activator for a cell cycle degradation machine. *Mol Cell* 2007; 27: 3–16. DOI: 10.1016/j.molcel.2007. 06.009.
- 61. Fang G, Yu H and Kirschner MW. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. *Mol Cell* 1998; 2: 163–171.
- 62. Geley S, Kramer E, Gieffers C, et al. Anaphase-promoting complex/cyclosomedependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly

checkpoint. *J Cell Biol* 2001; 153: 137–148. DOI: 10.1083/jcb.153.1.137.

- 63. Shirayama M, Toth A, Galova M, et al. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. *Nature* 1999; 402: 203–207. DOI: 10.1038/46080.
- 64. Zhang Q, Huang H, Liu A, et al. Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of beta-catenin in cancer stem-like cells. *EBioMedicine* 2019; 42: 397–407. DOI: 10.1016/j.ebiom.2019.03.032.
- Cheng S, Castillo V and Sliva D. CDC20 associated with cancer metastasis and novel mushroom-derived CDC20 inhibitors with antimetastatic activity. *Int J Oncol* 2019; 54: 2250–2256. DOI: 10.3892/ijo.2019.4791.
- 66. Kato T, Daigo Y, Aragaki M, et al. Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. *J Surg Oncol* 2012; 106: 423–430. DOI: 10.1002/jso.23109.
- Li J, Gao JZ, Du JL, et al. Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. *Int J Oncol* 2014; 45: 1547–1555. DOI: 10.3892/ijo.2014.2559.
- Wang L, Zhang J, Wan L, et al. Targeting Cdc20 as a novel cancer therapeutic strategy. *Pharmacol Ther* 2015; 151: 141–151. DOI: 10.1016/j.pharmthera.2015.04.002.
- Liu M, Zhang Y, Liao Y, et al. Evaluation of the antitumor efficacy of RNAimediated inhibition of CDC20 and heparanase in an orthotopic liver tumor model. *Cancer Biother Radiopharm* 2015; 30: 233–239. DOI: 10.1089/cbr.2014.1799.
- Huang CH, Chen CJ, Chen PN, et al. Impacts of AURKA genetic polymorphism on urothelial cell carcinoma development. *J Cancer* 2019; 10: 1370–1374. DOI: 10.7150/jca.30014.
- Su ZL, Su CW, Huang YL, et al. A novel AURKA mutant-induced early-onset severe hepatocarcinogenesis greater than wild-type via activating different pathways in zebrafish. *Cancers (Basel)* 2019; 11: pii: E927. DOI: 10.3390/cancers11070927.
- 72. Guo M, Lu S, Huang H, et al. Increased AURKA promotes cell proliferation and

predicts poor prognosis in bladder cancer. *BMC Syst Biol* 2018; 12: 118. DOI: 10.1186/s12918-018-0634-2.

- Cox DG, Hankinson SE and Hunter DJ. Polymorphisms of the AURKA (STK15/ Aurora Kinase) gene and breast cancer risk (United States). *Cancer Causes Control* 2006; 17: 81–83. DOI: 10.1007/ s10552-005-0429-9.
- 74. Lo Iacono M, Monica V, Saviozzi S, et al. Aurora Kinase A expression is associated with lung cancer histological-subtypes and with tumor de-differentiation. J Transl Med 2011; 9: 100. DOI: 10.1186/1479-5876-9-100.
- 75. Wang-Bishop L, Chen Z, Gomaa A, et al. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1. *Gastroenterology* 2019; 156: 662–675.e7. DOI: 10.1053/j.gastro.2018.10.030.
- 76. Mobley A, Zhang S, Bondaruk J, et al. Aurora kinase A is a biomarker for bladder cancer detection and contributes to its aggressive behavior. *Sci Rep* 2017; 7: 40714. DOI: 10.1038/srep40714.
- 77. Huang C, Wang L, Song H, et al. Interactive effects of AURKA polymorphisms with smoking on the susceptibility of oral cancer. *Artif Cells Nanomed Biotechnol* 2019; 47: 2333–2337. DOI: 10.1080/21691401.2019.1601101.
- Wang B, Hsu CJ, Chou CH, et al. Variations in the AURKA gene: biomarkers for the development and progression of hepatocellular carcinoma. *Int J Med Sci* 2018; 15: 170–175. DOI: 10.7150/ ijms.22513.
- Chen C, Song G, Xiang J, et al. AURKA promotes cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in hepatocellular carcinoma. *Biochem Biophys Res Commun* 2017; 486: 514–520. DOI: 10.1016/j. bbrc.2017.03.075.
- Song J, Ma Q, Hu M, et al. The inhibition of miR-144-3p on cell proliferation and metastasis by targeting TOP2A in HCMV-positive glioblastoma cells.

Molecules 2018; 23: pii: E3259. DOI: 10.3390/molecules23123259.

- Ghisoni E, Maggiorotto F, Borella F, et al. TOP2A as marker of response to pegylated liposomal doxorubicin (PLD) in epithelial ovarian cancers. *J Ovarian Res* 2019; 12: 17. DOI: 10.1186/s13048-019-0492-6.
- Zhang R, Xu J, Zhao J, et al. Proliferation and invasion of colon cancer cells are suppressed by knockdown of TOP2A. *J Cell Biochem* 2018; 119: 7256–7263. DOI: 10.1002/jcb.26916.
- Panvichian R, Tantiwetrueangdet A, Angkathunyakul N, et al. TOP2A amplification and overexpression in hepatocellular carcinoma tissues. *Biomed Res Int* 2015; 2015: 381602. DOI: 10.1155/2015/381602.
- Wong N, Yeo W, Wong WL, et al. TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. *Int J Cancer* 2009; 124: 644–652. DOI: 10.1002/ijc.23968.
- Jiang P and Zhang D. Maternal embryonic leucine zipper kinase (MELK): a novel regulator in cell cycle control, embryonic development, and cancer. *Int J Mol Sci* 2013; 14: 21551–21560. DOI: 10.3390/ ijms141121551.
- 86. Xia H, Kong SN, Chen J, et al. MELK is an oncogenic kinase essential for early hepatocellular carcinoma recurrence. *Cancer Lett* 2016; 383: 85–93. DOI: 10.1016/j.canlet.2016.09.017.
- 87. Li Y, Li Y, Chen Y, et al. MicroRNA-214-3p inhibits proliferation and cell cycle progression by targeting MELK in hepatocellular carcinoma and correlates cancer prognosis. *Cancer Cell Int* 2017; 17: 102. DOI: 10.1186/s12935-017-0471-1.
- Hiwatashi K, Ueno S, Sakoda M, et al. Expression of Maternal Embryonic Leucine Zipper Kinase (MELK) correlates to malignant potentials in hepatocellular carcinoma. *Anticancer Res* 2016; 36: 5183–5188. DOI: 10.21873/anticanres.11088.
- 89. Chlenski A, Park C, Dobratic M, et al. Maternal Embryonic Leucine Zipper Kinase (MELK), a potential therapeutic target for neuroblastoma. *Mol Cancer*

Ther 2019; 18: 507–516. DOI: 10.1158/ 1535-7163.MCT-18-0819.

