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Numerous psychophysical studies suggest that the sensorimotor system chooses actions that optimize the

average cost associated with a movement. Recently, however, violations of this hypothesis have been

reported in line with economic theories of decision-making that not only consider the mean payoff,

but are also sensitive to risk, that is the variability of the payoff. Here, we examine the hypothesis that

risk-sensitivity in sensorimotor control arises as a mean-variance trade-off in movement costs. We

designed a motor task in which participants could choose between a sure motor action that resulted in

a fixed amount of effort and a risky motor action that resulted in a variable amount of effort that

could be either lower or higher than the fixed effort. By changing the mean effort of the risky action

while experimentally fixing its variance, we determined indifference points at which participants chose

equiprobably between the sure, fixed amount of effort option and the risky, variable effort option.

Depending on whether participants accepted a variable effort with a mean that was higher, lower or

equal to the fixed effort, they could be classified as risk-seeking, risk-averse or risk-neutral. Most subjects

were risk-sensitive in our task consistent with a mean-variance trade-off in effort, thereby, underlining the

importance of risk-sensitivity in computational models of sensorimotor control.
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1. INTRODUCTION
In the fields of psychology and economic decision-

making, it is well established that risk attitudes influence

human behaviour. For example, when given a choice

between a sure bet of $50 and a 50 : 50 chance of winning

$100 or $0, most people would prefer the sure bet, even

though on average the two options have the same mean

payoff. In fact, a risk-averse decision-maker would even

prefer a sure bet with a slightly lower payoff, say $45,

and thus accept a $5 risk premium—a fact that is

exploited by insurance companies in their policies.

By contrast, risk-seeking individuals assign higher value

to options that have greater variability—for example,

when gambling in a casino. Risk might also play an impor-

tant role in motor tasks. Consider, for example, a climber

who has to choose between different routes—a long

secure route or a shorter route that could lead to the

goal faster, but could take longer if slippery. On his way

he might be faced with many such decisions.

The theory of risk in decision-making goes back to the

eighteenth century [1] and has since flourished into a host

of different models of decision-making under uncertainty

[2–7]. One of the most popular risk models in modern

finance is Markowitz’ risk-return model, in which the

value U(x) of an investment x is modelled as a trade-off
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between the expected payoff (mean return) E(x) and the

variability of the payoff (risk) Var(x), such that U(x) ¼

E(x) 2 uVar(x). The parameter u expresses the decision-

maker’s risk attitude: risk-neutral decision-makers are

only sensitive to the expected payoff (u ¼ 0), while risk-

averse individuals discount payoff variability (u . 0) and

risk-seekers consider it a bonus (u , 0). In biology,

mean-variance models of risk-sensitivity have been pre-

viously applied in ecology [8] and neuroeconomics,

elucidating the neural underpinnings of risk-sensitivity

in economic choice tasks [9–16]. In psychology and

behavioural economics, many other studies have also pro-

vided evidence for risk-sensitivity in the context of

prospect theory, in which risk is thought to arise through

nonlinear distortions of values and probabilities [3].

In contrast, most research on the human motor system

has emphasized risk-neutrality and has not considered

payoff variance as a potential influence on behaviour.

For example, a number of studies have proposed that

humans choose movement strategies so as to maximize

an average gain in inherently uncertain motor tasks that

involve both spatially [17–19] and temporally structured

rewards [20,21]. As average gain models only consider

mean rewards, they are neutral with respect to risk. Simi-

larly, current computational theories of motor control

often consider exclusively mean movement costs and

are, therefore, risk-neutral. For example, in most studies

on optimal feedback control theory, the optimal

behaviour does not consider how variable the movement

cost is, but only depends on the average cost [22–27].

