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A transcriptome-wide Mendelian randomization
study to uncover tissue-dependent regulatory
mechanisms across the human phenome
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Developing insight into tissue-specific transcriptional mechanisms can help improve our

understanding of how genetic variants exert their effects on complex traits and disease. In

this study, we apply the principles of Mendelian randomization to systematically evaluate

transcriptome-wide associations between gene expression (across 48 different tissue types)

and 395 complex traits. Our findings indicate that variants which influence gene expression

levels in multiple tissues are more likely to influence multiple complex traits. Moreover,

detailed investigations of our results highlight tissue-specific associations, drug validation

opportunities, insight into the likely causal pathways for trait-associated variants and also

implicate putative associations at loci yet to be implicated in disease susceptibility. Similar

evaluations can be conducted at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.
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Advancements in high-throughput sequencing technologies
present an unparalleled opportunity to investigate the
molecular determinants of complex disease. This has

facilitated the identification of genetic variants that influence gene
expression, known as expression quantitative trait loci (eQTL).
Recent studies have demonstrated the benefit of using eQTL data
to help understand the underlying mechanisms of findings from
genome-wide association studies (GWAS)1–3. Moreover, endea-
vours leveraging eQTL data derived from different tissue types
can help to further ascertain the biological and clinical relevance
of variants associated with complex traits4–6. In particular, these
efforts are important when investigating tissue specificity, the
phenomenon whereby a gene’s function is restricted to particular
tissue types7.

An important challenge in molecular epidemiology is assessing
how associations between gene expression and complex traits
depend upon the tissue analysed. We previously proposed an
analytical pipeline to detect associations between tissue-specific
gene expression and complex traits by applying the principles of
Mendelian randomization (MR)8–10. This approach harnesses
eQTL as instrumental variables (IVs) to investigate whether
genetic variants at a locus influence both gene expression and
complex trait variation. Furthermore, this framework has
advantages over alternative transcriptome-wide approaches by
incorporating techniques in genetic colocalization11,12. This helps
to mitigate the likelihood of spurious findings attributed to two
separate but correlated variants at a locus, one responsible for
influencing gene expression and the other affecting the associated
complex trait. As such, associations supported by evidence of
genetic colocalization are more likely to be driven by a shared
genetic factor. Crucially, we note that genetic colocalization is
necessary, but not sufficient, for causality. This is because the
genetic effect may influence the associated trait due to mediated
changes in gene expression, or it may operate on both through
independent biological pathways13.

In this study, we apply our framework to comprehensively
evaluate the association between the transcription of 32,116
protein-coding, RNA- and pseudo genes, and 395 complex traits.
To assess the importance of tissue dependency for these asso-
ciations, we use gene expression from 48 tissue types using data
from the genotype-tissue expression (GTEx) consortium14 (v7),
as well as whole blood-derived data from the eQTLGen project15

(n= 31,684). With this putative causal map of tissue-dependent
associations, we undertake several extensive analyses. Firstly, we
evaluate the relationship between gene expression across many
tissues and pleiotropy; the phenomenon whereby a gene influ-
ences variation in multiple traits16. Next, we undertake a series of
transcriptome and phenome-wide analyses to uncover tissue-
dependent associations. Findings such as these can help to
develop insight into the underlying regulatory mechanisms that
reside along the causal pathway from a genetic variant to its
associated complex trait. Moreover, they can help uncover
pleiotropic effects that may be confined to separate tissue types.

We also demonstrate that phenome-wide evaluations of target
genes have translatable value. For example, they can help predict
whether therapeutic intervention will result in potential on-target
side effects, as well as propose scope for drug repurposing. This is
particularly attractive as previous findings suggest that support
from genetic association studies can improve efficacy and safety
rates for drug validation efforts 17,18. Finally, we explore the tissue
dependency of associations between selected genetic variants and
blood pressure traits. Our findings suggest that integrating tissue-
specific eQTL data can help prioritize likely functional genes and
tissues responsible for GWAS signals.