- 90. Su TC, Chen CY, Tsai WC, et al. Cytoplasmic, nuclear, and total PBK/ TOPK expression is associated with prognosis in colorectal cancer patients: a retrospective analysis based on immunohistochemistry stain of tissue microarrays. *PLoS One* 2018; 13: e0204866. DOI: 10.1371/journal.pone.0204866.
- 91. Zhang Y, Yang X, Wang R, et al. Prognostic value of PDZ-binding kinase/ T-LAK cell-originated protein kinase (PBK/TOPK) in patients with cancer. *J Cancer* 2019; 10: 131–137. DOI: 10.7150/jca.28216.
- 92. Ma H, Li Y, Wang X, et al. PBK, targeted by EVI1, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. *Cell Death Dis* 2019; 10: 166. DOI: 10.1038/s41419-019-1415-6.
- 93. Yang QX, Zhong S, He L, et al. PBK overexpression promotes metastasis of hepatocellular carcinoma via activating ETV4uPAR signaling pathway. *Cancer Lett* 2019; 452: 90–102. DOI: 10.1016/j. canlet.2019.03.028.
- 94. Zou J, Huang RY, Jiang FN, et al. Overexpression of TPX2 is associated with progression and prognosis of prostate cancer. *Oncol Lett* 2018; 16: 2823–2832. DOI: 10.3892/ol.2018.9016.
- 95. Zou Z, Zheng B, Li J, et al. TPX2 level correlates with cholangiocarcinoma cell proliferation, apoptosis, and EMT. *Biomed Pharmacother* 2018; 107: 1286–1293. DOI: 10.1016/j.biopha.2018.08.011.
- 96. Chen M, Zhang H, Zhang G, et al. Targeting TPX2 suppresses proliferation and promotes apoptosis via repression of the PI3k/AKT/P21 signaling pathway and activation of p53 pathway in breast cancer. *Biochem Biophys Res Commun* 2018; 507: 74–82. DOI: 10.1016/j.bbrc.2018.10.164.
- 97. Aguirre-Portoles C, Bird AW, Hyman A, et al. Tpx2 controls spindle integrity, genome stability, and tumor development. *Cancer Res* 2012; 72: 1518–1528. DOI: 10.1158/0008-5472.CAN-11-1971.

- Liang B, Jia C, Huang Y, et al. TPX2 level correlates with hepatocellular carcinoma cell proliferation, apoptosis, and EMT. *Dig Dis Sci* 2015; 60: 2360–2372. DOI: 10.1007/s10620-015-3730-9.
- 99. Huang Y, Guo W and Kan H. TPX2 is a prognostic marker and contributes to growth and metastasis of human hepatocellular carcinoma. *Int J Mol Sci* 2014; 15: 18148–18161. DOI: 10.3390/ijms151018148.
- 100. Shen T, Yang L, Zhang Z, et al. KIF20A affects the prognosis of bladder cancer by promoting the proliferation and metastasis of bladder cancer cells. *Dis Markers* 2019; 2019: 4863182. DOI: 10.1155/2019/ 4863182.
- 101. Morita H, Matsuoka A, Kida JI, et al. KIF20A, highly expressed in immature hematopoietic cells, supports the growth of HL60 cell line. *Int J Hematol* 2018; 108: 607–614. DOI: 10.1007/s12185-018-2527-y.

- 102. Taniuchi K, Furihata M and Saibara T. KIF20A-mediated RNA granule transport system promotes the invasiveness of pancreatic cancer cells. *Neoplasia* 2014; 16: 1082–1093. DOI: 10.1016/j.neo.2014.10.007.
- Duan J, Huang W and Shi H. Positive expression of KIF20A indicates poor prognosis of glioma patients. *Onco Targets Ther* 2016; 9: 6741–6749. DOI: 10.2147/OTT. S115974.
- 104. Zhang W, He W, Shi Y, et al. High expression of KIF20A is associated with poor overall survival and tumor progression in early-stage cervical squamous cell carcinoma. *PLoS One* 2016; 11: e0167449. DOI: 10.1371/journal.pone.0167449.
- 105. Lu M, Huang X, Chen Y, et al. Aberrant KIF20A expression might independently predict poor overall survival and recurrence-free survival of hepatocellular carcinoma. *IUBMB Life* 2018; 70: 328–335. DOI: 10.1002/iub.1726.

Appendix

Information for 293 downregulated genes (down) and 87 upregulated genes (up).