Recently, however, violations of the mean payoff
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mailto:arne.nagengast@gmail.com
http://dx.doi.org/10.1098/rspb.2010.2518
http://dx.doi.org/10.1098/rspb.2010.2518
http://dx.doi.org/10.1098/rspb.2010.2518
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


2326 A. J. Nagengast et al. Decision-making in sensorimotor control
hypothesis have been reported in motor control tasks. Wu

et al. [28] showed, for example, that in a pointing task

subjects exhibit risk-seeking behaviour in line with pro-

spect theory, because they systematically underweight

small probabilities and overweight large probabilities of

hitting designated targets by pointing movements. Simi-

larly, Nagengast et al. [29] showed that subjects exhibit

risk-averse behaviour in a motor task that required them

to control a Brownian particle under different levels of

noise. Subjects’ changes in control gain depended on

their risk-sensitivity in line with the predictions of a

risk-sensitive optimal feedback controller [30]. Here, we

examine the hypothesis that risk-sensitivity in sensori-

motor control tasks can be understood as a trade-off

between the mean movement cost and the variability of the

cost, analogous to the risk-return model used in economics.
2. METHODS
(a) Experimental set-up

Fifteen right-handed subjects (eight male, seven female, aged

20–30) participated in the experiment after providing

written informed consent. The experimental protocols

were approved by the local ethics committee. Subjects were

naive to the purpose of the experiment and none of the sub-

jects reported any sensory or motor deficits. While seated,

subjects used their right hand to grasp the handle of a

vBOT force-generating robotic manipulandum, which

could be moved in the horizontal plane (for details, see

[31]). The position and velocity of the hand were computed

online at 1000 Hz. Subjects could not see their arm but the

position of their hand could be displayed in the plane of

the arm using a reflected rear-projection system.

The task was an implicit motor version of a binary economic

decision-making task. In the economics domain probabilities

and rewards (or losses) are typically both represented explicitly

by informing subjects about the numbers involved. In contrast,

in our task losses were determined by the effort subjects had to

exert to achieve a movement and the probabilities were deter-

mined implicitly by the subjects’ motor variability. We used a

two-alternative forced-choice paradigm in which subjects

chose on each trial between a certain fixed effort movement

and a gamble in which they would have to make either a lower

or higher (than the fixed) effort movement. Which of these

efforts they would experience if they chose the gamble was

determined probabilistically, with probability phit and 1 2 phit,

respectively. The probability phit was implicitly encoded by the

size of a small target region subjects could try to hit in a limited

time (with the target size calibrated so that the probabilityof hit-

ting the target, phit, was controlled). If the target was hit, they

then made the lower effort movement, but if they missed they

made the higher effort movement. Each trial of the experiment,

therefore, involved two stages. First, subjects made a choice

between a sure and a risky strategy (decision stage) and then

produced a movement under the associated effort level (effort

stage). The main experimental manipulation was to change

the effort levels over trials so as to influence the mean and var-

iance of the effort and study how these changes influence choice

behaviour. Subjects were instructed to choose the option that

they preferred.

(i) Decision stage

The decision stage started with three effort circles (green,

yellow and red; 0.75 cm radius) being displayed along the
Proc. R. Soc. B (2011)
vertical axis of the screen (figure 1). The effort circles

represented all the possible effort levels that could be experi-

enced by the subject in the effort stage of that trial. The

yellow circle was always xyellow ¼ 10 cm from the start

location (the sure bet), while the test stimuli were rep-

resented by the green and red circles, with the green

circle always having a shorter distance, xgreen , 10 cm (lower

effort), and the red circle always a greater distance, xred . 10

cm (higher effort), from the starting location. The colours of

the three effort circles corresponded to the colours that were

used to indicate different target regions on two walls that

were located 20 cm lateral to the starting location and

extended the full height of the screen. Subjects moved from

the starting location to hit one of the two walls. The left

wall was entirely yellow, whereas the right wall was red with

a green region embedded whose height was varied between

trials (figure 1). The green region determined the probability

of phit, which was equilibrated in a test session to fit subjects’

individual motor variability (compare experimental sessions).

Depending on which of the three colour regions subjects hit

they would have to move to the corresponding effort circle.

Therefore, they could always choose the yellow effort circle

if they wished (sure bet) or take the risky option of aiming

for the green region and either reach to the green or red

effort circle depending on the outcome. To make the task

more demanding, the movement time was limited to 0.3 s

(if longer, subjects had to repeat the trial) and we introduced

a visual gain of 3 in the y-direction relative to the starting

location (i.e. errors were magnified threefold) and this gain

was kept constant throughout the experiment.
(ii) Effort stage

After they had made their decision and hit one of the regions,

subjects had to move their hand to the corresponding effort

circle and hold it there for 1.5 s against a spring-like force

Fright that was pushing them to the right and whose magni-

tude was proportional to the distance x that they were away

from the starting location, Fright ¼ k . x. The spring constant

k was adjusted to the strength of each subject at the begin-

ning of the experiment. We used body weight as a proxy

for maximum force production and the spring constants

ranged from k ¼ 125 Nm21 for the lightest (weight approx.