Results
Constructing an atlas of tissue-dependent associations. We
pooled together eQTL data from the GTEx consortium (v7) for
48 tissue types (n= 80–491, Supplementary Table 1) and the

2. construct an atlas of results using gene x trait matrices
1. systematic analysis of gene expression and complex traits based

on the principals of Mendelian randomization
3. undertake evaluations of findings using web application
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Fig. 1 A schematic of the analysis plan in this study. An overview of the analysis pipeline applied in this study to assess the association between
genetically predicted gene expression derived from 48 tissue types with 395 complex traits and diseases.
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eQTLGen project using findings derived from whole blood (n=
31,684). Full summary statistics for 395 complex traits were
obtained from large-scale GWAS (Supplementary Data 1). To
investigate the association between the transcription of up to
32,116 genes (i.e., protein-coding, RNA- and pseudo genes) and
each trait in turn, we applied two-sample summary MR19 and
assessed genetic colocalization using the heterogeneity in
dependent instruments (HEIDI) method (v0.710)2,20.

This approach was chosen over alternatives due to the vast
majority of genes only having a single independent eQTL that can
be used as an IV in an MR framework (based on r2 < 0.001) using
tissue-specific data from GTEx. For example, only 285 of the 7865
genes with an eQTL using thyroid-derived gene expression have
more than a single instrument. This caveat meant that we decided
to undertake all analyses in our study using the top eQTL for each
gene and applied the HEIDI method to reduce the likelihood of
false-positive findings. Furthermore, knowing that our analyses
were confined to using the top eQTL only, we also decided to
apply a lenient P value threshold of P < 1.0 × 10−04 (based on
linear regression coefficients) to define lead eQTL as IVs in our
analysis. This was to include as many cross-tissue comparisons in
our study as possible where results have all been derived using the
same single IV approach. All findings can be visualized and
downloaded using our web application located at http://mrcieu.
mrsoftware.org/Tissue_MR_atlas/. A schematic of our study
analysis can be found in Fig. 1.

Each analysis undertaken was adjusted for conventional
genome-wide corrections (i.e., MR P < 5.0 × 10−08) and filtered
for evidence of genetic colocalization (i.e., based on a HEIDI
threshold of P > 0.05 to control for false-positive rates). In total,
39,586 MR associations were robust to multiple testing and
genetic colocalization based on these criteria. Estimating F-
statistics for these instruments used in these analyses suggested
that eQTL with weaker evidence of association may reduce
instrument strength as expected, although all instruments had an
F-statistic > 10 (Supplementary Data 2). However, the P value
threshold for eQTL instruments (P < 1.0 × 10−04 based on linear
regression analyses) is simply a heuristic for highlighting
associations worthy of follow-up21. Investigations of results can
therefore apply more (or less) stringent lead eQTL and HEIDI
thresholds by filtering associations downloadable from the web
application.

We hypothesized that variants which influence gene expression
levels in multiple tissues are more likely to influence multiple
complex traits. To investigate this, we firstly grouped associations
according to the organ that tissues were derived from
(Supplementary Table 2). The reason for this is because we
may expect similar association signals to be shared between
tissues in GTEx which were part of the same embryonic tissue
during development. For example, the various types of brain
tissue from the GTEx consortium (e.g., amygdala, cerebellum, etc)
were allocated to the ‘brain’ tissue group. This was to reduce false-
positive findings from effectively counting the same association
twice (e.g., gene expression in various types of brain tissue
associated with the same neurological trait).

We identified strong evidence of a positive relationship
between the number of associated traits for each lead eQTL
and the number of tissues they were detected in (linear regression:
beta= 1.14, s.e.= 0.03, P < 1.0 × 10−16). This analysis was
adjusted for minor allele frequencies, linkage disequilibrium
(LD) score, and distance to gene expression probe for lead eQTL,
given that these genomic properties may influence the number of
associated traits for a given SNP. In a subsequent analysis, we
clustered eQTL effects based on their associated genes. Overall,
there was a positive correlation between the number of traits that
each gene was associated with and the number of different tissue

groups that these associations were detected across (r2= 0.46,
Supplementary Fig. 1). As a sensitivity analysis, we determined
tissue similarity by clustering based on Euclidean distance matrix
computation (Supplementary Fig. 2). Repeating our analysis did
not drastically change the identified positive correlation (r2=
0.44, Fig. 2). This was also the case when repeating our analysis
after clustering traits based on their subcategories and after
excluding human leukocyte antigen (HLA) loci (both r2= 0.42).

