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Edge effect pinning in mesoscopic 
superconducting strips with non-
uniform distribution of defects
Gregory J. Kimmel1,2, Andreas Glatz   1,3, Valerii M. Vinokur   1 & Ivan A. Sadovskyy1,4

Transport characteristics of nano-sized superconducting strips and bridges are determined by an 
intricate interplay of surface and bulk pinning. In the limiting case of a very narrow bridge, the critical 
current is mostly defined by its surface barrier, while in the opposite case of very wide strips it is 
dominated by its bulk pinning properties. Here we present a detailed study of the intermediate regime, 
where the critical current is determined, both, by randomly placed pinning centres and by the Bean-
Livingston barrier at the edge of the superconducting strip in an external magnetic field. We use the 
time-dependent Ginzburg-Landau equations to describe the vortex dynamics and current distribution 
in the critical regime. Our studies reveal that while the bulk defects arrest vortex motion away from the 
edges, defects in their close vicinity promote vortex penetration, thus suppressing the critical current. 
We determine the spatial distribution of the defects optimizing the critical current and find that it is in 
general non-uniform and asymmetric: the barrier at the vortex-exit edge influence the critical current 
much stronger than the vortex-entrance edge. Furthermore, this optimized defect distribution has a 
more than 30% higher critical current density than a homogeneously disorder superconducting film.

Immobilizing magnetic vortices and thus preventing dissipation under applied currents is one of the major objec-
tives for realizing applications of type-II superconductivity1–4. Typically, this vortex pinning is achieved by intro-
ducing structural inhomogeneities in the bulk of the material. Recently, it has been recognized that geometric 
pinning utilizing surface and geometrical barriers for controlling the entrance or exit of vortices in and out of 
mesoscopic superconductors and superconducting strips can be extremely efficient5–12. Appreciable enhancement 
of superconducting parameters in strips was recently observed experimentally and explained in terms of surface 
(edge) superconductivity13,14. One could conclude from these experiments that surfaces may provide one of the 
most important pinning mechanisms in strips and mesoscopic systems15–17. At the same time, it was observed 
that the introduction of point-like or cylindrical defects near the surface can be detrimental to the effectiveness 
of surface barriers18,19 since they promote easier vortex penetration across the surface20. Hence the effect of struc-
tural disorder is two-fold: it arrests the vortex dynamics in the bulk, but ‘contaminates’ surface pinning21–24. Both 
effects are important in an intermediate width regime where each mechanism contributes to the critical current, 
which is the largest possible applied current at which magnetic vortices are immobile.

In the case of narrow strips with widths on the order of the superconducting coherence length, the critical 
current is mostly defined by its surface barrier and phase slips across the strip are important25,26, while for very 
wide strips, the critical current is dominated by its bulk pinning properties. This sets the quest for optimizing arti-
ficially manufactured disorder in geometrically restricted systems to take advantage of a potentially constructive 
interplay of bulk and surface pinning mechanisms.

The present article addresses this problem. To this end, we design an approach allowing us to optimize the 
concentration and spatial distribution of the bulk point defects in order to achieve the maximum possible criti-
cal current taking into account the interplay between the surface barrier blocking penetration of vortices into a 
superconductor and bulk defects arresting the vortex motion in the interior of the sample. We consider experi-
mentally important systems: superconducting wires having the shape of tapes with widths on the order of a few 
tens of the superconducting coherence length3. In order to calculate the critical current for a given arrangement 
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of pins (pinscape), we use a solver for the time-dependent Ginzburg-Landau (TDGL) equation for type-II super-
conductors27. This approach describes the vortex dynamics sufficiently well in superconductors near the vicinity 
of the critical temperature and is capable of reproducing experimental critical currents for a given pinscape28–31.

