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Identification of potential
hub genes associated with
the pathogenesis and
prognosis of hepatocellular
carcinoma via integrated
bioinformatics analysis
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Abstract

Objective: The objective was to identify potential hub genes associated with the pathogenesis

and prognosis of hepatocellular carcinoma (HCC).

Methods: Gene expression profile datasets were downloaded from the Gene Expression

Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples

were identified via an integrated analysis. A protein–protein interaction network was constructed

and analyzed using the STRING database and Cytoscape software, and enrichment analyses were

carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier

plotter were used to determine expression and prognostic values of hub genes.

Results: We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK,

TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of

HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-

associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway.

Conclusions: In this study, we identified key genes of HCC, which indicated directions for

further research into diagnostic and prognostic biomarkers that could facilitate targeted molec-

ular therapy for HCC.
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Introduction

On a global scale, cancer is the main public
health problem and liver cancer is a major
contributor to both cancer morbidity and
mortality.1 Liver cancer is the sixth most
common cancer and the fourth highest
cause of cancer-related mortality world-
wide.2 There were expected to be 42,030
newly diagnosed cases and 31,780 deaths
of liver cancer in the United States during
2019.3 Hepatocellular carcinoma (HCC) is
the most common form of primary liver
cancer, comprising 75% to 85% of cases.2

The well-recognized risk factors for HCC
include chronic infection with hepatitis B
(HBV) or hepatitis C virus, exposure to die-
tary aflatoxin, alcohol-induced cirrhosis,
smoking, obesity, and type 2 diabetes.2,4

In Asia (especially China), chronic HBV
infection is the leading etiologic factor of
HCC.5 Most HCC patients are diagnosed
at an advanced stage, and locoregional
treatments (chemoembolization) and surgi-
cal treatments are relatively disappointing
in terms of overall survival (OS) of patients
with advanced disease.6 In addition, tradi-
tional chemotherapies have not shown
promising outcomes in treatment of HCC
and have significant toxicity.6,7 Meanwhile,
the lack of early detection of diagnostic
markers and limited treatment strategies
increase the risk of poor prognosis and
death.8 Therefore, there is a pressing need
to develop robust diagnostic strategies
and effective therapies for HCC patients.9

Over the past decades, microarray tech-
nology and bioinformatics have been exten-
sively applied to identify the molecular

mechanisms of HCC, which provide
strong research support for the diagnosis,
treatment, and prognosis of HCC.10

Because of the ability to process a large
number of datasets quickly, integrated bio-
informatics analysis and microarray tech-
nology have allowed researchers to
comprehensively identify the functions of
numerous differentially expressed genes
(DEGs) in HCC, and they help researchers
explore the complicated process of HCC
occurrence and development.10,11 A work
by He et al.12 identified four hub genes
and two important pathways in the devel-
opment of HCC from cirrhosis from one
Gene Expression Omnibus (GEO) dataset
using a bioinformatics method, including
DEG screening, enrichment analyses, and
construction of a protein–protein interac-
tion (PPI) network. Zhang et al.13 screened
hub genes and pathways correlated with the
occurrence and progression of HCC via a
series of bioinformatics analyses incorpo-
rating DEGs identification, functional
enrichment analyses, PPI network and
module analysis, and weighted correlation
network analysis. Zhou et al.11 identified
the pivotal genes and microRNAs in HCC
using a bioinformatics approach, including
analysis of raw data via GEO2R, Gene
Ontology (GO), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway
enrichment analyses, and construction of
PPI network. However, to improve the
diagnosis and treatment of HCC, novel
diagnostic and prognostic biomarkers for
HCC are needed. The flowchart of the
study approach is shown in Figure 1.
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Figure 1. Flowchart for identification of core genes and pathways for hepatocellular carcinoma (HCC).
GEO, Gene Expression Omnibus; DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PPI, protein–protein interaction; GEPIA, Gene Expression Profiling
Interactive Analysis.
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Materials and methods

Ethical approval

Ethical approval was not required in this

study because we analyzed only published

data from the GEO database.

Gene expression profile data

Gene expression profile data (GSE36376,14

GSE39791,15 GSE41804,16 GSE54236,17,18

GSE57957,19 GSE62232,20 GSE64041,21

GSE69715,22 GSE76427,23 GSE84005,

GSE87630,24 GSE112790,25 and GSE1

2124826) were downloaded from the GEO

database (http://www.ncbi.nlm.nih.gov/

geo/),27 a public data repository, including

high-throughput gene expression and other

functional genome datasets. The selection

criteria for the included datasets were as

follows: (1) tissue samples collected from

human HCC and corresponding adjacent

or normal tissues; and (2) including at

least 40 samples.

Integrated analysis of microarray datasets

The matrix data of each GEO dataset

were normalized and log2 transformed

using the R software package limma,28

and the DEGs between HCC and corre-

sponding adjacent or normal tissues were

also filtered using the limma package.

Integration of DEGs identified from the

13 datasets was performed by

RobustRankAggreg package29 in R soft-

ware. A |log2 fold change (FC)| �1 and

adjusted P-value< 0.05 were considered

significant for the DEGs.