Name	logFC	Туре	Name	logFC	Туре	Name	logFC	Туре
CLECIB	-3.33713	down	ILI 3RA2	-1.41685	down	CSRNP I	-1.20759	down
С9	-2.93972	down	PAMRI	-1.30729	down	ZGPAT	-1.283655	down
FCN3	-3.32589	down	CYP26A1	-1.82557	down	FAM I 50B	-1.096361	down
CYP1A2	-3.61576	down	JCHAIN	-I.90I33	down	LPA	-1.568535	down
HAMP	-3.72675	down	ADIRF	-1.34189	down	ALPL	-1.135143	down
SLCO I B3	-2.84405	down	NNMT	-1.65555	down	S100A8	-I.I49369	down
SPP2	-2.19217	down	TAT	-1.77239	down	GPM6A	-1.287388	down
APOF	-2.7681	down	MS4A6A	-1.02381	down	RCLI	-1.112209	down
NAT2	-2.42415	down	VNNI	-I.4343I	down	CYP2B7P	-I.3I568	down
CLRN3	-2.35658	down	HSD I 7B2	-1.27883	down	CCBE I	-1.131678	down
RDH16	-2.05491	down	FAM134B	-I.2724I	down	LINC01093	-1.711116	down
SLC25A47	-2.3928	down	СТН	-1.2995	down	ST3GAL6	-1.008844	down
SLC22A1	-2.49578	down	ACAA I	-1.06823	down	TBX15	-1.105089	down
THRSP	-2.37999	down	ОТС	-I.I2724	down	BCO2	-1.572843	down
CLEC4G	-2.8104	down	CYP2A7	-1.7189	down	LUM	-1.123456	down
GBA3	-2.26827	down	C6	-1. 48624	down	ESR I	-1.022446	down
DNASE113	-2.22313	down	GREM2	<u> </u>	down	CYR6 I	-1.101151	down
SHBG	- 1.96811	down	HPD	-1.56635	down	HBA2	-1.227362	down
LY6E	-2.01561	down	KBTBD I I	<u> </u>	down	KDM8	-I.0620I	down
CDHR2	-2.02873	down	CA2	-1.30707	down	GADD45G	-I.I26764	down
TMEM27	-2.33949	down	AKR7A3	-1.25278	down	ASPG	-1.055061	down
C7	-2.2597	down	RNF125	-1.03098	down	FCGR2B	-1.141195	down
FBP I	-1. 79884	down	TTC36	-1.69649	down	ASPA	-1.025006	down
SRD5A2	-1.89056	down	PROMI	- I.4466 I	down	PBLD	-1.006234	down
MTIM	-3.02758	down	ADH6	-1.22168	down	HHIP	-1.37843	down
BBOXI	-2.04999	down	ETNPPL	-I.I5368	down	CRP	-1.053533	down
APOA5	-1.774	down	HSD I 7B I 3	-1.50866	down	FREM2	-1.522232	down
IGFBP3	-1.70456	down	ANXA10	-1.62516	down	ADRAIA	<u> </u>	down
ADH4	-2.15911	down	FXYD I	-1.41243	down	CNTN3	-1.176196	down
КМО	-1.91086	down	OGDHL	-1.30838	down	ITLN I	-1.034492	down
CYP8B1	-1.76864	down	PONI	-I.I706I	down	UGT2B10	-1.031179	down
CXCL14	-2.31161	down	ACSM3	-1.52866	down	DIRAS3	-1.123875	down
GHR	-2.12511	down	SLC27A5	-1.33347	down	STEAP4	-1.061309	down
ADGRG7	-1.85853	down	LIFR	-1.47372	down	CYP4A22	-1.074568	down
MARCO	-2.25079	down	HABP2	-1.06311	down	TFPI2	-1.00071	down
MTIF	-2.59948	down	GRAMDIC	-1.07675	down	MTIA	-1.093671	down
CYP39A1	- 1.86139	down	TKFC	-1.07859	down	RAB25	-1.081375	down
OIT3	-2.4803	down	STEAP3	-1.09586	down	RDH5	-1.006888	down
MBL2	-1.62953	down	IL I RAP	-1.21549	down	EPCAM	-1.336797	down
VIPR I	-I.89347	down	GCDH	-I.02343	down	SPINKI	3.633978	up
TDO2	-I.44452	down	HAL	-1.262	down	GPC3	2.807155	up
BHMT	-1.68706	down	GABARAPLI	-1.07919	down	AKRIBIO	2.588879	up

(continued)