Model
We consider a two-dimensional superconducting strip, infinite in the x direction and a finite width W, which is 
appreciably larger than the superconducting coherence length, ξ, but less than the London penetration depth, 
λ. The edges at y = 0 and y = W set the positions of the surface barriers. Bulk defects are introduced by spatial 
modulation of the transition temperature, Tc(r). To evaluate the critical current for the system, we use the TDGL 
equation, which simulates the dynamic behaviour of the complex superconducting order parameter ψ = ψ(r, t):

μ ψ ε ψ ψ ψ ψ ζ∂ + = − | | + ∇ − + .i i tr A r( ) ( ) ( ) ( , ) (1)t
2 2

Here μ = μ(r, t) is the scalar potential, A is the vector potential generating the external magnetic field 
= ∇ ×B A, and ζ(r, t) is a temperature-dependent δ-correlated Langevin thermal noise term. The unit of length 

is defined by the superconducting coherence length ξ = ξ(T) at a given temperature T and the unit of the magnetic 
field is the upper critical field Hc2 = Hc2(T). Defects in the bulk are realized through the parameter 
ε(r) = [Tc(r) − T]/[Tc,bulk − T], where Tc,bulk is the transition temperature for the clean sample. We solve the TDGL 
equation in the infinite-λ limit, allowing us to use the gauge A = (−Bz, 0, 0)y for the vector potential.

We solve Eq. (1) numerically by discretising the system on a regular grid with mesh size of half a coherence 
length and integration of time using an implicit massively parallel iterative solver, see ref.27 for implementa-
tion details. We consider the model system shown in Fig. 1(a), where the two-dimensional superconducting 
strip lies in the xy plane with quasi-periodic boundary conditions imposed in x direction and open boundary 
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Figure 1.  (a) Two-dimensional superconducting strip of width W = 64ξ with non-homogeneous inclusion 
distribution. The current J is applied vertically (along the x-axis), the magnetic field B is perpendicular to the 
figure plane, and the resulting Lorentz force FL acts to the right (along the y-axis). The sample has a length 
of L = 1024ξ with quasi-periodic boundary conditions in the x direction; in the y direction, we have open 
boundary conditions, i.e., superconductor-vacuum surfaces. The strip contains (uncorrelated) randomly placed 
circular inclusions of diameter d = 3ξ. The density of these inclusions depends on y: in the middle of the sample, 
the volume fraction occupied by inclusions is f = 0.2, which corresponds approximately to conditions for the 
maximum possible critical current density in bulk samples. The density of the inclusion ρi(y) decreases linearly 
near the sample boundaries (see bottom plot): within a region of width lin at the boundary where vortices enter 
the sample and lout at the boundary where vortices leave the sample. (b) The critical current Jc as a function of 
lin and lout normalized by Jc(0, 0) at applied magnetic field B = 0.1Hc2. The critical current is increased by ~30% 
for finite lin and lout compared to the critical current from a homogeneous defect distribution (lin = lout = 0). The 
values of lin and lout corresponding to the maximum of the critical current Jc(lin, lout) are shown by colored circles 
for B = 0.1Hc2, 0.2Hc2, and 0.3Hc2. The effect is asymmetric and depends on the direction of vortex motion. The 
maximum is indicated by a (blue) circle. Corresponding maxima for fields 0.2Hc2 and 0.3Hc2 are indicated by 
(cyan and green) circles, marked by the field value.
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conditions in y direction (i.e., the y component of the current has to obey Jy = 0 at these boundaries corresponding 
to a superconductor-vacuum surface). The magnetic field B is applied in z direction and the external current J 
is applied in the x direction. In this case, the Lorentz force drives vortices in +y direction (i.e., vortices enter the 
domain from y = 0 and exit at y = W).

The current density,

ψ ψ μ= ∇ − − ∇⁎ iJ A3 3
2

{Im[ ( ) ] } (2)

is measured in units of the depairing current Jdp = Jdp(T). Jdp is the current at which the superconducting order 
parameter is suppressed to zero, or Cooper pairs are not stable anymore, i.e., superconductivity is completely 
destroyed.

The magnitude of the critical current in the presence of an external magnetic field is controlled by inclusion 
patterns, which are small non-superconducting islands immersed in the superconducting matrix. We tune the 
inclusion size (typically a few ξ) and their spatial distribution.

To determine the magnitude of the critical current, we use a finite-electrical-field criterion. Specifically, we 
chose a certain small external electric field, σ= −E J10 (3 3 /2) /c

4
dp , where σ is the normal conductivity, and 

adjust the external current, J, to keep this electrical-field criterion on average. The time-averaged value of the 
external current in the steady state gives the critical current, Jc = 〈J〉. We start with the two limiting situations: a 
clean strip and bulk superconductor with defects.