Enrichment analyses of DEGs

Database for Annotation, Visualization

and Integrated Discovery (DAVID;

https://david.ncifcrf.gov/, version, 6.8)30 is

a comprehensive functional annotation

tool for extracting biological significance

from large gene/protein datasets. In this

study, the GO and KEGG pathway enrich-

ment analyses for the DEGs were con-

ducted via DAVID. The visualization of

enrichment analysis results was conducted

by using ggplot231 and the GOplot32 pack-

age in the R software.

PPI network and module analysis

Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING; https://string-

db.org/)33 is a database of known and pre-

dicted protein interactions, showing direct

and indirect interactions among proteins.

This database was applied to obtain poten-

tial interactions among the DEGs. PPIs

with a confidence score �0.7 were reserved

and imported into Cytoscape software34 to

construct the PPI network. Furthermore,

the clustering modules in this PPI network

were analyzed using the MCODE

(Molecular Complex Detection) plugin in

Cytoscape.35 Pathway enrichment analyses

for important modules were also carried

out. The visualization of enrichment

analysis results was performed by using the

imageGP platform (http://www.ehbio.com/

ImageGP/index.php/Home/Index/GOenrich

mentplot.html).

Survival analysis of hub genes

Kaplan–Meier plotter (KM plotter; http://

kmplot.com/analysis/) is a database con-

taining clinical data and gene expression

data.36 This database is used to further

understanding the molecular basis of dis-

ease and identifying biomarkers associated

with survival.37 The recurrence-free survival

and OS information were based on GEO,

the European Genome-phenome Archive

(EGA), and The Cancer Genome Atlas

(TCGA) databases. Hazard ratios (HR)

with 95% confidence intervals and log

rank P-value were calculated to assess the
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association of gene expression with survival

and are shown in plots.38

Expression level analysis and correlation

analysis of hub genes

The Gene Expression Profiling Interactive

Analysis (GEPIA; http://gepia.cancer pku.

cn/index.html)39 is a newly developed web-

based tool that applies a standard process-

ing pipeline to analyze gene expression data

between tumor and normal tissues. The

relationship of expression of hub genes in

HCC and normal tissues were visualized by

boxplot.38 In addition, correlation analysis

was performed by GEPIA to check the rel-

ative ratios between two genes.39

Results

Identification of DEGs

In the present study, 13 datasets were down-

loaded from GEO that included 1100 cancer

tissues and 717 corresponding adjacent or

normal tissues (Table 1). After integrated

analysis, 380 DEGs (293 downregulated and

87 upregulated) were identified (Figure 2a-m

and Appendix). Figure 2n shows the top 20

down- and upregulated genes.

GO and KEGG pathway enrichment

analyses of DEGs

To deepen our understanding of DEGs,

we performed GO and KEGG pathway

Table 1. Information for the 13 Gene Expression Omnibus datasets included in the current study.

Dataset Platform

Number of samples

(tumor/control)

GSE36376 GPL10558-Illumina HumanHT-12 V4.0 expression

beadchip

433 (240/193)

GSE39791 GPL10558-Illumina HumanHT-12 V4.0 expression

beadchip

144 (72/72)

GSE41804 GPL570-[HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

40 (20/20)

GSE54236 GPL6480-Agilent-014850 Whole Human Genome

Microarray 4x44K G4112F (Probe Name version)

161 (81/80)

GSE57957 GPL10558-Illumina HumanHT-12 V4.0 expression

beadchip

78 (39/39)

GSE62232 GPL570-[HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

91 (81/10)

GSE64041 GPL6244-[HuGene-1_0-st] Affymetrix Human Gene 1.0

ST Array [transcript (gene) version]

125 (60/65)

GSE69715 GPL570-[HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

103 (37/66)

GSE76427 GPL10558-Illumina HumanHT-12 V4.0 expression

beadchip

167 (115/52)

GSE84005 GPL5175-[HuEx-1_0-st] Affymetrix Human Exon 1.0 ST

Array [transcript (gene) version]

76 (38/38)

GSE87630 GPL6947-Illumina HumanHT-12 V3.0 expression

beadchip

94 (64/30)

GSE112790 GPL570-[HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

198 (183/15)

GSE121248 GPL570-[HG-U133_Plus_2] Affymetrix Human

Genome U133 Plus 2.0 Array

107 (70/37)
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enrichment analyses. Thirty-one significant-

ly enriched GO terms were selected based

on a false discovery rate (FDR)< 0.05

(Figure 3a and Appendix). In the GO

terms were 13 terms for biological process,

mainly related to metabolic process, P450

pathway, and oxidation-reduction process;