|--|

PCK1 -1.85362 down ID1 -1.32236 down ASPM 1.804629 up MT1H -2.0509 down INNT -1.65209 down CAP2 2.086341 up HGFAC -2.18902 down FETUB -1.31249 down TOPZA 2.232845 up MT1G -2.64319 down CFHR4 -1.07478 down CDKN3 1.778744 up CYP2A6 -2.15384 down GFC -1.00804 down CDC1 1.451774 up SMIM24 -1.81333 down MFAP4 -1.53268 down NCAPG 1.551605 up FCN2 -1.90705 down ARCAB -1.10284 down CL20 1.667526 up MT1X -2.07498 down CY212 -1.01057 down KF20A 1.551605 up SLCIOAI -1.72876 down ACCFD -1.51767 down NUEAA 1.321828 up<	Name	logFC	Туре	Name	logFC	Туре	Name	logFC	Туре
MT1H -2.20509 down IMMT -1.65209 down CAP2 2.086341 up AFM -1.90272 down SKAPI -1.06342 down TOP2A 2.232845 up MTIG -2.64319 down FETUB -1.31249 down PCI 1.923672 up CYP2A6 -2.05548 down GFUB -1.27605 down CDKN3 1.910919 up CYP2A6 -2.05548 down GFC -1.00804 down CDKN3 1.551838 up SMIX12 -1.81333 down GFC -1.00804 down LCAI2 1.551838 up FCN2 -1.90705 down AFA8 -1.10284 down LCAI2 1.551838 up FCN1 -1.712876 down AFA8 -1.10284 down LCAI2 1.667526 up SLCI0AI -1.70131 down ACCC -1.51767 down MLRKA 1.6372 up <td>PCK I</td> <td>-I.85362</td> <td>down</td> <td>IDI</td> <td>-1.32236</td> <td>down</td> <td>ASPM</td> <td>1.804629</td> <td>up</td>	PCK I	-I.85362	down	IDI	-1.32236	down	ASPM	1.804629	up
AFM -1.90272 down SKAPI -1.06342 down PCI 1.232672 up HGFAC -2.18902 down FETUB -1.31249 down PCI 1.923672 up CYP2A6 -2.05548 down GFHR4 -1.07478 down CDC20 1.910919 up CETP -1.77384 down MFAP4 -1.53268 down NCAPG 1.551838 up FCN2 -1.90705 down AFCA -1.013103 down CCL20 1.667526 up FCN3 -2.12211 down AFRID -1.77452 down KICAP up FCN4 -1.03103 down ACAP up MTIX -2.07498 down FACT -4.90755 up MTIX -2.07498 down FACT -1.01057 down MEKA 1.321582 up SL(10A1 -1.71013 down ACGCR -1.51767 down MUKA 1.321583	MTIH	-2.20509	down	INMT	-1.65209	down	CAP2	2.086341	up
HGFAC -2.18902 down FET/JB -1.31249 down PRCI 1.78274 up MT1G -2.64319 down CFHR4 -1.07478 down CDKN3 1.778794 up CYP2A6 -2.05548 down GFD -1.07478 down CDC20 1.910919 up CETP -1.77384 down GFC -1.00804 down NCAPG 1.551808 up FCN2 -1.90705 down ARCA8 -1.10284 down ICAV2 1.551605 up FCN1 -1.72876 down ACRA8 -1.101284 down KCA20 1.644679 up SLC10A1 -1.70131 down HAO1 -1.08990 down MURA 1.321582 up FP -1.86997 down CSCR -1.51767 down MURA1 1.429052 up SRPX -1.99247 down CSCR -1.51767 down MURA1 1.429052 up CYP2C9 -1.7781 down MCACH -1.53773 downM	AFM	-1.90272	down	SKAP I	-1.06342	down	TOP2A	2.232845	up
MT1G -2.64319 down CHR4 -1.07478 down CDCN3 1.778794 up CYP2A6 -2.05548 down GFC -1.00804 down CDC20 1.910919 up SMIM24 -1.81333 down MFAP4 -1.53268 down NCAPG 1.551838 up FCN2 -1.90705 down ABCA8 -1.10284 down NCAPG 1.551605 up FCN2 -1.73786 down ARRIDI -1.77452 down FCN2 1.667526 up FCM1 -1.72876 down ARRIDI -1.77452 down FAM33D 1.570755 up MT1X -2.07498 down ARCI -1.01057 down KIF20A 1.647679 up SIC10A1 -1.7131 down AGCR -1.51767 down AURKA 1.321582 up FP -1.86997 down GCGR -1.51767 down MURA 1.429052 u	HGFAC	-2.18902	down	FETUB	-I.3I249	down	PRCI	1.923672	up
CYP2A6 -2.05548 down HSD / IBI -1.27605 down CDC20 I.910919 up CETP -1.77384 down G6PC -1.00804 down PTTG I 1.451774 up SMIM24 -1.81333 down MRCAPG 1.551838 up FCN2 -1.90705 down ABCA8 -1.10284 down LCN2 1.551605 up FOSB -2.12211 down CYP2/2 -1.03103 down CL20 1.667526 up MT1X -2.07498 down GPD1 -1.07765 down ALRK1D1 -1.07763 down ALRK1D1 -1.0899 down ALRK1D1 -1.0899 down ALRK1D1 -1.0909 down ALRK1D2 1.6372 up SRPX -1.99247 down CGCR -1.1577 down NUSAPI 1.447842 up CYP2C9 -1.7781 down MATIA -1.1577 down MLK 1.397481 up	MTIG	-2.64319	down	CFHR4	-1.07478	down	CDKN3	1.778794	up
CETP -1.7384 down G6PC -1.0804 down PTTGI 1.451774 up SMIM24 -1.81333 down MFAP4 -1.53268 down NCAPC 1.551838 up FCN2 -1.90705 down AKCA8 -1.10284 down CCN2 1.551605 up FCN1 -1.72876 down AKRIDI -1.77452 down FAM83D 1.667526 up SCI0AI -1.70131 down HAC1 -1.0889 down PBK 1.64772 up SCI0AI -1.70131 down HAC1 -1.0889 down NUSAPI 1.447842 up CRHBP -2.55698 down ACGT4 -1.51767 down NUSAPI 1.447842 up CYP2C9 -1.7781 down DMGDH -1.1277 down NEK 1.315793 up GNMT -1.80416 down PON3 -1.07503 down MEK 1.311779 up <td>CYP2A6</td> <td>-2.05548</td> <td>down</td> <td>HSDIIBI</td> <td>-1.27605</td> <td>down</td> <td>CDC20</td> <td>1.910919</td> <td>up</td>	CYP2A6	-2.05548	down	HSDIIBI	-1.27605	down	CDC20	1.910919	up
SMIM24 -1.81333 down MFAP4 -1.53268 down NCAPG 1.551838 up FCN2 -1.90705 down ABCA8 -1.10284 down LCN2 1.551605 up FOSB -2.12211 down GYP22 -1.03103 down FAM83D 1.570755 up MT1X -2.07498 down GPD1 -1.01057 down FAM83D 1.570755 up SLC10A1 -1.70131 down FPD1 -1.01057 down PKK 1.6372 up GRHBP -2.55698 down TACSTD2 -1.09909 down AURKA 1.321582 up SRPX -1.99247 down CGCGR -1.51767 down NUSAP1 1.447842 up CYP2C8 -1.84304 down MAT - -1.53073 down MELK 1.397481 up CYP2C8 -1.84304 down MAT - -1.45288 down SRXN1 1.101781	CETP	-1.77384	down	G6PC	-1.00804	down	PTTGI	1.451774	up
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SMIM24	-1.81333	down	MFAP4	-1.53268	down	NCAPG	1.551838	up
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	FCN2	-1.90705	down	ABCA8	-I.10284	down	LCN2	1.551605	up
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FOSB	-2.12211	down	CYP2J2	-1.03103	down	CCL20	1.667526	up
MT1X -2.07498 down GPD I -1.01057 down KlF20A 1.644679 up SLC10A1 -1.70131 down HAO I -1.0889 down PBK 1.6372 up CRHBP -2.55698 down TACSTD2 -1.09909 down AURKA 1.321582 up SRPX -1.99247 down GCGR -1.51767 down NUSAPI 1.429052 up SRPX -1.99247 down CBCrF4 -1.53773 down NUSAPI 1.447842 up CYP2C9 -1.7781 down DMGDH -1.11277 down AKR1C3 1.315793 up GNMT -1.80416 down PON3 -1.07722 down MELK 1.397481 up CYP2C9 -1.57039 down AADAT -1.45288 down CU15A1 1.679907 up LECT2 -1.71324 down SLC13A5 -1.16219 down PLVAP 1.303945	ECMI	-1.72876	down	AKRÍDI	-1.77452	down	FAM83D	1.570755	up
SLC10A1 -1.70131 down HAO1 -1.0889 down PBK 1.6372 up CRHBP -2.55698 down TACSTD2 -1.09909 down AURKA 1.321582 up F9 -1.86997 down GCGR -1.51767 down UBE2T 1.429052 up CYP2C9 -1.7781 down DMGDH -1.11277 down NUSAPI 1.447842 up CYP2C9 -1.84304 down PON3 -1.07722 down MELK 1.397481 up CYP2C8 -1.84304 down MATIA -1.15605 down MELK 1.397481 up CYP2C8 -1.87132 down MADAT -1.45288 down HMMR 1.429779 up LEC72 -1.71324 down MADAT -1.16210 down RBD 1.793116 up F0S -2.10062 down ACD12 -1.18455 down HSPBI 1.057592 up	MTIX	-2.07498	down	GPD I	-1.01057	down	KIF20A	1.644679	up