Clean strip.  The pinning force in this case is defined by edges at y = 0 and y = W with open (no-current) 
boundary conditions. These boundaries produce the Bean-Livingston barrier18,19,32–35 and arrange vortices in 
‘rows’ along the current direction10. The number of rows depends on the width of the strip W and on the applied 
magnetic field B. At fixed magnetic field, the most stable configurations are achieved under commensurability 
conditions. Therefore upon changing the width, the number of the stable rows varies as well, leading to oscilla-
tions in the critical current density Jc(W), which are more pronounced in the total critical current Ic(W) = Jc(W)W 
as shown in Fig. 2(a,b), respectively. The maxima are realized when the system can accommodate the number of 
vortices corresponding to the applied field and minima when the system is in between two stable vortex lattice 
configurations. These oscillations can be best observed for the first few vortex rows. For W 1, the critical cur-
rent Ic saturates at some certain value defined by the depinning forces of the two barriers and depends on the 
magnetic field. Note, that certain commensurate vortex configurations are very stable (in particular for 4 or 5 
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Figure 2.  (a) Critical current density Jc and (b) critical current Ic = JcW as a function of width W of the ideal 
superconducting strip containing no inclusions in magnetic field B = 0.1Hc2 applied perpendicular to the strip. 
The critical current is defined by strip boundaries only and saturates at Ic ≈ 5Jdpξ (green dashed line) for 

 ξW 64  due to the absence of pinning potentials in the bulk. Certain vortex configurations with few 
commensurate vortex rows (in particular the 4 and 5 row configuration) are very stable due to geometrical 
pinning and can have larger critical currents than the saturation value, see ref.10. Artifacts from the constant 
voltage criterion, used to determine the critical current, for wide clean strips are removed, see text.
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rows), such that the critical current for these configurations can be even larger than the saturation value. We 
remark that the method to determine the critical current described above is independent of W, which leads to 
small linear increase in the critical current with the width of the system as the critical current density saturates 
when the free-flow voltage (the free-flow regime is the regime of linear current-voltage behaviour where vortices 
are not pinned anymore) is equal to the chosen electric field cutoff (which determines the slope of increase). This 
artificial increase becomes recognizable for very wide systems and is therefore subtracted from the critical current 
in Fig. 2(b).

Bulk superconductor.  In this case, the critical current associated with pinning vortices at non-superconducting 
defects depends on the defect properties (shape, size, concentration) and on the field strength (vortex density). In a 
three-dimensional (3D) bulk type-II superconductor containing spherical particles and for a wide range of fixed 
applied magnetic fields, 0.02Hc2 < B < 0.2Hc2, the optimal critical current is achieved for particle diameters d ranging 
from 2.5ξ to 4.5ξ and 15–20% volume fraction occupied by particles36. For large inclusions of fixed diameter ξ⩾d 3 , 
the field dependence of the critical current has shown peculiar peaks, associated with the inclusion’s occupancy by 
multiple vortices37,38. Similar results are observed in regular and random pinning configurations of circular (cylin-
drical) defects in two-dimensional (3D) systems31,39. Note that a 2D system with circular defects is comparable to a 
3D system with columnar rather than spherical defects, see below.

General case.  Now, we consider geometrically confined 2D systems with circular defects. We design 
the pinning configuration within our model system with finite W in the following way: (i) the density of the 
non-superconducting columnar defects far away from the edges is the same as in the bulk case corresponding 
to the maximum possible critical current; (ii) the density of non-superconducting defects near edges is linearly 
modulated towards the edges. We define the volume fraction ρi(y) occupied by defects of the same diameter d as 
a function of y which is given by

ρ =
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In particular, the volume fraction of the defects changes linearly from fin to its bulk value f at the distance lin 
from the edge y = 0 where vortices enter the sample. On the opposite side of the sample ρi(y) changes from f to 
fout at distance lout.