12 terms for molecular function, highly

involved with multiple enzyme activities,

heme binding, iron ion binding and

oxygen binding; and 6 terms for cellular

components, associated with organelle

membrane, extracellular exosome, extracel-

lular region, extracellular space, blood

Figure 2. Identification of DEGs. Volcano plots of Gene Expression Omnibus datasets (a) GSE36376,
(b) GSE39791, (c) GSE41804, (d) GSE54236, (e) GSE57957, (f) GSE62232, (g) GSE64041, (h) GSE69715, (i)
GSE76427, (j) GSE84005, (k) GSE87630, (l) GSE112790, and (m) GSE121248; (n) heat map of DEGs. Blue
indicates lower expression levels, red indicates higher expression levels, and white indicates no differentially
expression among the genes. Each column represents one dataset and each row represents one gene. The
number in each rectangle represents the normalized gene expression level. The gradual color ranged from
blue to red represents the changing process from downregulation to upregulation. DEG, differentially
expressed gene.
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microparticle, and membrane attack

complex.
In the KEGG pathway enrichment anal-

yses, we screened nine pathways according

to FDR< 0.05. Figure 3c shows the results

of KEGG analysis; the DEGs primarily par-

ticipated in diverse metabolism-associated

signaling pathways, such as metabolic path-

ways, retinol metabolism, drug metabolism-

cytochrome P450, among others.

PPI network establishment and

module analysis

The PPI network of DEGs comprised 242

nodes and 1267 interactions (Figure 4a);

degree was calculated to identify candidate

key nodes. Finally, 11 potential key nodes

were identified, the degrees of which were

all more than four times the corresponding

average values: CDK1, CCNB2, CDC20,

CCNB1, TOP2A, CCNA2, MELK, PBK,

TPX2, KIF20A, and AURKA (Table 2).

Moreover, to determine important cluster-

ing modules in the PPI network, module

analysis was performed using MCODE,

and the two modules with the highest

scores (score >10) were obtained

(Figure 4b, 4c). The enrichment pathways

of module 1 and module 2 are shown in

Figure 5. Module 1 was highly associated

with cell cycle and oocyte meiosis;

module 2 was closely connected to drug

metabolism-cytochrome P450, linoleic acid

metabolism, chemical carcinogenesis, ara-

chidonic acid metabolism, retinol metabo-

lism, metabolism of xenobiotics by

cytochrome P450, and metabolic pathways.

Survival analysis, expression, and

correlation analysis of hub genes

Survival analysis of 11 hub genes was per-

formed using the KM plotter. The results

Figure 3. Enrichment analysis of DEGs. (a) GO enrichment analysis of DEGs, (b) top 5 terms of GO
enrichment, and (c) KEGG pathway analysis of DEGs. DEG, differentially expressed gene; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate.
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showed that high expression of CDK1

(HR¼ 2.15, 95% CI: 1.52–3.06;

P¼ 1.1e�05), CCNB2 (HR¼ 1.91, 95%

CI: 1.28–2.87; P¼ 0.0013), CDC20

(HR¼ 2.49, 95% CI: 1.72–3.59; P¼
5.1e�07), CCNB1 (HR¼ 2.34, 95% CI:

1.55–3.54; P¼ 3.4e�05), TOP2A

(HR¼ 1.99, 95% CI: 1.39–2.86;

P¼ 0.00012), CCNA2 (HR¼ 1.92, 95%

CI: 1.36–2.72; P¼ 0.00018), MELK

(HR¼ 2.22, 95% CI: 1.5–3.27; P¼
3.7e�05), PBK (HR¼ 2.24, 95% CI: 1.5–

3.34; P¼ 4.8e�05), TPX2 (HR¼ 2.29, 95%

CI: 1.62–3.24; P¼ 1.4e�06), KIF20A

Figure 4. PPI network and hub clustering modules. (a) The PPI network of DEGs, (b) module 1 (MCODE
score¼ 38.769), and (c) module 2 (MCODE score¼ 10.364). Blue circles represent downregulated genes
and red circles represent upregulated genes. PPI, protein–protein interaction; DEG, differentially expressed
gene; MCODE, Molecular Complex Detection.
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(HR¼ 2.33, 95% CI: 1.63–3.32;
P¼ 1.8e�06), and AURKA (HR¼ 1.77,
95% CI: 1.25–2.5; P¼ 0.0011) was related
to unfavorable OS for HCC patients
(Figure 6). Furthermore, GEPIA was
adopted to analyze the different expression
level of hub genes in HCC and normal tis-
sues and the 11 hub genes were confirmed
to be highly expressed in HCC tissues
(Figure 7). The correlations between hub
genes were also analyzed by GEPIA,

which showed that the 11 hub genes were

significantly correlated with each other.

Figure 8 showed that the increase in expres-

sion of CDK1 was strongly associated with

increased expression of the other 10 hub

genes.

Discussion

HCC is the most common type of malig-

nancy and one of the leading causes of

cancer-related mortality worldwide.40,41

Although much research has been done on

HCC, its early diagnosis and treatment

remains difficult because of a lack of under-

standing of the molecular mechanisms asso-

ciated with HCC occurrence and

development.41 Therefore, in-depth studies

of the etiological factors and molecular

mechanisms of HCC are of critical impor-

tance for HCC diagnosis and treatment.11

Currently, bioinformatics analysis and

microarray technology are developing rap-

idly and this approach can be used to iden-

tify therapeutic targets for diagnosis,

therapy, and prognosis of a variety of

Figure 5. Pathway analysis of the two modules with the highest scores. The y-axis shows significantly
enriched KEGG pathways, and x-axis shows the two modules. KEGG, Kyoto Encyclopedia of Genes and
Genomes; FDR, false discovery rate.