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SLC I OA I	-1.70131	down	HAOI	-1.0889	down	PBK	1.6372	up
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CRHBP	-2.55698	down	TACSTD2	-1.09909	down	AURKA	1.321582	up
SRPX -1.99247 down C&orf4 -1.53773 down NUSAP1 1.447842 up CYP2C9 -1.7781 down DMGDH -1.11277 down AKR1C3 1.315793 up GNMT -1.80416 down PON3 -1.07722 down MELK 1.397481 up CYP2C8 -1.84304 down MAT1A -1.15605 down SRNI 1.101781 up PGLYR2 -1.57039 down AADAT -1.45288 down COL15A1 1.679907 up LECT2 -1.71324 down HPX -1.1201 down COL15A1 1.679907 up HAO2 -2.05962 down KCNN2 -1.76035 down UBD 1.793116 up FOS -2.10062 down SLC13A5 -1.18455 down HZVAP 1.303945 up CNDP1 -2.19895 down SLC13A5 -1.18455 down CENPF 1.339564	F9	-I.86997	down	GCGR	-1.51767	down	UBE2T	1.429052	up
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SRPX	-1.99247	down	C8orf4	-1.53773	down	NUSAPI	1.447842	up
GNMT -1.80416 down PON3 -1.07722 down MELK 1.397481 up CYP2C8 -1.84304 down MAT/A -1.15605 down SRXN1 1.101781 up PGLYRP2 -1.57039 down ADAT -1.45288 down HMMR 1.429779 up LECT2 -1.71324 down HPX -1.1201 down COLI5A1 1.679907 up HAO2 -2.05962 down KCNN2 -1.6035 down VBD 1.793116 up FOS -2.10062 down ACADL -1.16219 down PLVAP 1.303945 up CNDP1 -2.19859 down ASS1 -1.22714 down SPE1 1.372928 up CXCL12 -1.91941 down PRSS8 -1.15745 down CENFF 1.339564 up AGXT2 -1.27878 down TMEM45A -1.37559 down KIF4A 1.431933	CYP2C9	-1.7781	down	DMGDH	-1.11277	down	AKR1C3	1.315793	up
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GNMT	-1.80416	down	PON3	-1.07722	down	MELK	1.397481	up
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CYP2C8	-I.84304	down	MATIA	-1.15605	down	SRXN I	1.101781	uD
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PGLYRP2	-1.57039	down	AADAT	-1.45288	down	HMMR	1.429779	up
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LECT2	-1.71324	down	HPX	-1.1201	down	COLI 5A I	1.679907	up
FOS -2.10062 down ACADL -1.16219 down PLVAP 1.303945 up ANGPTL6 -1.40198 down SLC13A5 -1.18455 down HSPB1 1.057592 up CNDP1 -2.19859 down ASS1 -1.22714 down SPP1 1.372928 up CXCL12 -1.91941 down PRSS8 -1.15745 down CENPF 1.339564 up AGXT2 -1.37193 down CPED1 -1.24941 down SQLE 1.28364 up ACOT12 -1.27878 down FTCD -1.25547 down CEP55 1.130246 up RSP03 -1.62341 down TMEM45A -1.37559 down KIF4A 1.431933 up PZP -1.76877 down ALDH6A1 -1.08996 down TRIP13 1.223148 up HOGA1 -1.43807 down ETFDH -1.15312 down DLGAP5 1.462148 up CYP3A4 -2.39818 down SFN5 -1.04433	HAO2	-2.05962	down	KCNN2	-1.7603 5	down	UBD	1.793116	uD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FOS	-2.10062	down	ACADL	-1.16219	down	PLVAP	1.303945	uD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ANGPTL6	-1.40198	down	SLC13A5	-1.18455	down	HSPBI	1.057592	uD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CNDPI	-2.19859	down	ASSI	-1.22714	down	SPP I	1.372928	uD
AGXT2 -1.39193 down CPED1 -1.24941 down SQLE 1.28364 up ACOT12 -1.27878 down FTCD -1.25547 down CEP55 1.130246 up RSP03 -1.62341 down TMEM45A -1.37559 down KIF4A 1.431933 up PZP -1.76877 down ALDH6A1 -1.08996 down TRIP13 1.223148 up COLEC10 -1.85319 down SLC27A2 -1.02491 down S100P 1.428178 up HOGA1 -1.43807 down SLC27A2 -1.02491 down S100P 1.428178 up MT1E -1.80442 down GCKR -1.00475 down ALDH3A1 1.048498 up CYP3A4 -2.39818 down OAT -1.35234 down SFN 1.002947 up SLC39A5 -1.47867 down SFRP5 -1.04433 down FTK 1.378481 up IGFALS -1.94508 down SUC52 -1.38986	CXCL12	-1.91941	down	PRSS8	-1.15745	down	CENPF	1.339564	uD
ACOT12 -1.27878 down FTCD -1.25547 down CEP55 1.130246 up RSP03 -1.62341 down TMEM45A -1.37559 down KIF4A 1.431933 up PZP -1.76877 down ALDH6A1 -1.08996 down TRIP13 1.223148 up COLEC10 -1.85319 down SLC27A2 -1.02491 down S100P 1.428178 up HOGA1 -1.43807 down ETFDH -1.15312 down DLGAP5 1.462148 up MT1E -1.80442 down GCKR -1.00475 down ALDH3A1 1.048498 up CYP3A4 -2.39818 down OAT -1.35234 down CDCA5 1.222277 up SLC39A5 -1.47867 down SFRP5 -1.04433 down TK 1.378481 up LCAT -1.87391 down SLC6A12 -1.11241 down TTK 1.378481 up IGFALS -1.94508 down SOCS2 -1.38986	AGXT2	-1.39193	down	CPEDI	-1.24941	down	SQLE	1.28364	up
RSP03 -1.62341 down TMEM45A -1.37559 down KIF4A 1.431933 up PZP -1.76877 down ALDH6A1 -1.08996 down TRIP13 1.223148 up COLEC10 -1.85319 down SLC27A2 -1.02491 down S100P 1.428178 up HOGA1 -1.43807 down ETFDH -1.15312 down DLGAP5 1.462148 up MT1E -1.80442 down GCKR -1.00475 down ALDH3A1 1.048498 up CYP3A4 -2.39818 down OAT -1.35234 down CDCA5 1.222277 up SLC39A5 -1.47867 down SFRP5 -1.04433 down SFN 1.002947 up KLKB1 -1.57229 down SLC6A12 -1.11241 down TTK 1.378481 up IGFALS -1.94508 down SOCS2 -1.38986 down TTK 1.378481 up GLYAT -1.72131 down CYP4F2 -1.0376	ACOT 12	-1.27878	down	FTCD	-1.25547	down	CEP55	1.130246	uD
PZP -1.76877 down ALDH6A1 -1.08996 down TRIP13 1.223148 up COLEC10 -1.85319 down SLC27A2 -1.02491 down S100P 1.428178 up HOGA1 -1.43807 down ETFDH -1.15312 down DLGAP5 1.462148 up MT1E -1.80442 down GCKR -1.00475 down ALDH3A1 1.048498 up CYP3A4 -2.39818 down OAT -1.35234 down CDCA5 1.222277 up SLC39A5 -1.47867 down SFRP5 -1.04433 down SFN 1.002947 up KLKB1 -1.57229 down CYP3A43 -1.2044 down ESM1 1.15394 up LCAT -1.87391 down SLC6A12 -1.11241 down TTK 1.378481 up IGFALS -1.94508 down SUC52 -1.38986 down TPX2 1.091732 up ADH1C -1.64914 down SLC7A2 -1.05182	RSPO3	-1.62341	down	TMEM45A	-1.37559	down	KIF4A	1.431933	uD
COLEC10-1.85319down $SLC27A2$ -1.02491down $SI00P$ 1.428178upHOGA1-1.43807downETFDH-1.15312down $DLGAP5$ 1.462148upMT1E-1.80442down $GCKR$ -1.00475down $ALDH3A1$ 1.048498upCYP3A4-2.39818down OAT -1.35234down $CDCA5$ 1.222277upSLC39A5-1.47867down $SFRP5$ -1.04433down SFN 1.002947upKLKB1-1.57229down $CYP3A43$ -1.2044downESM11.15394upLCAT-1.87391down $SLC6A12$ -1.11241downTTK1.378481upIGFALS-1.94508down $SOCS2$ -1.38986downTPX21.091732upGLYAT-1.72131down $CYP4F2$ -1.0017downCOL4A11.236208upPROZ-1.52487down $SLC7A2$ -1.05182downHJURP1.034534upCYP2E1-2.04247down $CIRL$ -1.01827downRACGAP11.407851upGSTZ1-1.39923down $CPS1$ -1.29626downANLN1.53779upMFSD2A-1.51912down $ADAMTSL2$ -1.24169downMCM21.109517upIDO2-1.83679downMTTP-1.02368downUBE2C1.0809up	PZP	-1.76877	down	ALDH6A I	-1.08996	down	TRIP I 3	1.223148	UD