Results
The surface barrier at the superconductor edges prevent vortices from entering and exiting the superconductor. 
As mentioned in the introduction, non-superconducting defects located at edges or in the vicinity of edges effec-
tively reduce the Bean-Livingston barrier by creating weak spots for vortex penetration22. We study the interplay 
between the surface barrier and defect distribution profile ρi(y) by investigating the dependence of the critical 
current density, Jc, on the parameters f, fin, fout, lin, lout, d, in a fixed magnetic field B and fixed sample width 
W lin, lout. Therefore, we start our numerical investigation with initial investigations of the full 6D optimization 

problem

= Jp parg max ( )
(4)p

opt
c

with control parameter set p = {f, fin, fout, lin, lout, d} for different fixed magnetic fields using a particle swarm opti-
mization routine39. The resulting optimal parameter set popt corresponds to the maximum critical current density 
Jc(popt). These initial studies revealed that for the range of applied magnetic fields investigated in this paper, the 
optimal concentrations of the defects near the entrance and exit boundaries were zero, = =f f 0in

opt
out
opt . This 

allows us to simplify the initial model density profile (3) to
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shown in Fig. 1(a), leaving four parameters to optimize.
The optimal particle diameter dopt decreases with the applied filed B and ξ≈d 3opt  for B = 0.1Hc2. This result 

is different from that in the 3D case for spherical particles, which has an optimal diameter of dopt ≈ 4ξ for the same 
field. This discrepancy in the result is due to the fact that the 2D circular defects we model correspond to colum-
nar defects in 3D samples. It was found earlier that the optimal diameter of columnar defects is smaller than the 
optimal diameter of spherical defects by approximately one coherence length ξ. Since the optimal volume fraction 
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f = 0.2 and diameter of defects d = 3ξ in both cases are similar39, we keep them constant in the following analysis, 
making the optimization problem manageable and effectively a two parameter optimization problem.

Figure 1(b) demonstrates the dependency of the critical current on the distance with reduced defect den-
sity at the entrance lin and exit lout of vortices for a sample of width W = 64ξ. One can see that the effect is far 
from symmetric. Figure 1(b) at B = 0.1Hc2 shows that the critical current has a maximum of Jc(lin, lout) ≈ 1.3Jc(0, 
0) at lin ≈ 10ξ and lout ≈ 30ξ. The Jc(lin, lout) maxima are indicated by colored circles for B = 0.1Hc2, 0.2Hc2, and 
0.3Hc2. The dependence presented in Fig. 1(b) is a result of the interplay between pinning on inclusions and the 
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Figure 3.  Strip with homogeneous distribution of inclusion density, lin = lout = 0, ρi = f = 0.2 in an applied 
magnetic field B = 0.1Hc2. Top panel shows the squared absolute value of the order parameter |ψ(r)|2. Circles and 
crosses show inclusion and vortex positions, respectively. Second panel shows the distribution of the inclusions 
across the strip (y direction). The black line shows the ‘requested’ volume fraction f = 0.2, the green histogram 
shows the distribution of the centres of the inclusions, and the yellow line shows the actual volume fraction 
occupied by the generated defects. (the actual volume fraction is typically lower than the specified/requested 
one due to defect overlaps and fluctuations of finite random number sequences.) Third panel demonstrates the 
density ρv of vortices. Bottom panel shows the local current density Jx(y). As expected, the edge screening 
currents at the surface are in opposite directions, while the small local minimum and maximum a few ξ away 
from the edge are related to an alignment of vortices at the interior surface barrier. The average critical current 
density is = .J J0 108c

uniform
dp.
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Bean-Livingston barrier near the superconducting strip edge. For larger external fields the optimal entrance and 
exit regions become more symmetric as see by the maxima of Jc for B = 0.2Hc2, 0.2Hc2, indicated by circles in 
Fig. 1(b). In particular lout becomes smaller with increasing B, approaching lin, and the overall critical current peak 
becomes wider, i.e., the system is less sensitive to lin and lout at larger B.

In the following we will discuss this interplay in detail. Our results are summarized in Figs 3, 4, 5 and 6. All 
figures have the same format. Top panels show the squared absolute value of the order parameter |ψ(r)|2 in sam-
ples of width W = 64ξ (y direction) and length L = 1024ξ (x direction; quasi-periodic boundary conditions). 
White circles correspond to inclusions, white crosses indicate vortex positions. The presented order parameter 
configurations are for applied currents Jx = Jc. Second panels show the distribution of defects along the y direction 
and averaged over the length of the strip (x direction). The black lines indicate the requested volume fraction ρi(y) 
defined by Eq. (5) with f = 0.2 (i.e. 20% of the volume occupied by inclusions in the bulk, which corresponds to 
BΦ/B = 1.78 inclusions per vortex at B = 0.1Hc2, where BΦ = 8f/d2 is the matching field of the columnar pinning 
landscape defined by parameters f and d), the green histograms show the distribution of the centres of the inclu-
sions, and the yellow lines show the actual volume fraction occupied by the generated defects. The latter value is 
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Figure 4.  A strip with reduced inclusion density at both edges lin = 10ξ, lout = 30ξ, f = 0.2, and B = 0.1Hc2. The 
average critical current = .J J0 14c