Table 2. Upregulated hub genes with high degrees.

Gene Degree Type MCODE Cluster

CDK1 47 up Module 1

CCNB2 46 up Module 1

CDC20 45 up Module 1

CCNB1 45 up Module 1

TOP2A 44 up Module 1

CCNA2 44 up Module 1

MELK 43 up Module 1

PBK 43 up Module 1

TPX2 43 up Module 1

KIF20A 43 up Module 1

AURKA 43 up Module 1

Meng et al. 9
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Figure 7. Analysis of expression levels of 11 hub genes in human HCC. The red and gray boxes represent
cancer and normal tissues, respectively. (a) CDK1, (b) CCNB2, (c) CDC20, (d) CCNB1, (e) TOP2A, (f) CCNA2,
(g) MELK, (h) PBK, (i) TPX2, (j) KIF20A, and (k) AURKA. HCC, hepatocellular carcinoma;
LIHC, liver hepatocellular carcinoma.
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neoplasms.42 In this research, we identified
380 DEGs, including 293 downregulated
and 87 upregulated genes, between HCC
and corresponding adjacent or normal tis-
sues. Enrichment analyses indicated that
the DEGs were mostly associated with met-
abolic processes, such as metabolism of
retinol, drugs, xenobiotics, tyrosine, trypto-
phan, and histidine, as well as fatty acid
degradation. This indicated that metabolic
dysregulation is closely related to HCC. In
addition, we obtained 11 hub genes (CDK1,
CCNB2, CDC20, CCNB1, TOP2A,
CCNA2, MELK, PBK, TPX2, KIF20A,
and AURKA) in the PPI network, which
were upregulated in HCC tissues compared
with normal tissues; expression of the first
hub gene, CDK1, was strongly correlated
with that of the other hub genes.
Overexpression of the 11 hub genes was
correlated with worse OS.

Recent evidence implies that tumor cells
need specific interphase cyclin-dependent
kinases (CDKs) to proliferate.43 Cyclin-
dependent kinase 1 (CDK1) belongs to the
CDK family, a member of the serine/threo-
nine protein kinases, and it is crucial for the
cell cycle phase transitions G1/S and
G2/M.44,45 CDK1 is required for cell prolif-
eration because it is the only CDK that can
initiate mitosis.46 The deregulation of
CDK1 is likely related to HCC tumorigen-
esis.47 Research has found that high expres-
sion of CDK1 is correlated with poor OS of
HCC.45 Cyclins act as the regulatory subu-
nits of the CDKs, regulating temporal tran-
sitions among various stages of the cell
cycle via CDK activation.48 Cyclin-A2
(CCNA2), cyclin-B1 (CCNB1), and cyclin-
B2 (CCNB1), encoded by the CCNA2,
CCNB1, and CCNB2 genes, respectively,
all belong to the cyclin family. CCNA2 acti-
vates CDK1 at the end of interphase to
facilitate the onset of mitosis, and CCNA2
overexpression has been reported in numer-
ous types of cancers.49 A previous study
indicated that CCNA2 amplification and

overexpression is associated with carcino-

genesis of transgenic mouse liver tumors.50

Moreover, research has demonstrated that

inhibition of CCNA2 can arrest HCC cell

proliferation and tumorigenesis.51 High

expression of CCNA2 is associated with

reduced survival in patients with breast

cancer and HCC.52,53 CCNB1 and

CCNB2 are the principal activators of

CDK1 and, together with CDK1, they pro-

mote the G2/M transition.54,55 Expression

of CCNB1 changes periodically throughout

the cell cycle, and is a crucial initiator of

mitosis.56 Decreased CCNB1 expression is

related to inhibition of HCC occurrence

and development, and activation of

CCNB1 expression can promote prolifera-

tion in human HCC cells.56,57 Furthermore,

previous research has shown that CCNB1 is

closely connected to prognosis of HCC

patients. 56,58 The dimerization of CCNB2

with CDK1 is an essential component of the

cell cycle regulatory machinery, and an

increase in expression of CCNB2/CDK1

could promote tumor cell proliferation.55

Furthermore, CCNB2 is highly expressed

in several malignant tumors and overex-

pression of CCNB2 is related to poor prog-

nosis in HCC.59 Cell division cycle protein

20 (encoded by CDC20) is a regulator of

cell cycle checkpoints, which plays a crucial

role in anaphase initiation and exit

from mitosis.60,61 It degrades several impor-

tant substrates, including cyclin A and

CCNB1, to regulate cell cycle progres-

sion.62,63 CDC20 overexpression is related

to progression and poor prognosis in vari-

ous malignant tumors.64–67 Thus, it is a

potential target in multiple cancer treat-

ments.68 A recent study found that

increased expression of CDC20 is related

to HCC development and progression.67

Additionally, research has indicated that

silencing expression of CDC20 and hepara-

nase can activate cell apoptosis; thus, tar-

geting inhibition of both CDC20 and

Meng et al. 13



heparanase expression is an ideal approach
for the treatment of HCC.69

Aurora kinase A (encoded by AURKA)
is involved in centrosome duplication, spin-
dle formation, chromosomal amplification
and segregation, and cytokinesis, and it
plays a significant role in centrosome mat-
uration and mitotic commitment in the
late G2 phase.70,71 Abnormal activity of
AURKA promotes tumorigenic progression
and transformation via defective control at
the checkpoint of mitotic spindle.72