A transcriptome-wide evaluation of thyroid disease. Findings
from our extensive analyses can be used to conduct hypothesis-
driven investigations of tissue-dependent effects. For example, we
hypothesized that genetic variants which influence risk of thyroid
disease (defined as self-reported hypothyroidism or myxoedema
in the UK Biobank study) may likely act via changes to gene
expression in thyroid tissue. Figure 3 illustrates the results of a
transcriptome-wide evaluation between thyroid-derived gene
expression and thyroid disease using results from our atlas. We
identified 68 associations that survived multiple testing (MR P <
5.59 × 10−06, i.e., 0.05/8946 tests) and 17 of these survived HEIDI
filtering (P > 0.05; Supplementary Table 3). However, two of these
were in the HLA region and should be interpreted with caution
due to the extensive LD, which may hinder the reliability of
genetic colocalization analyses22.

We evaluated the association for each of these genetic effects
on thyroid disease in all other available tissue types. Although we
report these genetic effects based on their corresponding gene
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Fig. 2 Box plot depicting the trend of gene expression in multiple tissues
against pleiotropy. Box plot portraying the correlation in our atlas that
genetically determined gene expression is more likely to be associated with
multiple traits when expressed across multiple diverse tissue types.
Whisker portray maximum and minimum values, whereas bounds of the
boxes represent 25 and 75% quantiles and the centre lines the median
values.
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symbols, it should be noted that they are based on the MR effect
estimates using lead eQTL. We found that in particular two of
these associations appeared to be highly tissue specific (TPO,
NR3C2, and PDE8B), as they were only identified in thyroid tissue
after correcting for the number of tissues evaluated (Supplemen-
tary Tables 4–6). Cross-tissue associations for TPO and thyroid
disease are illustrated in Fig. 4. These effects provided strong
evidence of heterogeneity (Cochran’s Q statistic= 104.8, P=
7.12 × 10−14), which reflects the tissue dependency of associations
for TPO.

We also identified effects detected most strongly in thyroid
tissue, although evidence of association was still identified in

other tissue types (VAV3, LRRFIP2, and SGK223, Supplementary
Tables 7–9). These results also demonstrate that certain
associations appear to be detected across many or all tissue types
assessed (e.g., RNASET2, Supplementary Table 10). Furthermore,
repeating this transcriptome-wide analysis with thyroid disease in
all tissue types found that using thyroid-derived gene expression
yielded the largest number of associations after excluding results
from the HLA region (n= 15, Supplementary Table 11).

Phenome-wide analyses to evaluate tissue-dependent effects.
Along with evaluating our results in a transcriptome-wide man-
ner as above, exploring findings in a phenome-wide manner can
be a powerful approach to explore pleiotropy. As a demonstration
of this, RPS26 is ubiquitously expressed across all tissue types
evaluated by GTEx v7 (Supplementary Fig. 3). Undertaking a
phenome-wide scan of this gene’s expression using whole blood
suggests that the corresponding variant used as an instrument is
highly pleiotropic, as a total of 81 associations survived multiple
testing corrections (MR P < 1.27 × 10−04 based on 395 traits,
Supplementary Data 3, Fig. 5a). RPS26 therefore appears to be a
case in point that genes expressed in many tissues may be more
likely to influence multiple different phenotypes.

Investigating phenome-wide associations for genes of interest
can also yield insight into tissue-dependent effects. As an
example, we evaluated genes in our atlas associated with two
traits with a substantial heritable component within the UK
Biobank study; diastolic blood pressure (DBP) and forced vital
capacity (FVC). We found that FBN2 expression was linked with
both traits in our results, although when using heart tissue-
derived data only the effects on blood pressure were observed
(Supplementary Data 4, Fig. 5b). However, these associations
attenuate when investigating this effect in other tissues types.
Moreover, when evaluating phenome-wide associations of FBN2
using lung tissue-derived eQTL data, we identified evidence of
association with FVC (MR P= 3.51 × 10−06, Supplementary
Data 5, Fig. 5c). This is unlikely to be due to differing sample
sizes in GTEx given that lung tissue has a larger sample size than
heart tissue (n= 383 and 264, respectively). Instead findings such
as this may be attributed to different eQTL used as IVs for the
same gene but within a different tissue type (as is the case for
FBN2). As such, they may elucidate tissue-dependent regulatory
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mechanisms that can help explain associations at pleiotropic
loci23.

Highlighting unanticipated effects for therapeutic targets.
Exploring our associations in a phenome-wide manner may also
be valuable for other purposes, such as helping validate whether
genes may be viable drug targets24. A well-established example of
this is the impact of HMG-coenzyme A reductase (HMG-CoA)
inhibition using statins, which is known to reduce low-density
lipoprotein (LDL) cholesterol levels. However, this is known to
also potentially result in increased bodyweight and risk of
diabetes25.