HOGA1-1.43807downETFDH-1.15312downDLGAP51.462148upMT1E-1.80442downGCKR-1.00475downALDH3A11.048498upCYP3A4-2.39818downOAT-1.35234downCDCA51.222277upSLC39A5-1.47867downSFRP5-1.04433downSFN1.002947upKLKB1-1.57229downCYP3A43-1.2044downESM11.15394upLCAT-1.87391downSLC6A12-1.11241downTTK1.378481upIGFALS-1.94508downSOCS2-1.38986downTPX21.091732upGLYAT-1.72131downCYP4F2-1.0376downPAGE41.240802upADH1C-1.64914downPHYHD1-1.0017downCOL4A11.236208upPROZ-1.52487downSLC7A2-1.05182downHJURP1.034534upCYP2E1-2.04247downCIRL-1.01827downRACGAP11.407851upGSTZ1-1.39923downCPS1-1.29626downANLN1.53779upMFSD2A-1.51912downADAMTSL2-1.24169downMCM21.109517upIDO2-1.83679downMTTP-1.02368downUBE2C1.0809up	COLECIO	-1.85319	down	SI C27A2	-1.02491	down	SLOOP	1.428178	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	HOGAI	-1.43807	down	ETFDH	-1.15312	down	DLGAP5	1.462148	UD
CYP3A4-2.39818downOAT-1.35234downCDCA51.222277up $SLC39A5$ -1.47867down $SFRP5$ -1.04433down SFN 1.002947up $KLKB1$ -1.57229down $CYP3A43$ -1.2044down $ESM1$ 1.15394up $LCAT$ -1.87391down $SLC6A12$ -1.11241down TTK 1.378481up $IGFALS$ -1.94508down $SOCS2$ -1.38986down $TPX2$ 1.091732up $GLYAT$ -1.72131down $CYP4F2$ -1.0376down $PAGE4$ 1.240802up $ADH1C$ -1.64914down $PHYHD1$ -1.0017down $COL4A1$ 1.236208up $PROZ$ -1.52487down $SLC7A2$ -1.05182down $HJURP$ 1.034534up $CYP2E1$ -2.04247down $CIRL$ -1.01827down $RACGAP1$ 1.407851up $GSTZ1$ -1.39923down PLG -1.09969down $IGF2BP3$ 1.019851up $CHST4$ -1.72521down $ADAMTSL2$ -1.24169down $MCM2$ 1.109517up $IDO2$ -1.83679down $MTTP$ -1.02368down $UBE2C$ 1.0809up	MTIF	-1.80442	down	GCKR	-1.00475	down	ALDH3AT	1.048498	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CYP3A4	-2.39818	down	OAT	-1.35234	down	CDCA5	1.222277	⊶₽ UD
KLKB1 -1.57229 downCYP3A43 -1.2044 downESM1 1.15394 upLCAT -1.87391 down $SLC6A12$ -1.11241 down TTK 1.378481 upIGFALS -1.94508 down $SOCS2$ -1.38986 down TTK 1.378481 upGLYAT -1.72131 down $CYP4F2$ -1.0376 down $PAGE4$ 1.240802 upADH1C -1.64914 down $PHYHD1$ -1.0017 down $COL4A1$ 1.236208 upPROZ -1.52487 down $SLC7A2$ -1.05182 down $HJURP$ 1.034534 upCYP2E1 -2.04247 down $CIRL$ -1.01827 down $RACGAP1$ 1.407851 upGSTZ1 -1.39923 down PLG -1.09969 down $IGF2BP3$ 1.019851 upCHST4 -1.72521 down $CPS1$ -1.29626 down $MCM2$ 1.109517 upIDO2 -1.83679 down $MTTP$ -1.02368 down $UBE2C$ 1.0809 up	SLC39A5	-1.47867	down	SFRP5	-1.04433	down	SFN	1.002947	⊶P UD
LCAT-1.87391downSLC6A12-1.11241downTTK1.378481upIGFALS-1.94508downSUC52-1.38986downTTK1.378481upGLYAT-1.72131downCYP4F2-1.0376downPAGE41.240802upADH1C-1.64914downPHYHD1-1.0017downCOL4A11.236208upPROZ-1.52487downSLC7A2-1.05182downHJURP1.034534upCYP2E1-2.04247downC1RL-1.01827downRACGAP11.407851upGSTZ1-1.39923downPLG-1.09969downIGF2BP31.019851upCHST4-1.72521downCPS1-1.29626downANLN1.53779upMFSD2A-1.51912downMTTP-1.02368downUBE2C1.0809up	KIKBI	-1.57229	down	CYP3A43	-1.2044	down	FSM I	1.15394	
IGFALS -1.94508 downSOCS2 -1.38986 downTPX2 1.091732 upGLYAT -1.72131 down $CYP4F2$ -1.0376 down $PAGE4$ 1.240802 upADH1C -1.64914 down $PHYHD1$ -1.0017 down $COL4A1$ 1.236208 upPROZ -1.52487 down $SLC7A2$ -1.05182 down $HJURP$ 1.034534 upCYP2E1 -2.04247 down $CIRL$ -1.01827 down $RACGAP1$ 1.407851 upGSTZ1 -1.39923 down PLG -1.09969 down $IGF2BP3$ 1.019851 upCHST4 -1.72521 down $CPS1$ -1.29626 down $ANLN$ 1.53779 upMFSD2A -1.51912 down $ADAMTSL2$ -1.24169 down $MCM2$ 1.109517 upIDO2 -1.83679 down $MTTP$ -1.02368 downUBE2C 1.0809 up	ICAT	-1 87391	down	SIC6A12	-111241	down	TTK	1 378481	чр ПD
GLYAT -1.72131 downCYP4F2 -1.0376 downPAGE4 1.240802 upADH1C -1.64914 downPHYHD1 -1.0017 downCOL4A1 1.236208 upPROZ -1.52487 downSLC7A2 -1.05182 downHJURP 1.034534 upCYP2E1 -2.04247 downC1RL -1.01827 downRACGAP1 1.407851 upGSTZ1 -1.39923 downPLG -1.09969 downIGF2BP3 1.019851 upCHST4 -1.72521 downCPS1 -1.29626 downANLN 1.53779 upMFSD2A -1.51912 downADAMTSL2 -1.24169 downMCM2 1.109517 upIDO2 -1.83679 downMTTP -1.02368 downUBE2C 1.0809 up	IGFALS	-1.94508	down	50652	-1 38986	down	TPX2	1.091732	чр ПD
ADH I C -1.64914 downPHYHD I -1.0017 downCOL4A I 1.236208 upPROZ -1.52487 downSLC7A2 -1.05182 downHJURP 1.034534 upCYP2E I -2.04247 downCIRL -1.01827 downRACGAP I 1.407851 upGSTZ I -1.39923 downPLG -1.09969 downIGF2BP3 1.019851 upCHST4 -1.72521 downCPS I -1.29626 downANLN 1.53779 upMFSD2A -1.51912 downADAMTSL2 -1.24169 downMCM2 1.109517 upIDO2 -1.83679 downMTTP -1.02368 downUBE2C 1.0809 up	GLYAT	-172131	down	CYP4F2	-1.0376	down	PAGE4	1.240802	чр ПD
PROZ -1.52487 down SLC7A2 -1.05182 down HJURP 1.034534 up CYP2E1 -2.04247 down CIRL -1.01827 down RACGAP1 1.407851 up GSTZ1 -1.39923 down PLG -1.09969 down IGF2BP3 1.019851 up CHST4 -1.72521 down CPS1 -1.29626 down ANLN 1.53779 up MFSD2A -1.51912 down MATTP -1.02368 down UBE2C 1.0809 up	ADHIC	-1 64914	down		-1.0017	down	COL4A1	1.236208	чΡ
CYP2E1 -2.04247 down CIRL -1.01827 down RACGAP1 1.407851 up GSTZ1 -1.39923 down PLG -1.09969 down IGF2BP3 1.019851 up CHST4 -1.72521 down CPS1 -1.29626 down ANLN 1.53779 up MFSD2A -1.51912 down ADAMTSL2 -1.24169 down MCM2 1.109517 up IDO2 -1.83679 down MTTP -1.02368 down UBE2C 1.0809 up	PROZ	-1.52487	down	SI C7A2	-1.05182	down	HIURP	1.034534	чР UD
GSTZ1 -1.39923 down PLG -1.09969 down IGF2BP3 1.019851 up CHST4 -1.72521 down CPS1 -1.29626 down ANLN 1.53779 up MFSD2A -1.51912 down ADAMTSL2 -1.24169 down MCM2 1.109517 up ID02 -1.83679 down MTTP -1.02368 down UBE2C 1.0809 up	CYP2E1	-2 04247	down	CIRI	-1.01827	down	RACGAPI	1.00 100 1	чр ПD
CHST4 -1.72521 down CPS I -1.29626 down ANLN 1.53779 up MFSD2A -1.51912 down ADAMTSL2 -1.24169 down MCM2 1.109517 up IDO2 -1.83679 down MTTP -1.02368 down UBE2C 1.0809 up	GSTZI	-1.39923	down	PIG	-1.09969	down	IGF2BP3	1.019851	чР UD
MFSD2A -1.51912 down ADAMTSL2 -1.24169 down MCM2 1.109517 up IDO2 -1.83679 down MTTP -1.02368 down UBE2C 1.0809 up	CHST4	-1 72521	down	CPSI	-1 29626	down	ANIN	53779	чР ПD
IDO2 -1.83679 down MTTP -1.02368 down UBE2C 1.0809 up	MFSD24	_151912	down	ADAMTSI 2	-1 24169	down	MCM2	1 109517	чР
	IDO2	-1.83679	down	MTTP	-1.02368	down	UBE2C	1.0809	up