Meanwhile, AURKA is highly expressed in
a variety of human cancers, including
breast cancer,73 lung cancer,74 gastrointesti-
nal cancer,75 bladder cancer,76 and oral
cancer.77 A study demonstrated that genetic
variations in AURKA might be a reliable
predictor of early-stage HCC and a crucial
biomarker for HCC development.78

Moreover, other research has indicated
that AURKA contributes in metastasis and
invasiveness of HCC.79 Therefore, AURKA
might represent a new therapeutic target for
HCC. Topoisomerase II alpha (TOP2A), a
potential biomarker for cancer therapy, has
been detected in various types of cancer.80–82

It participates in chromosome condensation
and chromatid separation.80 TOP2A enco-
des topoisomerase II alpha81 and is
reported to be overexpressed in HCC tis-
sues.83 Furthermore, a study has shown
that TOP2A has prognostic value in HCC
and its reactive agents can be used in HCC
therapy.84 Maternal embryonic leucine
zipper kinase (encoded by MELK) is a
member of the AMP protein kinase family
of serine/threonine kinases, which affect
many stages of tumorigenesis.85 Several
studies have shown that MELK is an onco-
genic kinase essential for early HCC recur-
rence, and its expression is upregulated in
HCC.86–88 Furthermore, MELK inhibition
is associated with suppression of tumor
growth, indicating that MELK is a poten-
tial therapeutic target for HCC.89 PDZ-
binding kinase (encoded by PBK) can

regulate cell cycle processes.90 Although
PBK is barely detectable in normal somatic
tissues, it is often elevated in various tumor
tissues and is therefore an important target
for cancer screening and targeted thera-
py.91,92 Recent research has shown that
PBK overexpression promotes migration
and invasion of HCC, and it could be a
therapeutic target for HCC metastasis.93

Targeting protein for Xklp2 (TPX2) expres-
sion is modulated by the cell cycle, and it is
detected in G1/S phase and disappears after
cytokinesis.94,95 Several studies have indi-
cated that TPX2 is highly expressed in dif-
ferent types of cancers.96,97 Additionally,
expression of TPX2 is related to prolifera-
tion and apoptosis in HCC.98 TPX2 over-
expression promotes the growth and
metastasis of HCC.99 Kinesin family
member 20A (KIF20A) is required during
mitosis for the final step of cytokine-
sis.100,101 Studies have found that high
expression of KIF20A is correlated with
progression or poor prognosis of many
types of cancers.102–104 Furthermore,
KIF20A is aberrantly expressed in HCC tis-
sues and its expression may be associated
with poor OS.105

According to enrichment analyses of two
modules, we found that module 1 was
mostly associated with cell cycle and
module 2 was closely related to metabolic
pathways. Furthermore, all 11 hub genes
belonged to module 1 and most are associ-
ated with cell cycle and enriched in the “cell
cycle” pathway. A number of studies have
elucidated that cell cycle disorders are close-
ly related to human cancer.43 Therefore, the
carcinogenesis and progression of HCC
may be associated with the cell cycle path-
way, and we might be able to suppress HCC
cell cycle progression, inhibit HCC cell pro-
liferation, and reduce HCC malignancy by
downregulating expression of the 11 hub
genes identified herein.

Compared with previous studies, this
work has several advantages, as follows.
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First, the current integrated microarray

data used a relatively large sample size

from several GEO datasets (GSE36376,14

GSE39791,15 GSE41804,16 GSE54236,17,18

GSE57957,19 GSE62232,20 GSE64041,21

GSE69715,22 GSE76427,23 GSE84005, GS

E87630,24 GSE112790,25 and GSE121

24826). Second, functional enrichment anal-

yses were performed to identify the main

biological functions and pathways regulat-

ed by DEGs. Third, we established PPI

networks, conducted module analysis, dis-

covered potential biomarkers for diagnosis

and prognosis of HCC, and performed cor-

relation analysis of hub genes.
The limitations of this work were as fol-

lows: First, our results need to be verified

by corresponding experimental studies.

Second, we obtained data from the GEO

database, and data quality cannot be veri-

fied. Finally, our study focused on genes

that are typically identified as significant

changes in diverse datasets, without regard

to sex, age, or grading and staging of

tumors from which the samples were

derived.

Conclusion

In the present work, we identified 11 hub

genes (CDK1, CCNB2, CDC20, CCNB1,

TOP2A, CCNA2, MELK, PBK, TPX2,

KIF20A, and AURKA) associated with the

development and poor prognosis of HCC

by integrated bioinformatics analysis.