50 kg) to k ¼ 200 Nm21 for the heaviest subject (weight

approx. 80 kg). As the spatial range of targets was small we

ignore changes in configuration on the arm (biomechanics)

affecting the subjective measures of effort.
(iii) Experimental sessions

The first 200 trials were a training session, in which subjects

practiced hitting the green region on the right-hand side,

which varied in size from trial-to-trial (0.5–5 cm, 20 trials

each). The next 50 trials familiarized subjects with the different

effort levels. Subjects moved to hit the yellow wall anywhere

along its length and then moved to the yellow effort circle

whose distance varied from trial-to-trial (1–19 cm, five trials

each). The subsequent 100 trials (the ‘s-estimation session’)

was used to estimate subjects’ endpoint variability. Subjects

attempted to hit a small 0.5 cm green region (equivalent to a

range of motion of the hand of 0.5/3 ¼ 0.16 cm owing to the

visual gain). The variance of the (approx.) Gaussian endpoint

distribution was used to establish the relationship between

target size and hitting probability for different target sizes that

was used subsequently. The last 400 trials were the test session
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Figure 1. Schematic of experiment. A trial in the ‘mean-var-
iance session’ consisted of two stages: a decision stage and an
effort stage. Three possible circular targets were displayed
(green, the closest; red, the furthest; yellow, always at

10 cm from the origin). The target selection from these
depended on the outcome of the decision stage. (1) In lim-
ited time, subjects chose to move their hand (represented
by the small blue circle) either to the left or to the right.
The left-hand side was a sure bet and the yellow circular

target was always selected. Moving to the right was risky
and subjects attempted to hit a small green target. Having
established the subjects’ Gaussian endpoint distribution for
this movement previously, a given target size corresponded
to a particular probability of hitting the target phit. Therefore,

if subjects chose the risky strategy they would have a prob-
ability of phit of hitting the green target-wall and 12 phit of
hitting the red target-wall. The size of the yellow wall was
always the same. (2) In the effort stage, subjects moved to
the corresponding target where they had to push against a

stiff spring requiring a force Fright. We varied the probability
phit and the red and green circular target positions to estab-
lish for which effort level subjects were indifferent between
the sure bet and the risky option for five levels of effort

variance.
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(the ‘mean-variance session’) in which we measured the

subjects’ choice behaviour.

(iv) Stimulus set for finding indifference points

We wished to examine how variability of the effort affected

subjects’ choices between the sure bet and the risky strategy.

To do this, we wanted to find indifference points where sub-

jects would choose each possibility equiprobably (p ¼ 0.5).

As we were interested in how variance affects the indifference

point we created stimulus sets for the risky choice that had a

fixed variance and only varied in the mean—thereby finding

the mean for the risky choice to which subjects would be

indifferent to choosing the sure bet. To create this stimulus

set with a fixed variance that differs only in the mean

effort, we manipulated both the hitting probabilities (height

of the green region) and effort levels of the risky choice

(locations of the red and green effort circles).
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We discretized both probability and effort space, com-

puted all possible combinations and selected those

combinations that had a particular variance within a given

tolerance. The probability of hitting a target phit was discre-

tized into steps of 0.01 (101 levels) corresponding to a set

of heights of the green region that depended on the individ-

ual subject’s variance in pointing. The movement effort was

discretized into steps of 0.5 cm with Ehit ranging from 0 to

9.5 cm and Emiss from 11.5 to 20 cm, corresponding to the

effort for the green and red circles. All possible combinations

of Ehit, Emiss and phit (hence pmiss ¼ 1 2 phit) were considered

resulting in 20 � 20 � 101 ¼ 40, 400 combinations. The

mean effort m ¼ phit
. Ehit þ pmiss

. Emiss and the variance

s2 ¼ (Ehit 2 m)2 . phit þ (Emiss 2 m)2 . pmiss were computed

for all combinations. Lotteries with a variance of s2 ¼

f1,5,11,17,24g+0.5 were selected and saved as five stimu-

lus sets used in the experiment resulting in n ¼

f1148,1366,1076,780,713g different stimuli for every set.