Undertaking a phenome-wide evaluation of HMGCR (the gene
responsible for HMG-CoA) using data derived from whole blood
supports these findings. We observed strong positive associations
between the lead eQTL for this gene and high LDL and total
cholesterol levels (Supplementary Data 6, Fig. 6a). There was also
evidence of association with lower body mass index (MR P=

1.87 × 10−15), although the association with self-reported diabetes
did not survive phenome-wide corrections (MR P= 0.001).
Nonetheless, these findings help support the notion that MR
analyses can help mimic the findings of randomized control
trials26 and identify potential on-target side effects of therapeutic
intervention27. We note however that the tissue analysed may
play an important part in such analyses, particularly with respect
to the sensitivity of genetic colocalization. Notably, associations
with lipid traits using whole blood-derived data did not survive
HEIDI corrections, although stronger evidence of colocalization
was detected using skeletal muscle tissue (e.g., HEIDI P= 0.23 for
LDL cholesterol).

In terms of targets which are less well established in the
literature, our findings highlighted several potential adverse
effects by conducting a similar analysis for CYP19A1 expression
using data derived from whole blood (Supplementary Data 7,
Fig. 6b). This gene has been previously targeted using the drug
Anastrozole to reduce risk of breast cancer28, although reported
side effects include increased risk of osteoporosis29. Our
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phenome-wide scan of CYP19A1 provided evidence of this
reported on-target adverse effect, as we identified strong evidence
of association with heel bone mineral density (BMD; MR P=
1.96 × 10−07).

Conducting these types of evaluations may also be beneficial
for potential drug repositioning opportunities. For instance,
ACHE, which is a target for drugs used to treat cognitive decline
in Alzheimer’s patients, such as galantamine and donepezil30. The
causal pathway targeted by these drugs would likely be expected
to inhibit ACHE expression in brain tissue. However, conducting
a phenome-wide evaluation for this gene in other tissues (such as
artery aorta) indicates that its transcription is associated with
higher blood pressure (Supplementary Data 8, Fig. 6c). Further
research could therefore explore whether inhibiting this gene’s
product may have beneficial implications for hypertension.

Leveraging findings to prioritize candidate genes. An important
challenge in genetic epidemiology is pinpointing the causal gene

responsible for association signals detected by GWAS. This is a
complex problem for several reasons, including the coexpression
that can exist between nearby genes that is often difficult to
disentangle31. We previously proposed that integrating tissue-
specific eQTL data with findings from GWAS may help with such
endeavours9, along with other properties such as proximity to
genes, whether they reside in regulatory regions etc.

For example, rs7500448 is strongly associated with DBP (after
adjustment for medication) based on analyses undertaken using
data from the UK Biobank study (P= 6.3 × 10−15, based on linear
regression from GWAS). Harnessing all available tissue-dependent
results from our atlas allowed us to evaluate associations between
nearby genes for which this SNP is an eQTL. Doing so identified
only one association signal that survived multiple comparisons,
which was CDH13 using eQTL data derived from the aorta (MR
P= 2.78 × 10−08; Supplementary Data 9, Fig. 7a). This provides
strong evidence that CDH13 may be the causal gene responsible
for this effect, and that its expression in the aorta may play a role
in blood pressure variation.
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This approach may also prove useful in identifying trait-
associated variants yet to be discovered by GWAS. For instance,
rs1706003 is a SNP associated with blood pressure that may be
overlooked based on conventional GWAS corrections (P= 1.1 ×
10−07 with DBP, based on linear regression from GWAS).
However, by integrating tissue-specific eQTL data, along with the
reduced burden on multiple testing, our analysis provided
evidence suggesting that this may be a trait-associated locus yet
to be reported by previous studies (Supplementary Data 10,
Fig. 7b). The strongest association in this evaluation was with
ATP13A3 expression derived from heart tissue (MR P= 3.0 ×
10−06), which again may help yield mechanistic insight into the
causal pathway from genetic variant to phenotype. Furthermore,
this is a putative illustration that the nearest gene to a trait-
associated SNP is not always the causative one32, as the nearest
gene to rs1706003 provided weak evidence of association
(TMEM44, lowest MR P across all tissues= 3.1 × 10−03). Locus
zoom plots for the results highlighted in this section can be found
in Supplementary Figs. 4–13.