However, because our study was based on

data analysis only, further experiments are

required to confirm the results. Our findings

will provide evidence and new insights to

enhance approaches for the early diagnosis,

prognosis, and treatment of HCC.
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Appendix

Information for 293 downregulated genes (down) and 87 upregulated genes (up).

Name logFC Type Name logFC Type Name logFC Type

CLEC1B �3.33713 down IL13RA2 �1.41685 down CSRNP1 �1.20759 down

C9 �2.93972 down PAMR1 �1.30729 down ZGPAT �1.283655 down

FCN3 �3.32589 down CYP26A1 �1.82557 down FAM150B �1.096361 down

CYP1A2 �3.61576 down JCHAIN �1.90133 down LPA �1.568535 down

HAMP �3.72675 down ADIRF �1.34189 down ALPL �1.135143 down

SLCO1B3 �2.84405 down NNMT �1.65555 down S100A8 �1.149369 down

SPP2 �2.19217 down TAT �1.77239 down GPM6A �1.287388 down

APOF �2.7681 down MS4A6A �1.02381 down RCL1 �1.112209 down

NAT2 �2.42415 down VNN1 �1.43431 down CYP2B7P �1.31568 down

CLRN3 �2.35658 down HSD17B2 �1.27883 down CCBE1 �1.131678 down

RDH16 �2.05491 down FAM134B �1.27241 down LINC01093 �1.711116 down

SLC25A47 �2.3928 down CTH �1.2995 down ST3GAL6 �1.008844 down

SLC22A1 �2.49578 down ACAA1 �1.06823 down TBX15 �1.105089 down

THRSP �2.37999 down OTC �1.12724 down BCO2 �1.572843 down

CLEC4G �2.8104 down CYP2A7 �1.7189 down LUM �1.123456 down

GBA3 �2.26827 down C6 �1.48624 down ESR1 �1.022446 down

DNASE1L3 �2.22313 down GREM2 �1.17719 down CYR61 �1.101151 down

SHBG �1.96811 down HPD �1.56635 down HBA2 �1.227362 down

LY6E �2.01561 down KBTBD11 �1.69651 down KDM8 �1.06201 down

CDHR2 �2.02873 down CA2 �1.30707 down GADD45G �1.126764 down

TMEM27 �2.33949 down AKR7A3 �1.25278 down ASPG �1.055061 down

C7 �2.2597 down RNF125 �1.03098 down FCGR2B �1.141195 down

FBP1 �1.79884 down TTC36 �1.69649 down ASPA �1.025006 down

SRD5A2 �1.89056 down PROM1 �1.44661 down PBLD �1.006234 down

MT1M �3.02758 down ADH6 �1.22168 down HHIP �1.37843 down

BBOX1 �2.04999 down ETNPPL �1.15368 down CRP �1.053533 down

APOA5 �1.774 down HSD17B13 �1.50866 down FREM2 �1.522232 down

IGFBP3 �1.70456 down ANXA10 �1.62516 down ADRA1A �1.161964 down

ADH4 �2.15911 down FXYD1 �1.41243 down CNTN3 �1.176196 down

KMO �1.91086 down OGDHL �1.30838 down ITLN1 �1.034492 down

CYP8B1 �1.76864 down PON1 �1.17061 down UGT2B10 �1.031179 down

CXCL14 �2.31161 down ACSM3 �1.52866 down DIRAS3 �1.123875 down

GHR �2.12511 down SLC27A5 �1.33347 down STEAP4 �1.061309 down

ADGRG7 �1.85853 down LIFR �1.47372 down CYP4A22 �1.074568 down

MARCO �2.25079 down HABP2 �1.06311 down TFPI2 �1.00071 down

MT1F �2.59948 down GRAMD1C �1.07675 down MT1A �1.093671 down

CYP39A1 �1.86139 down TKFC �1.07859 down RAB25 �1.081375 down

OIT3 �2.4803 down STEAP3 �1.09586 down RDH5 �1.006888 down

MBL2 �1.62953 down IL1RAP �1.21549 down EPCAM �1.336797 down

VIPR1 �1.89347 down GCDH �1.02343 down SPINK1 3.633978 up

TDO2 �1.44452 down HAL �1.262 down GPC3 2.807155 up

BHMT �1.68706 down GABARAPL1 �1.07919 down AKR1B10 2.588879 up

(continued)
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Appendix. Continued.