both
dp is 28% larger compared to Fig. 3. The Jx(y) dependence has much more 

pronounced features near the edges. These oscillations in the current are generated by (free) vortex rows in the 
region of low inclusion density.
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somewhat lower than the requested value due to overlapping of inclusions and finite size effects, the real/actual 
volume fraction can be estimated as ⁎ρ ρ= − −y y( ) 1 exp[ ( )]i i . The requested bulk defect density corresponding 
to a volume fraction f = 0.2 has ≈ .⁎f 0 181 real volume fraction. Inclusions overlapping effectively changes the 
matching field to =Φ

⁎ ⁎B f d8 / 2 and number of inclusions per one vortex to = .Φ
⁎B B/ 1 61. Third panels demonstrate 

the density of the vortices ρv(y) averaged over the length of the strip. In all cases, the vortex density tends to zero 
at y = 0 and y = W and remains roughly constant in the bulk of the superconductor. Bottom panels show the 
x-component of the local current density, Jx(y), averaged over the length of the strip and are indicative of the edge 
currents and reflect the distribution of vortices.

Vortex and current density distributions for homogeneous inclusion density ρi = f = 0.2 for 0 < y < W 
(lin = lout = 0) are shown in Fig. 3. The position of vortices is strongly correlated with the particular placement of 
the inclusions, which makes the visual analysis rather complicated. The histograms of defects, vortices, and 
x-component of current averaged over the sample length L and 10 different realizations of defect distributions 
contain more useful information. The vortex density is approximately constant in the bulk. This density decreases 
to zero at ~5ξ away from both edges due to the Bean-Livingston barrier. Such a rapid gradient in vortex density 
produces large surface currents, which has a density on the order of the depairing current density Jdp. The average 
critical current density is = .J J0 108c

uniform
dp.
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Figure 5.  A strip with reduced inclusion density on the entrance side only, lin = 10ξ and lout = 0, has an average 
critical current density of = .J J0 118c

in
dp at applied magnetic field B = 0.1Hc2.
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Figure 4 shows how the result changes when we reduce the inclusion density at both edges of the supercon-
ducting strip. We pick lin = 10ξ, lout = 30ξ, with the remaining volume fraction of inclusions in the bulk as f = 0.2 
and applied magnetic field B = 0.1Hc2. The chosen parameters are close to the maximum of Jc(lin, lout) shown in 
Fig. 1(b). The critical current = .J J0 14c

both
dp represents a 30% increase compared to uniform inclusion density 

Jc
uniform. At the same time, the bulk critical current density (for   −l y L lin out) remains approximately the 

same. This indicates that the critical current enhancement is mostly related to the defect distribution near the 
boundaries of the superconducting strip.

Comparing the vortex configuration in that case with that of the uniform inclusion density case, where the 
location of vortices is mostly random, we find that this Jc enhancement is produced by the formation of regular 
vortex row(s) in the regions with a reduced concentration of defects. Each vortex row can be interpreted as an 
additional potential barrier parallel to the edge repelling vortices. However, since current circulates around each 
vortex in the row, we can observe the local current flowing in the positive x direction to the right of vortex row 
and the current flowing in the negative x direction to the left of the vortex row. The value of this local current can 
be as high as the depairing current density, Jdp. This current density can be observed at y = W in Fig. 4. The value 
of this current is somewhat lower in between rows due to cancellation of opposite screening currents from rows 
at the left and at the right. Overall, these regular (mostly unpinned) rows lead to oscillations of the average vortex 
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Figure 6.  A strip with reduced inclusion density at the exit side only, lin = 0 and lout = 30ξ. The average critical 
current density is = .J J0 131c

out
dp at B = 0.1Hc2.



www.nature.com/scientificreports/

9Scientific Reports |           (2019) 9:211  | DOI:10.1038/s41598-018-36285-4

density and subsequently the current density along the applied current direction. This effect is similar to the one 
observed in artificially manufactured vortex-flow channels in irradiated mesoscopic samples40.