From these five stimulus sets, we selected those stimuli for

presentation during the experiment that would provide maxi-

mum information about the subjects’ indifference points

(mean effort) where subjects would choose equiprobably

between the risky strategy and the sure bet strategy. To this

end, we selected the stimuli based on a standard adaptive fit-

ting protocol (QUEST) [32,33]. This method selects the next

stimulus to lie within the 95% confidence interval of the cur-

rent estimate of the indifference point based on fitting all the

data to a logistic function. The trials for each of the five var-

iance levels were interleaved in a pseudo-random order with

a total of 80 trials at each variance level. This procedure pro-

duced indifference points for each of the five variance levels.

(b) Models

To estimate subjects’ risk-sensitivity, we modelled decisions

made by ideal actor models whose choices were contami-

nated by noise and we used maximum-likelihood methods

to estimate parameters of the ideal actor models. In particu-

lar, we considered the mean-variance model and prospect

theory to explain subjects’ choice behaviour. The noise

model for both cases can be found together with the methods

for the model comparison in the electronic supplementary

material.

(i) Mean-variance model

As outlined in §1, the mean-variance model of risk-sensitivity

postulates a utility function that contains terms that include

both the mean payoff and the variance of the payoff such

that U1(x) ¼2E(x) þ u1 Var(x), where x is the distribution

of possible distances to the effort circles and u1 is the risk-

parameter (risk-averse for u1 , 0, risk-neutral for u1 ¼ 0

and risk-seeking for u1 . 0). Note that the sign of the utility

has been reversed since distances are ‘disutilities’. Also note

that we can use the distance x as a proxy for effort, since

the force depends on x in a linear fashion and utilities are car-

dinal up to a linear transform—that is, choices that satisfy the

usual rationality axioms can be represented by a utility index

that is unique up to a linear transformation. We also use a

slightly more general formulation of risk-sensitivity, by

including higher order statistics beyond the variance. This

can be easily achieved by means of a utility function of the

form U2(x) ¼ 2u2
21 lnE(e2(1/2)u2x) that has the same terms

as U1(x) in the first two terms of its Taylor Series expansion

(with u2 ¼ 4u1). Importantly, the same generalization can be

used to introduce risk-sensitivity to optimal feedback control
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models [29,30]. Accordingly, the sure bet in our experiment

can be represented as U2(xyellow) ¼ 2xyellow and the risky

alternative as U2(fxgreen, xredg) ¼ 2u2
21 ln(phit e2(1/2)u2xgreen þ

(1 2 phit) e2(1/2)u2xred).

(ii) Prospect theory

Unlike the mean-variance approach, prospect theory does

not have a single risk-parameter. Instead, prospect theory

postulates different value functions vþ(x) and v2(x) that dis-

tort the objective value of x and different probability

weighting functions wþ(p) and w2(p) that distort the objec-

tive probabilities depending on a particular reference point,

i.e. depending on whether one deals with gains (þ) or

losses (2) or both. Risk-sensitivity then depends on the

shape of the value function as well as the shape of the weight-

ing function. In our experiment, we exclusively deal with

losses, since all outcomes require effort (the reference point

is 0 effort). For pure loss prospects, the utility of a prospect

with binary outcomes xred and xgreen and associated probabil-

ities (1 2 phit), and phit is given by U(x) ¼ [1 2 w2(phit)]

v2(xgreen) þ w2((1 2 phit))v
2(xred). To parameterize this

decision model, we used a standard value function family

proposed by Kahnemann & Tversky [3] v2(x) ¼2xa and

a common probability weighting function family proposed

by Prelec [34] w2(p)¼ exp[2(2ln p)g]. The decision model is

then determined by the parameters a and g. Consequently, we

can write the sure bet option as U(xyellow )¼ v2(xyellow) and the

risky option as U(fxgreen, xredg)¼ (1 2 w2(phit)) v2(xgreen) þ
w2(1 2 phit )v2(xred).
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Figure 2. Mean-variance trade-off. The result of the
experiment for all 14 subjects ordered from the most

risk-seeking to the most risk-averse. The indifference points
+s.d. obtained from the five psychometric curves are
shown in black. The best lines of fit obtained using weighted
linear regression are shown in blue. The risk-attitude par-
ameter u1 is the line’s slope and is shown in the right-hand

corners of the subplots. For all but three subjects, the null
hypothesis of risk-neutrality could be rejected with p , 0.05
(marked with an asterisk).
3. RESULTS
(a) Mean-variance indifference points