(continued)

Name	logFC	Туре	Name	logFC	Туре	Name	logFC	Туре
SDS	-1.75694	down	CXCL2	-I.43349	down	NQOI	1.365462	up
ENO3	-1.37195	down	HRG	-1.00696	down	CCNB2	1.303069	up
GLS2	— I.75439	down	ACSLI	-1.14524	down	CCNA2	1.185444	up
DCN	— I.94676	down	MANICI	-1.18965	down	MUC13	1.14796	up
PLAC8	-1.80012	down	PCOLCE	-1.00609	down	МСМ6	1.016314	up
SERPINA4	-1.2352	down	MT2A	<u> </u>	down	CENPW	1.083208	up
ZG16	— I.56869	down	CDID	-1.02692	down	TGM3	1.050965	up
BCHE	-1.77407	down	XDH	-1.1 1927	down	RAD51AP1	1.049223	up
CFP	-1.47416	down	PPPIRIA	-1.10299	down	THYI	1.046852	up
SLC38A4	-1.32606	down	HBB	-1.3 1952	down	NUF2	1.25884	up
ADHIA	-1.27277	down	RBP5	-1.04885	down	CKAP2L	1.054397	up
CLEC4M	-2.35545	down	CFHR3	-1.10107	down	MAGEAI	1.282995	up
CYP4A11	-1.5036	down	RELN	-1.02856	down	ECT2	1.065576	up
GYS2	-1.66608	down	NPYIR	-1.34248	down	ACSL4	1.16679	up
PHGDH	-I.400I9	down	CLDN I 0	-I.3464I	down	MDK	1.076885	up
BGN	-1.2236	down	ATF5	-1.11652	down	PEG10	1.104051	up
CIDEB	-1.27052	down	GNE	-1.04957	down	COX7B2	1.333566	up
CYP2C19	-1.55814	down	CYP4V2	-1.05634	down	CCNBI	1.362239	up
IYD	-1.22582	down	CD5L	-1.49237	down	RRM2	1.542665	up
C8A	-1.49471	down	TIMD4	-1.24178	down	REG3A	1.140254	up
STAB2	-1.82665	down	EGRI	-I.4II73	down	CDKI	1.236442	up
CDA	-I.I4527	down	GADD45B	-1.21416	down	KIF14	1.054151	up
HPGD	-1.37821	down	GPT2	— I.I5763	down	ZIC2	1.320155	up
OLFML3	-1.38115	down	ACMSD	-1.02364	down	BUBIB	1.118801	up
PTHIR	-1.35746	down	CCL19	-1.32425	down	NDC80	1.234218	up
EPHX2	— I.29488	down	RBP I	-1.15142	down	NEK2	1.144213	up
COLECII	—1.34767	down	ACADS	— I .0574 I	down	RBM24	1.220962	up
CYP2C18	-1.21134	down	MYOM2	-1.03989	down	NMRALIPI	1.314053	up
AMDHD I	-I.I4346	down	DCXR	-1.01852	down	DTL	1.283296	up
LYVEI	-1.69466	down	PLGLB I	-1.07364	down	SULT I C2	1.181554	up
GSPT2	— I.16851	down	CYP2B6	-1.37318	down	ROBO I	1.247873	up
C8B	—I.I67I5	down	UROCI	-1.06129	down	SSXI	1.001365	up
ADHIB	-1.77846	down	PDK4	-1.08546	down	FLVCR I	1.006476	up
DPT	— I.684 I 3	down	PPARGCIA	-1.08395	down	CTHRCI	1.120384	up
AZGPI	-1.23501	down	NDRG2	-1.01145	down	ZWINT	1.066653	up
ALDH8A I	-1.37768	down	IGFI	-1.1 4785	down	GINSI	1.03249	up
RND3	-1.62821	down	ASPDH	— I.I5589	down	SMPX	1.089408	up
SLC19A3	-I.18742	down	DBH	-1.50296	down	GPR158	1.061576	up
WDR72	-1.27875	down	PRG4	-I.I3337	down			