Next we examine how the reduced inclusion density affects the superconducting strip edge where vortices 
enter and exit the sample separately. The results for the strip with reduced inclusion density at the entrance side 
only, lin = 10ξ and lout = 0, is presented in Fig. 5. This pinning landscape generates an average critical current den-
sity = .J J0 118c

in
dp. One sees that ‘entrance’ and bulk parts of all histograms, y W/2, coincides with the corre-

sponding part of Fig. 4 and ‘exit’ and bulk parts y W/2 reproduces the same regions in Fig. 3. An analogous 
situation appears with reduced inclusion density at the exit side of the strip (Fig. 6), lin = 0 and lout = 30ξ. This 
configuration produces an average critical current density = .J J0 131c

out
dp.

Naturally, values of Jc
in and Jc

out are in between the two critical current densities of the strip with uniform inclu-
sion distribution and the strip with reduced inclusion density on both edges, i.e., <J Jc

uniform
c
in, <J Jc

out
c
both. The 

independence of the vortex and current configurations on the left and right edges can also be confirmed by com-
paring differences in the average (or total) critical current of the four configurations discussed above. In particu-
lar, + = +J J J Jc

both
c
uniform

c
in

c
out holds for all wide enough strips,  +W l lin out.

Taking into account that (i) the chosen lin = 10ξ and lout = 30ξ correspond to the nearly largest critical current 
at the given magnetic field and (ii) entrance and exit edges act almost independently, we can say that the edge 
barrier at the entrance can generate additional critical current up to δ ξ= − = .I J J W J( ) 0 51c

in
c
in

c
uniform

dp , while 
the same addition at the exit edge δ ξ= − = .I J J W J( ) 1 54c

out
c
out

c
uniform

dp  is three times bigger. Note, that the clean 
strip with ideal boundaries (without any inclusions in the bulk) can generate a total critical current up to 
Ic ≈ 5.1Jdpξ at the same applied magnetic field, see Fig. 2(b).

Higher magnetic fields decreases the distance between neighbouring vortex rows and thus leads to higher fre-
quency oscillations of vortex density and the x-component of current in regions with reduced inclusion density as 
shown in Fig. 7. A magnetic field B = 0.2Hc2 corresponds to a critical current density Jc = 0.075Jdp [Fig. 7a] and field 
B = 0.5Hc2 to Jc = 0.026Jdp [Fig. 7b]. On the exit side, the current density Jx(W) reaches the depairing current density Jdp.
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Figure 7.  The same as in Fig. 4, but for higher magnetic fields. (a) Field B = 0.2Hc2 produces an average critical 
current density Jc = 0.075Jdp and (b) field B = 0.5Hc2 generates Jc = 0.026Jdp. At higher fields, vortex rows are more 
dense. This leads to faster oscillations in vortex and local current densities Jx(y). At the exit edge Jx(y) reaches Jdp.
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Discussion and Conclusions
In this article we studied the interplay of surface potential barrier and bulk pinning centres in mesoscopic super-
conducting strips, where both pinning mechanisms are relevant. Figure 2 suggests that the critical current reaches 
saturation at W ~ 64ξ in a clean strip, meaning that the effect of the surface barriers on Ic starts to decrease above 
that width and bulk defects become the dominant pinning mechanism. Since non-superconducting defects are 
detrimental for the Bean-Livingston barrier, we studied the general case of a non-homogeneous defect distribu-
tion across the width of the strip to be able to take advantage of both mechanisms. In particular, we assumed a 
linear modulation of the defect concentration near both edges of the strip. This allowed us to quantify the sup-
pression of the surface barrier by defects in the vicinity of the strip edges by studying the vortex and supercurrent 
distribution in these regions.

Table 1 summarizes the results for our benchmark system — a strip of width W = 64ξ in a magnetic field 
B = 0.1Hc2. The clean strip has a critical current density of = .J J0 081c

clean
dp. For increasing strip width, the critical 

current density decreases as ~W−1, see Fig. 2, while approaching Jdp in the limit of very narrow clean strips with 
 ξW . However, any defects or imperfections at the edges will significantly reduce these values. Adding random, 

but homogeneously distributed defects to the benchmark system increases Jc by 35% in the best case, which 
implies that the bulk pinning is more relevant than the suppression of the surface barrier for B = 0.1Hc2 and 
W = 64ξ. This maximum bulk critical current at B = 0.1 is reached for a volume fraction occupied by defects of 
f = 0.2 and for defects with diameter d = 3ξ39. Increasing the width of these uniformly disordered strips, the effect 
from the edges become negligible and bulk pinning will be dominant, resulting in the critical current density 
approaching the one of an infinite 2D film ( = .J J0 104c

2D,uniform
dp, i.e. comparable to Jc

uniform). Homogeneous 
defect distributions in narrower strips result in a noticeable suppression of the edge barrier, thus decreasing the 
critical current density (for W d it is clear that Jc → 0).