To test the mean-variance hypothesis of risk for motor

control, we designed a probabilistic decision-making

task in which subjects could choose between a sure

bet—a movement of a fixed effort—or a risky option—a

movement entailing either a lower or higher effort

(figure 1). By controlling the mean and variance of the

effort of the risky option, we found indifference points

where subjects chose equiprobably between the sure bet

and the risky option (see electronic supplementary

material, figure S1 shows the psychometric curves for a

typical subject). These indifference points were stable

through the course of the experiment—that is they did

not shift owing to fatigue, for example—and thus they

reflect a stationary choice pattern (see electronic sup-

plementary material, results and figure S2). At the

indifference point, the mean effort of the risky choice

relative to the fixed effort could be equal (risk-neutral),

higher (risk-seeking) or lower (risk-averse). Therefore,

risk-averse subjects only accept the risky reach if the

mean effort level is lower than the fixed effort alternative,

whereas risk-seeking subjects are prepared to take a

gamble even at unfavourable odds with the hope for the

improbable outcome requiring lower effort than the

fixed effort alternative.

Figure 2 shows the indifference points at the five

variance levels for all 14 subjects. We used weighted

least-squares regression to obtain linear fits of the five

mean-variance indifference points. The slope of these

fits informs us about the risk-sensitivity. A slope of zero

is compatible with risk-neutrality. A non-zero slope of

these fits implies that subjects modulated their
Proc. R. Soc. B (2011)
indifference points depending on the level of variance.

As can be seen by the regressions marked with an asterisks

in figure 2, for all except three subjects, the null hypoth-

esis of risk-neutrality, i.e. a line indistinguishable from the

horizontal, could be rejected with p , 0.05.

(b) Mean-variance models

The slope of the linear fits allowed us also to infer the

risk-parameter in the simple mean-variance model. For

the sure-bet reach, the effort circle is always at 10 cm,

i.e. U1
s ¼ 2E(10) ¼ 210, and for the risky option

U1
r (x) ¼2E(x)þ u1Var(x). The curve of indifference points

of mean effort levels at different variances can hence be

described by the condition U1
s¼ U1

r(x) resulting in

EðxÞ ¼ u1VarðxÞ þ 10; ð3:1Þ



Table 1. Parameter estimates. Mean-variance (U1). The mean parameter estimates of u1+ s.d. of a mean-variance decision-

maker obtained from the linear regression analysis of the subjects’ indifference points (see figure 2). Mean-Variance (U2).
The mean parameter estimates of u2 + s.d. (estimated using bootstrapping with 1000 repetitions) of a mean-variance
decision-maker obtained using a maximum-likelihood analysis of a noisy decision-maker. Prospect theory. The mean
parameter estimates of a+ s.d. and g+ s.d. (estimated using bootstrapping with 1000 repetitions) of a prospect theory
decision-maker obtained using a maximum-likelihood analysis of a noisy decision-maker.

subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14

mean-variance (U1)
u1 0.46 0.16 0.16 0.14 0.12 0.12 0.11 0.08 0.04 0.03 0.02 20.05 20.05 20.2
+ 0.18 0.03 0.02 0.02 0.03 0.03 0.04 0.03 0.01 0.04 0.05 0.03 0.04 0.06

mean-variance (U2)
u2 0.43 0.18 0.22 0.25 0.27 0.13 0.16 0.13 0.19 0.1 0.06 20.18 20.07 20.34

+ 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.03
prospect theory

a 0.28 0.12 0.13 0.13 0.22 0.09 0.06 0.09 0.25 0.28 0.12 2.61 2.76 4.76
+ 0.05 0.04 0.03 0.04 0.05 0.03 0.03 0.06 0.14 0.18 0.04 0.23 0.45 0.22

g 0.54 1.28 1.45 0.94 0.76 1.67 1.59 2.31 0.88 0.93 2.05 1.22 3.87 1.71
+ 0.1 0.14 0.13 0.1 0.08 0.31 0.21 0.26 0.11 0.12 0.17 0.15 0.24 0.08
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where the slope is the risk-attitude parameter u1 we wish to

determine, and 10 is expected to be the intercept of the indif-

ference curve. Based on this analysis, we found that the

majority of subjects, that is nine subjects, can be classified

as risk-seeking in the task, three as indistinguishable from

risk-neutral and the remaining two as risk-averse. The risk-

attitudeparameteru1 ranged from0.46 for themost risk-seek-

ing to 20.2 for the most risk-averse subject (see table 1 for the

estimated values). This provides evidence that subjects are

not indifferent to the variance of the outcome but have a

certain attitude towards risk that influences their decisions.