Name logFC Type Name logFC Type Name logFC Type

PCK1 �1.85362 down ID1 �1.32236 down ASPM 1.804629 up

MT1H �2.20509 down INMT �1.65209 down CAP2 2.086341 up

AFM �1.90272 down SKAP1 �1.06342 down TOP2A 2.232845 up

HGFAC �2.18902 down FETUB �1.31249 down PRC1 1.923672 up

MT1G �2.64319 down CFHR4 �1.07478 down CDKN3 1.778794 up

CYP2A6 �2.05548 down HSD11B1 �1.27605 down CDC20 1.910919 up

CETP �1.77384 down G6PC �1.00804 down PTTG1 1.451774 up

SMIM24 �1.81333 down MFAP4 �1.53268 down NCAPG 1.551838 up

FCN2 �1.90705 down ABCA8 �1.10284 down LCN2 1.551605 up

FOSB �2.12211 down CYP2J2 �1.03103 down CCL20 1.667526 up

ECM1 �1.72876 down AKR1D1 �1.77452 down FAM83D 1.570755 up

MT1X �2.07498 down GPD1 �1.01057 down KIF20A 1.644679 up

SLC10A1 �1.70131 down HAO1 �1.0889 down PBK 1.6372 up

CRHBP �2.55698 down TACSTD2 �1.09909 down AURKA 1.321582 up

F9 �1.86997 down GCGR �1.51767 down UBE2T 1.429052 up

SRPX �1.99247 down C8orf4 �1.53773 down NUSAP1 1.447842 up

CYP2C9 �1.7781 down DMGDH �1.11277 down AKR1C3 1.315793 up

GNMT �1.80416 down PON3 �1.07722 down MELK 1.397481 up

CYP2C8 �1.84304 down MAT1A �1.15605 down SRXN1 1.101781 up

PGLYRP2 �1.57039 down AADAT �1.45288 down HMMR 1.429779 up

LECT2 �1.71324 down HPX �1.1201 down COL15A1 1.679907 up

HAO2 �2.05962 down KCNN2 �1.76035 down UBD 1.793116 up

FOS �2.10062 down ACADL �1.16219 down PLVAP 1.303945 up

ANGPTL6 �1.40198 down SLC13A5 �1.18455 down HSPB1 1.057592 up

CNDP1 �2.19859 down ASS1 �1.22714 down SPP1 1.372928 up

CXCL12 �1.91941 down PRSS8 �1.15745 down CENPF 1.339564 up

AGXT2 �1.39193 down CPED1 �1.24941 down SQLE 1.28364 up

ACOT12 �1.27878 down FTCD �1.25547 down CEP55 1.130246 up

RSPO3 �1.62341 down TMEM45A �1.37559 down KIF4A 1.431933 up

PZP �1.76877 down ALDH6A1 �1.08996 down TRIP13 1.223148 up

COLEC10 �1.85319 down SLC27A2 �1.02491 down S100P 1.428178 up

HOGA1 �1.43807 down ETFDH �1.15312 down DLGAP5 1.462148 up

MT1E �1.80442 down GCKR �1.00475 down ALDH3A1 1.048498 up

CYP3A4 �2.39818 down OAT �1.35234 down CDCA5 1.222277 up

SLC39A5 �1.47867 down SFRP5 �1.04433 down SFN 1.002947 up

KLKB1 �1.57229 down CYP3A43 �1.2044 down ESM1 1.15394 up

LCAT �1.87391 down SLC6A12 �1.11241 down TTK 1.378481 up

IGFALS �1.94508 down SOCS2 �1.38986 down TPX2 1.091732 up

GLYAT �1.72131 down CYP4F2 �1.0376 down PAGE4 1.240802 up

ADH1C �1.64914 down PHYHD1 �1.0017 down COL4A1 1.236208 up

PROZ �1.52487 down SLC7A2 �1.05182 down HJURP 1.034534 up

CYP2E1 �2.04247 down C1RL �1.01827 down RACGAP1 1.407851 up

GSTZ1 �1.39923 down PLG �1.09969 down IGF2BP3 1.019851 up

CHST4 �1.72521 down CPS1 �1.29626 down ANLN 1.53779 up

MFSD2A �1.51912 down ADAMTSL2 �1.24169 down MCM2 1.109517 up

IDO2 �1.83679 down MTTP �1.02368 down UBE2C 1.0809 up

(continued)
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Appendix. Continued.