Discussion
In this study, we have undertaken a systematic phenome-wide
association study to investigate the genetic effects of gene
expression across different tissue types. In doing so, we have

constructed a putative causal map of tissue-dependent associa-
tions across the human transcriptome. We have provided evi-
dence that effects which influence gene expression across multiple
tissue types are more likely to be associated with multiple traits.
Our results also highlight the value of cross-tissue evaluations in
terms of elucidating effects, which depend upon the tissue ana-
lysed. We envisage that our findings will facilitate a greater
understanding of tissue-specific regulatory mechanisms, which
are likely to have translational impact by informing drug target
prioritization.

The tissues or cell types which a gene is expressed in is known
to reflect the biological processes and functions it carries out33.
For instance, in this study we demonstrated that the association
between TPO and thyroid disease appears to be dependent on
using expression data derived from thyroid tissue. This gene is
responsible for generating thyroid peroxidase and thus plays an
important role in regulating thyroid hormones34. As such this
tissue-specific association reflects the role that this gene has in the
thyroid gland. Broadly, we also observed that variants which
influence gene expression levels in multiple tissues are more likely
to influence multiple complex traits. This suggests that genes
expressed in many tissues are more likely to have widespread
influence on downstream phenotypic consequences.

In our results, we have demonstrated that phenome-wide
evaluations of genes can help elucidate tissue-dependent
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associations. As an example of this, we show that FBN2 is asso-
ciated with various blood pressure traits when using expression
data derived from heart tissue. However, when analysing FBN2
expression using lung-derived data, these effects attenuated,
whereas evidence of association with lung function and impe-
dance were detected. This gene is responsible for encoding
fibrillin 2, which is a glycoprotein responsible for elastin fibres
found in connective tissue35. Elastin plays an important role in
determining passive mechanical properties of the large arteries
and lungs, which helps explain the associations detected in these
separate tissues36,37. FBN2 is also associated with other traits
and diseases, such as Marfan-like disorder35. A better under-
standing of pleiotropic effects due to regulatory mechanisms may
also help to shed light on valid instruments in a conventional
MR setting (i.e., between a modifiable environmental risk factor
and disease outcome8). Specifically, an instrument which is
associated with the transcription of a large number of genes
(across a diverse range of tissue types) is likely to be more prone
to horizontal pleiotropy and therefore invalidate the underlying
assumptions of MR.

Phenome-wide evaluations of our findings also have the
potential to assist in drug target prioritization. This supports
emerging evidence concerning the benefit in using findings from
genetic association studies to support therapeutic validation38,39.
Moreover, this is particularly crucial given the costs of drug
development40, but also timely given that the highest number of
new drugs were approved in 201841. As a proof of concept, we
undertook a phenome-wide scan of HMGCR which is targeted by
statins to reduce elevated cholesterol levels. We identified strong
associations with cholesterol traits, as well as findings which
reflect reported on-target effects of statins (namely changes in
bodyweight and risk of diabetes25). So although GWAS datasets
typically investigate disease incidence as opposed to disease
progression or treatment, evaluations such as these may still be
useful for therapeutic validation24. We also note that the ideal
tissue type for a specific hypothesis may not always be feasible
based on current datasets (e.g., liver tissue to investigate the
association between HMGCR expression with LDL cholesterol).
Moreover, the ideal tissue (or tissues with regards to analysing
joint effects) may not always be well documented in the literature.

Our results can also be used to flag on-target effects which are
less well established in pharmacogenetics. For instance, our eva-
luation of CYP19A1 suggested that inhibiting this target may
result in lower BMD. This finding supports a side effect pre-
viously reported for the anticancer drug anastrozole which targets
this gene29. The therapeutic benefit of statins on lower risk of
coronary heart disease has been found to outweigh the adverse
side effects on diabetes risk42. Uncovering potential side effects
for other drug targets should motivate future endeavours to
evaluate whether the benefits of therapeutic intervention out-
weigh the possible drawbacks. Similar evaluations may also help
highlight the potential drug repurposing and repositioning
opportunities. We provide an example of this suggesting that
targeting ACHE (originally targeted to treat cognitive decline in
Alzheimer’s patients) may help lower blood pressure levels. There
are likely many other potential associations from our analyses
which may highlight the potential drug repurposing/repositioning
opportunities.