To check for consistency of the inferred risk-sensitivity

parameters, we used a slightly more complex mean-

variance model (see §2) to derive risk-sensitivity

parameters based on subjects’ trial-by-trial choices and

then compared the two sets of risk-parameters for all

subjects. The ideal actor model assumed a utility function

U2(x) ¼ 22u2
21lnE(e2(1/2)u2x), where u2 is a risk-

parameter. We used a maximum-likelihood method to

estimate the parameter u2 for each subject (see electronic

supplementary material, methods for details). The risk-

attitude parameter u2 ranged from 0.43 for the most

risk-seeking to 20.34 for the most risk-averse subject

(see table 1 for the estimated values). The results

obtained using the two methods to estimate the risk

parameters u1 and u2 are in good agreement (r ¼ 0.91,

p , 0.0001). To test whether this risk-based model was

better than a risk-neutral model, we used the Bayesian

information criterion (BIC) to compare the ideal actor

model to a risk-neutral model. The BIC for the risk-

sensitive model was smaller than for the risk-neutral

model (risk-neutral decision-maker: BIC ¼ 6256.1, risk-

sensitive decision-maker: BIC ¼ 6156.2) supporting the

risk-sensitive model and corroborating the findings from

the regression analysis of the indifference points. A likeli-

hood ratio test for nested models confirmed the finding of

the BIC analysis and showed that the risk-sensitive model

fits the data significantly better (p , 0.001).

We also fit the risk-sensitive ideal actor model with two

different coordinate systems, where forces are not perceived

linearly, but nonlinearly either as the square (super-linear)

or the square root (sub-linear) of the objective force.
Proc. R. Soc. B (2011)
The utility model then is given by U2(x) ¼22u2
21

lnE(e2(1/2)u2x
2

) and U2ðxÞ ¼ �2u�1
2 ln Eðe�ð1=2Þu2

ffiffi

x
p
Þ, respect-

ively. Importantly, nonlinear transformations of the utility

lead to the representation of different preferences. However,

the best fits for these nonlinear scales were significantly worse

than the best fits with the linear force scale ( p , 0.001,

likelihood ratio test). This suggests that our mean-variance

model that assumed an undistorted perception of the experi-

enced forces fits the data better than mean-variance models

that assume either super-linear or sub-linear perception of

the experienced forces.
(c) Prospect theory model

A different way of looking at human decision-making has

been suggested by Kahnemann & Tversky. In their orig-

inal formulation of prospect theory [3] and its later

extension cumulative prospect theory (CPT) [35], devi-

ations from risk-neutrality are due to two factors—the

distortion of probabilities in the probability weighting

function and the curvature in the value function. In

CPT, people’s value function is described as convex for

monetary losses and concave for monetary gains. In

addition, people act as if they misperceive probability,

putting too much weight on small probabilities and too

little weight on large probabilities. This is captured by a

value function and probability weighting function whose

shape is determined by a parameter a and g, respectively

(see §2 for details). We repeated the maximum-likelihood

analysis for a CPT decision-maker and estimated the par-

ameters a and g (see table 1 and figure 3a,b). The three

subjects that had been classified as risk-averse had

convex value functions, the remaining subjects had con-

cave value functions. In general, the estimated u2 and a

were anti-correlated (r ¼ 20.89, p , 0.001). The picture

was more mixed for the probability weighting function

(r ¼ 20.43, p . 0.05) but the majority of subjects

seemed to be under rather than overweight small prob-

abilities (g ¼ 1.51+0.23). Based on BIC, a model

comparison with the risk-neutral model was not in

favour of the CPT model (risk-neutral decision-maker:

BIC ¼ 6256.1, CPT decision-maker: BIC ¼ 6293.9);
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Figure 3. Parameter estimates for the prospect theory fits and control results. (a) The estimated value function for each subject
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however, based on the Akaike information criterion (AIC)

the CPT model was preferred (risk-neutral decision-maker:

AIC¼ 6163.2, CPT decision-maker:AIC¼ 6015.4). Com-

paring the CPT model to the mean-variance model, we

found that the mean-variance model was preferred both

based on BIC (mean-variance model: BIC¼ 6156.2, CPT

decision-maker: BIC¼ 6293.9) and based on AIC (mean-

variance model: AIC¼ 5970.6, CPT decision-maker:

AIC ¼ 6015.4).
(d) Control of experimental assumptions

Our experiment depends on the assumption that the

subjects’ endpoint variability did not change from the

‘s-estimation session’ to the ‘mean-variance session’.