Appendix. Continued.

FC, fold change.

Information on Gene Ontology (GO) enrichment analysis in biological process (BP), cellular component (CC), and molecular function (MF) categories.

Category	ID	Term	-log10(FDR)	Count
BP	GO:0055114	Oxidation-reduction process	16.45646128	56
BP	GO:0019373	Epoxygenase P450 pathway	12.72414085	13
BP	GO:0006805	Xenobiotic metabolic process	6.801196269	16
BP	GO:0017144	Drug metabolic process	6.713310124	11
BP	GO:0045926	Negative regulation of growth	5.354060264	9
BP	GO:0071276	Cellular response to cadmium ion	4.258416753	8
BP	GO:0042738	Exogenous drug catabolic process	3.873727759	7
BP	GO:0071294	Cellular response to zinc ion	3.86110044	8
BP	GO:0008202	Steroid metabolic process	3.349012692	10
BP	GO:0097267	Omega—hydroxylase P450 pathway	3.048831706	6
BP	GO:0016098	Monoterpenoid metabolic process	2.284734835	5
BP	GO:0007067	Mitotic nuclear division	1.901221899	19
BP	GO:0006569	Tryptophan catabolic process	1.382839511	5
CC	GO:0031090	Organelle membrane	12.13504583	21
CC	GO:0070062	Extracellular exosome	10.96203625	117
CC	GO:0005576	Extracellular region	8.944226201	78
CC	GO:0005615	Extracellular space	8.079401711	68
CC	GO:0072562	Blood microparticle	3.941029653	17
CC	GO:0005579	Membrane attack complex	2.131478756	5
MF	GO:0016705	Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular	12.77849851	19
MF	GO:0020037	Heme binding	11.82105086	25
MF	GO:0004497	Monooxygenase activity	11.5463498	18
MF	GO:0005506	Iron ion binding	10.69763162	25
MF	GO:0008392	Arachidonic acid epoxygenase activity	10.22404973	11
MF	GO:0019825	Oxygen binding	9.168975245	15
MF	GO:0016491	Oxidoreductase activity	5.664542324	22
MF	GO:0008395	Steroid hydroxylase activity	5.613513145	10
MF	GO:0070330	Aromatase activity	2.805232257	8
MF	GO:0004024	Alcohol dehydrogenase activity, zinc–dependent	2.38141982	5
MF	GO:0016712	Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of	1.824019096	6
MF	GO:0004745	Retinol dehydrogenase activity	1.391280368	6

FDR, false discovery rate.