In the final series of analyses in our study, we propose that
integrating tissue-specific eQTL data into GWAS analyses may
help highlight genes responsible for association signals. Our
approach therefore supports the notion of triangulation in epi-
demiology, whereby many lines of evidence are needed to support
robust conclusions (i.e., colocalization of eQTL and GWAS
effects)43. The examples we have showcased in this regard involve
SNPs associated with blood pressure, where we prioritize CDH13

and ATP13A3 as genes which may be responsible for these effects.
CDH13 is a regulator of vascular wall remodelling and angio-
genesis44, and ATP13A3 has recently been implicated in pul-
monary arterial hypertension susceptibility through rare loss of
function analyses45,46. However, although there are likely many
instances where integrating tissue-specific eQTL data can help
pinpoint genes responsible for GWAS associations, this may not
always be possible due to the complexities of coexpression and
widely expressed genes47. Moreover, we emphasize that inte-
grating gene expression data to help highlight potential genes
underlying GWAS hits should only be considered as evidence of
prioritizing likely candidates which functional analyses can
investigate in detail.

Endeavours which continue to generate increasingly large-scale
tissue-specific molecular datasets will facilitate data mining
opportunities across the human transcriptome48. Although the
current sample sizes have meant that the analyses in this study
have been restricted to using lead eQTLs only, future efforts will
benefit from leveraging multiple valid instruments within a MR
framework. This will also facilitate the application of various
sensitivity analyses that can be undertaken for MR analyses, such
as leave-one out analyses and the MR-Egger approach49. None-
theless, techniques in genetic colocalization will likely continue to
play an important role in discerning whether associations are
detected due to shared causal variants. We also note that the
inference of colocalization methods may be limited when evalu-
ating associations at loci of dense LD (such as the HLA region of
the genome).

Furthermore, the approach used in our study (as with all
alternatives to date) is unable to robustly rule out that findings
may be influenced by molecular horizontal pleiotropy. This is the
process whereby a genetic variant influences gene expression and
a complex trait via two independent biological pathways. It may
also be possible that a variant may influence complex trait var-
iation via a posttranscriptional mechanism, which should be
worthwhile evaluating in future studies once tissue-specific pro-
tein QTL data becomes accessible in large sample sizes. Moreover,
we note that cross-tissue inference of our findings has the caveat
of differing sample sizes in GTEx for different tissues. It is
therefore important to take into account the sample size for each
tissue type when interpreting findings, as this has an influence on
the power to detect lead eQTLs for genes (Supplementary
Table 12). We also note that additional consideration should be
taken with regard to any covariates that were adjusted for in the
original GWAS for an outcome of interest (e.g., the adjustment
for medication for measures of blood pressure).

When evaluating associations in our results, it is important to
remember that they are based on SNP effect sizes which are often
relatively modest50, but potentially effective throughout the life
course. Therefore, when evaluating our results for the purpose of
drug validation, it is worth noting that pharmaceutical targeting
of a protein is likely to have a larger effect on protein levels, but
over a shorter time period. We found that the results from this
study regarding possible drug targets (i.e., HMGCR, CYP19A1,
and ACHE) were comparable to those detected using a
transcriptome-wide association study (TWAS) by querying
findings from the TWAS hub51. However, other findings such as
the association between TPO and thyroid disease were not
identified using this alternative method. We therefore propose
although the analysis used in this study is comparable to that of
TWAS, both approaches may prove useful in detecting evidence
of association which the other may overlook.

Furthermore, we note that using an alternative colocalization
method to the HEIDI test, such as coloc52, enloc53, or eCA-
VIAR11, in our analyses may have detected evidence for different
association signals. Whilst the HEIDI method is not prone to
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some of the caveats of these approaches (such as sensitivity to
prior distributions), it may not always be capable of detecting
heterogeneity under certain circumstances. Finally, evidence from
the literature suggests that the expression for an increasingly large
proportion of protein-coding genes is influenced by multiple
independent variants54. Future study designs should therefore
take this into account as tissue-specific datasets increase in scale
(Supplementary Note 1). Such endeavours may also wish to use
an updated reference panel rather than the 1000 genomes data
used in this study to improve LD estimation between SNPs.