This was true for 14 out of 15 subjects (all p . 0.3,

two-sample Kolmogorov–Smirnov test for the mean-

corrected endpoint-distribution of the ‘s-estimation

session’ and the ‘mean-variance session’). On average, the

endpoint-variability (s) of subjects was 1.90 + 0.44 cm

in the ‘s-estimation session’ and 1.86+0.31 cm in the

‘mean-variance session’. One subject had to be excluded

from the analysis as the standard deviation of his movements

changed drastically from 5.86 cm in the ‘s-estimation ses-

sion’ to 1.70 cm in ‘mean-variance session’ (p , 0.002,

two-sample Kolmogorov–Smirnov test). Furthermore, our

experimental design relied on predicting the subjects’ hitting

probability from their endpoint variability. Figure 3c shows a

plot of the empirical probability of hitting the target in the

‘mean-variance session’ versus the hitting probability

predicted by using subjects’ endpoint variability from the

‘s-estimation session’. Using linear regression on the data

after subtracting the diagonal and testing for zero slope

(t8¼ 1.08, p . 0.3) and zero intercept (t8¼ 0.9, p . 0.3)

suggests coincidence of the data with the diagonal and

hence confirms accurate prediction of hitting probabilities

during the experiment.
4. DISCUSSION
In our study, we examined whether subjects are sensitive to

the variance of movement costs rather than just the mean

level of movement costs. In particular, we investigated

how subjects trade off the mean effort against the variabil-

ity of effort during a movement. Compared with the
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baseline of a fixed certain effort, we found that most sub-

jects were prepared to accept a gamble with higher mean

effort when variability was high (risk-seeking), whereas

some were risk-neutral and a minority would only accept

a lower mean effort (risk-averse). Our results are consistent

with a risk-sensitive decision-maker that trades off the

mean and variance of movement effort, but inconsistent

with a risk-neutral account of motor control.

A number of previous studies have found that people

maximize expected gain in movement tasks in which sub-

jects made speeded pointing movements and the spatial

[18,19] or temporal outcome [20,21] of their movement

resulted in a monetary payoff. These studies compared

subjects’ behaviour with an ideal actor model that maxi-

mized expected payoff. Crucially, the optimal movement

strategy suggested by such models is independent of the

variance of the payoff. This should, however, not be

confused with the variance of the movement outcome

(see electronic supplementary material, discussion for

mathematical details). The fact that various kinds of

movement variability play an important role in the

choice of suitable movement strategies is well known

[17] and taken into account by expected gain models.

This raises the question as to why these previous studies

have not reported risk-sensitivity. One key difference

from our study is that in these previous studies the

mean and variance of the reward were not manipulated

independently of each other making it difficult to estab-

lish the effect of one variable alone on subjects’

behaviour. Implicit in the ‘gain-maximization hypothesis’

is also that the utility of money is linear across the whole

range and not concave for gains and convex for losses as is

the usual consensus in behavioural economics [3].

A possible reason why the linear utility function is suc-

cessful is that these studies used very small monetary

remunerations of only a few cents (2.5 cents maximum

reward per trial and 12.5 cents maximum loss per trial

[18,19,36]). That is they effectively only tested subjects

over a very narrow (possibly linear) range of their utility

functions. Indeed, a recent study that used larger rewards

reported the same value function for money in movement

tasks as in economic decision-making tasks [28] and is at

odds with the ‘expected gain maximization’ hypothesis.

Wu et al. [28] examined violations of expected utility

theory in a motor task that involved making accurate
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pointing movements. In particular, they investigated vio-

lations of the so-called independence axiom, stating that

preferences should not be affected by the addition of a

‘common consequence’. Consider two different tasks in

which subjects can choose between lotteries of the form

[p1U($V1), p2U($V2), . . .] where there is a probability p1

of receiving $V1 that has a subjective utility of U($V1),

etc (we assume without loss of generality that U($0) ¼ 0).