In order to extract more detailed information about the suppression of the Bean-Livingston barrier, we intro-
duced linear defect modulations near the edges. Studying first the vortex entrance and exit edges independently, 
we found that defects have an asymmetric effect on either side of the strip. A linear increase of the defect density 
at the entrance edge over 10ξ increases the critical current density by another 9% compared to the uniform case. 
A density decrease at the exit edge over 30ξ adds 21% to Jc compared to the uniform distribution. Therefore, the 
exit side is more sensitive to the contamination by defects located at some distance to the surface.

Type f lin lout Jc cf. clean

clean 0.0 — — 0.081Jdp 100% Fig. 2

uniform 0.2 0 0 0.108Jdp 135% Fig. 3

optimized 0.2 9ξ 31ξ 0.142Jdp 178% Eq. (4)

both 0.2 10ξ 30ξ 0.140Jdp 175% Fig. 4

in 0.2 10ξ 0 0.118Jdp 148% Fig. 5

out 0.2 0 30ξ 0.131Jdp 164% Fig. 6

Table 1.  Critical currents in a strip of width W = 64ξ at magnetic field B = 0.1Hc2 for different defect 
distributions: clean strip without defects, uniform concentration of defects, optimized concentration of defects 
in the bulk and near the edges, reduced defect concentration at both edges [lin, lout > 0 in Eq. (5)], and reduced 
defect concentration at the vortex entrance and exit. The defects are circular with diameter d = 3ξ.

Figure 8.  The critical current as a function of the external magnetic field for uniform distribution with f = 0.2 
(blue), ‘in’ lin = 10ξ (orange) and ‘out’ lout = 30ξ (green) configurations, and ‘in’ + ‘out’ configuration with fixed 
lin = 10ξ and lout = 30ξ. The latter configuration is close to the configuration (empty stars) having maximal 
possible Jc for B = 0.1Hc2, 0.2Hc2, and 0.3Hc2.
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Next, we studied non-uniform modulations near both edges, defined by Eq. (5). Subsequent optimization over 
its parameters f, lin, and lout leads to = .J J0 142c

opt
dp, which is 31% more than for the uniform density with optimal 

values f opt = 0.2, ξ=l 9in
opt , ξ=l 31out

opt . Compared to the clean strip this is a Jc-increase of 78%. We note that the 
effects from both sides of the strip add up independently for our relatively wide strip of W = 64ξ. One can expect 
that those optimal values for lin and lout remain independent of W for wider strips, while their overall influence on 
Jc diminishes with increasing W as the edges are local. Important to note is, that the mesoscopic strip under con-
sideration with non-uniform distribution of defects has a larger critical current density than a homogeneously 
disordered 2D film.

Finally, we studied the field dependence of the critical current for our W = 64ξ system, shown in Fig. 8. One 
clearly sees that the system with non-uniform defect distribution at both edge has the highest critical current den-
sity over a wide range of fields. Furthermore, as mentioned above, the system becomes less sensitive to the width 
of the linearly modulated edge regions as the optimal Jc value for B = 0.2Hc2 and 0.3Hc2 (indicated by stars) are 
almost sitting on top the field dependence of the system optimized for B = 0.1Hc2 (red curve). Again, the homoge-
neously disordered system with optimal defect concentration has a lower Jc due to the suppression of the surface 
barrier. We can compare this result to the study of the interplay of bulk disorder and edge pinning presented in 
ref.41. In this work, the authors determined the field and pinning strength dependence of the critical current in a 
homogeneously disordered strip. Although the pinning strength (and therefore the bulk Jc) was introduced as a 
phenomenological parameter, interestingly even in this case the authors found that the effect of the surface barrier 
and bulk pinning is not additive.

Overall, a non-homogeneous defect density modulation can significantly improve the critical current density 
in mesoscopic superconducting strips to higher values than those reached in 2D films.
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