The results we have highlighted in our study are likely just the
tip of the iceberg in terms of findings from our atlas that provide
insight into the regulatory mechanisms underlying human com-
plex traits. Although studies have used GTEx data to investigate
tissue specificity previously, their results are not easily accessible
in a format that allow transcriptome-wide, phenome-wide, or
cross-tissue evaluations. Our web application should prove
fruitful for users in this regard, facilitating in-depth evaluations of
current findings or motivating innovative research hypotheses.
Future endeavours which harness increasingly large-scale mole-
cular datasets derived from different tissue types will enhance our
capability to understand the determinants of complex disease.

Methods
Data resources. Tissue-specific eQTL data was obtained from the GTEx project
(v7; https://gtexportal.org/home/). Only 48 of the 53 tissues available from GTEx
v7 were analysed as each of the remaining 5 had fewer than 50 samples. As
anticipated, there was a strong positive correlation between the number of unique
genes eligible for analysis in a single tissue type compared with the sample size of
that tissue (Supplementary Table 13). We also obtained eQTL data derived from
whole blood in 31,684 individuals made available by the eQTLGen consortium
(http://www.eqtlgen.org). GWAS summary statistics were obtained from the Neale
Lab analyses of UK Biobank data and consortia who have made their results
publicly available (a full list can be found in Supplementary Data 1)55–71. All ethical
approvals for these analyses can be located in the corresponding studies.

Statistical analyses. We conducted analyses using the summary-data-based MR
(SMR) method (v0.710). A reference panel of European individuals from the 1000
genomes project (phase 3) was used to compute LD estimation for all analyses72.
As proposed previously73, only cis-eQTL were used as IVs (based on <1Mb of
associated probe). This is to reduce the likelihood of associations attributed to
horizontal pleiotropy to which trans-effects are more prone. The summary sta-
tistics from GWAS analysed in our study are typically restricted to disease inci-
dence as opposed to disease progression. Furthermore, these effect estimates do not
involve analysis of repeated measures.

Consequently, only lead eQTLs for each gene were used as IVs given that very
few genes could be robustly instrumented with multiple independent SNPs in the
GTEx dataset. In the few instances where genes from GTEx could be instrumented
using multiple independent instruments (based on r2 < 0.001), only the lead eQTL
based on observed P values was used as an IV. This approach was also applied
when analysing data from the eQTLGen consortium despite the larger sample sizes,
for consistency when comparing associations between dataset. We defined eQTL
based on a lenient P value threshold of P < 1 × 10−04, maximizing the number of
possible genes analysed across tissues but also allowing readers to filter out
associations should they wish to apply a more stringent threshold. To assess
instrument strength based on this lenient threshold we calculated F-statistics as
proposed by Bowden et al.74:

Fj ¼
γ2j
σ2Xj

where γj is the SNP-exposure association and σXj is the standard deviation for the
SNP-exposure association for variant j.

An analysis of variance model was applied to investigate the association
between the number of traits and number of tissue types detected for all lead eQTL
in our curated results (i.e., P < 5 × 10−08 that were also robust to a strict HEIDI
correction of P > 0.05). A strict lead eQTL threshold of P < 5 × 10−08 was also
applied to assemble this curated set of results. However, it is also possible that
genomic properties (such as LD structure, proximity to nearest gene etc) may
influence the number of traits which multitissue eQTLs are associated with.
Therefore, we adjusted our analysis for minor allele frequencies, LD score, and
distance to gene expression probe for lead eQTL. Furthermore, associations
detected using eQTLGen whole blood-derived data were removed from this
analysis to reduce any bias which may be attributed to the large sample size of this
dataset. Pearson’s r2 was calculated to compare the correlation between the number

of associations identified with the number of tissues they were detected across for
each eQTL clustering by their associated gene.

By default, our web application displays multiple testing comparisons based on
Bonferroni correction for the number of tests undertaken in the search query.
Subsequently, HEIDI corrections are applied based on the number of associations
which survived multiple testing in this look up20,75. All analyses were undertaken using
R (version 3.5.1). The R package ‘shiny’ v1.1 was used to develop the web application.
The R packages ‘manhattanly’ v0.2 and ‘highcharter’ v0.5 were used to generate
interactive plots. Figures in this manuscript were generated using ‘ggplot2’ v2.2.1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All results from the analyses undertaken in this study can be downloaded using our web
application (http://mrcieu.mrsoftware.org/Tissue_MR_atlas/).

Code availability
The code used in this study can be found at the SMR homepage (https://cnsgenomics.
com/software/smr/).
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