In the first task, we can choose between two lotteries

[0.33U($2500), 0.67U($0)] and [0.34U($2400), 0.66

U($0)]. In a second task, we can choose between

[0.33U($2500), 0.66U($2400), 0.01U($0)] and [0.66

U($2400), 0.34U($2400)] ¼ [1.0U($2400)]. These two

tasks only differ in their ‘common consequence’ in that

the second task simply adds 0.66U($2400) to both

lotteries in task 1. However, in the first task, people

tend to prefer the first lottery implying that 0.33

U($2500) . 0.34U($2400) whereas in the second task

they tend to prefer the second lottery as it has a guaran-

teed outcome. Therefore, some decision-makers reverse

their preference between the tasks. Importantly, expected

utility theory does not allow preference reversals of this

kind. Wu et al. [28] observed, however, exactly this kind

of preference reversals violating the independence

axiom. By introducing common consequences in their

task, Wu et al. [28] simultaneously changed the mean

and the variance of their payoffs. In contrast, in our exper-

imental design we did not use common consequences and

instead were able to fix the payoff variance of the risky lot-

tery and only change its mean payoff. By examining

subjects choice between this risky lottery and the certain

lottery (zero variance and fixed payoff), we could directly

measure indifference points (for five different levels of

variance) where subjects chose equiprobably between

the two lotteries. This separate manipulation of mean

and variance allowed us to directly show that subjects

trade off mean and variance of movement costs.

To compare our results to Wu et al. [28], we also fit a

prospect theory model to our data, where risk-sensitivity

depends both on the distortion of the probability weight-

ing function and the curvature of the value function.

Similar to their results, our fit indicated that small prob-

abilities were underweighted in most subjects and that the

value function was mostly concave, both of which is con-

sistent with risk-seeking behaviour. However, whether the

brain represents risk in agreement with either the mean-

variance approach or with the prospect theory account

is currently subject of an ongoing debate [37]. Recent evi-

dence from electrophysiological and functional imaging

studies has provided support for both theories. In support

of the mean-variance approach, separate encoding of

reward magnitude and risk has been reported in

humans [14–16] as well as in non-human primates

[38]. However, recent studies have also found neural

evidence in favour of prospect theory. Martino et al.

[39], for example, reported neural correlates of the fram-

ing effect, that is the susceptibility of the decision-maker

to the manner in which options are presented. In

addition, Hsu et al. [40] found that neural responses in

the brain depended on probabilities in a nonlinear fashion

during a risky task. Both effects are cornerstones of pro-

spect theory. In our experiment, the model comparison

favours the mean-variance approach. However, further

studies are needed to elucidate how the brain represents
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value and how the brain0s different valuation and action

selection system interact and vie for control to arrive at

an overt behavioural decision [41].

Current computational accounts of motor control-like

optimal feedback control theory are risk-neutral [26,27]

and only consider minimization of the expectation of a

cost function, usually with terms for positional accuracy

and effort. The variance of the cost does not influence

these models when computing the optimal movement

policy. However, models of risk-sensitive optimal feed-

back controllers are compatible with a mean-variance

trade-off in movement costs as found in the current

study, because the first two terms of the Taylor expansion

of the risk-sensitive cost function correspond to mean and

variance of the movement cost. Recently, we have shown

how risk-sensitive optimal feedback control can account

for sensorimotor behaviour under uncertainty in a con-

tinuous motor task where subjects had to control a

Brownian particle under different noise levels [29]. In

this previous study, we found that subjects showed

mostly risk-averse behaviour, whereas in the current

study and in the study by Wu et al. [28] subjects were

mostly risk-seeking. An important difference between

these experiments is that in the previous study the noise

was given by the Brownian particle, whereas in the

current study (and also in [28]) the noise was given by

subjects’ own motor noise. In non-motor settings, the

‘illusion of control’ [42] is one of the core factors in caus-

ing people to mistake games of pure chance with games of

skill even though they are not controllable [43]. Hence, a

possible explanation for the difference in risk-sensitivity

in our case might be that subjects are risk-seeking because

they tend to be over-confident about their own generated

motor noise, but risk-averse with respect to noise that is

given in their environment. This hypothesis could be

tested in future experiments.
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