Name logFC Type Name logFC Type Name logFC Type

SDS �1.75694 down CXCL2 �1.43349 down NQO1 1.365462 up

ENO3 �1.37195 down HRG �1.00696 down CCNB2 1.303069 up

GLS2 �1.75439 down ACSL1 �1.14524 down CCNA2 1.185444 up

DCN �1.94676 down MAN1C1 �1.18965 down MUC13 1.14796 up

PLAC8 �1.80012 down PCOLCE �1.00609 down MCM6 1.016314 up

SERPINA4 �1.2352 down MT2A �1.54319 down CENPW 1.083208 up

ZG16 �1.56869 down CD1D �1.02692 down TGM3 1.050965 up

BCHE �1.77407 down XDH �1.11927 down RAD51AP1 1.049223 up

CFP �1.47416 down PPP1R1A �1.10299 down THY1 1.046852 up

SLC38A4 �1.32606 down HBB �1.31952 down NUF2 1.25884 up

ADH1A �1.27277 down RBP5 �1.04885 down CKAP2L 1.054397 up

CLEC4M �2.35545 down CFHR3 �1.10107 down MAGEA1 1.282995 up

CYP4A11 �1.5036 down RELN �1.02856 down ECT2 1.065576 up

GYS2 �1.66608 down NPY1R �1.34248 down ACSL4 1.16679 up

PHGDH �1.40019 down CLDN10 �1.34641 down MDK 1.076885 up

BGN �1.2236 down ATF5 �1.11652 down PEG10 1.104051 up

CIDEB �1.27052 down GNE �1.04957 down COX7B2 1.333566 up

CYP2C19 �1.55814 down CYP4V2 �1.05634 down CCNB1 1.362239 up

IYD �1.22582 down CD5L �1.49237 down RRM2 1.542665 up

C8A �1.49471 down TIMD4 �1.24178 down REG3A 1.140254 up

STAB2 �1.82665 down EGR1 �1.41173 down CDK1 1.236442 up

CDA �1.14527 down GADD45B �1.21416 down KIF14 1.054151 up

HPGD �1.37821 down GPT2 �1.15763 down ZIC2 1.320155 up

OLFML3 �1.38115 down ACMSD �1.02364 down BUB1B 1.118801 up

PTH1R �1.35746 down CCL19 �1.32425 down NDC80 1.234218 up

EPHX2 �1.29488 down RBP1 �1.15142 down NEK2 1.144213 up

COLEC11 �1.34767 down ACADS �1.05741 down RBM24 1.220962 up

CYP2C18 �1.21134 down MYOM2 �1.03989 down NMRAL1P1 1.314053 up

AMDHD1 �1.14346 down DCXR �1.01852 down DTL 1.283296 up

LYVE1 �1.69466 down PLGLB1 �1.07364 down SULT1C2 1.181554 up

GSPT2 �1.16851 down CYP2B6 �1.37318 down ROBO1 1.247873 up

C8B �1.16715 down UROC1 �1.06129 down SSX1 1.001365 up

ADH1B �1.77846 down PDK4 �1.08546 down FLVCR1 1.006476 up

DPT �1.68413 down PPARGC1A �1.08395 down CTHRC1 1.120384 up

AZGP1 �1.23501 down NDRG2 �1.01145 down ZWINT 1.066653 up

ALDH8A1 �1.37768 down IGF1 �1.14785 down GINS1 1.03249 up

RND3 �1.62821 down ASPDH �1.15589 down SMPX 1.089408 up

SLC19A3 �1.18742 down DBH �1.50296 down GPR158 1.061576 up

WDR72 �1.27875 down PRG4 �1.13337 down

FC, fold change.
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Information on Gene Ontology (GO) enrichment analysis in biological process (BP),
cellular component (CC), and molecular function (MF) categories.

Category ID Term �log10(FDR) Count

BP GO:0055114 Oxidation�reduction process 16.45646128 56

BP GO:0019373 Epoxygenase P450 pathway 12.72414085 13

BP GO:0006805 Xenobiotic metabolic process 6.801196269 16

BP GO:0017144 Drug metabolic process 6.713310124 11

BP GO:0045926 Negative regulation of growth 5.354060264 9

BP GO:0071276 Cellular response to cadmium ion 4.258416753 8

BP GO:0042738 Exogenous drug catabolic process 3.873727759 7

BP GO:0071294 Cellular response to zinc ion 3.86110044 8

BP GO:0008202 Steroid metabolic process 3.349012692 10

BP GO:0097267 Omega�hydroxylase P450 pathway 3.048831706 6

BP GO:0016098 Monoterpenoid metabolic process 2.284734835 5

BP GO:0007067 Mitotic nuclear division 1.901221899 19

BP GO:0006569 Tryptophan catabolic process 1.382839511 5

CC GO:0031090 Organelle membrane 12.13504583 21

CC GO:0070062 Extracellular exosome 10.96203625 117

CC GO:0005576 Extracellular region 8.944226201 78

CC GO:0005615 Extracellular space 8.079401711 68

CC GO:0072562 Blood microparticle 3.941029653 17

CC GO:0005579 Membrane attack complex 2.131478756 5

MF GO:0016705 Oxidoreductase activity, acting on paired donors,

with incorporation or reduction of molecular

oxygen

12.77849851 19

MF GO:0020037 Heme binding 11.82105086 25

MF GO:0004497 Monooxygenase activity 11.5463498 18

MF GO:0005506 Iron ion binding 10.69763162 25

MF GO:0008392 Arachidonic acid epoxygenase activity 10.22404973 11

MF GO:0019825 Oxygen binding 9.168975245 15

MF GO:0016491 Oxidoreductase activity 5.664542324 22

MF GO:0008395 Steroid hydroxylase activity 5.613513145 10

MF GO:0070330 Aromatase activity 2.805232257 8

MF GO:0004024 Alcohol dehydrogenase activity, zinc�dependent 2.38141982 5

MF GO:0016712 Oxidoreductase activity, acting on paired donors,

with incorporation or reduction of molecular

oxygen, reduced flavin or flavoprotein as one

donor, and incorporation of one atom of

oxygen

1.824019096 6

MF GO:0004745 Retinol dehydrogenase activity 1.391280368 6

FDR, false discovery rate.
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