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Abstract

Motivation: Single-cell assay for transposase accessible chromatin using sequencing (scATAC-seq) is a valuable resource to learn cis-
regulatory elements such as cell-type specific enhancers and transcription factor binding sites. However, cell-type identification of
scATAC-seq data is known to be challenging due to the heterogeneity derived from different protocols and the high dropout rate.
Results: In this study, we perform a systematic comparison of seven scATAC-seq datasets of mouse brain to benchmark the efficacy
of neuronal cell-type annotation from gene sets. We find that redundant marker genes give a dramatic improvement for a sparse
scATAC-seq annotation across the data collected from different studies. Interestingly, simple aggregation of such marker genes achieves
performance comparable or higher than that of machine-learning classifiers, suggesting its potential for downstream applications.
Based on our results, we reannotated all scATAC-seq data for detailed cell types using robust marker genes. Their meta scATAC-seq
profiles are publicly available at https://gillisweb.cshl.edu/Meta_scATAC. Furthermore, we trained a deep neural network to predict
chromatin accessibility from only DNA sequence and identified key motifs enriched for each neuronal subtype. Those predicted
profiles are visualized together in our database as a valuable resource to explore cell-type specific epigenetic regulation in a sequence-
dependent and -independent manner.
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Introduction
The elaborate developmental process of multicellular organisms
relies on epigenetic marks encoded in a cell-type specific manner.
Chromatin accessibility is an epigenetic signal that can be read
out via high-throughput sequencing methods, reflecting the exis-
tence of active regulatory regions such as enhancers and promot-
ers. Assay for transposase-accessible chromatin using sequencing
(ATAC-seq) is a primary method to detect the epigenetic foot-
print of chromatin location through the insertion of barcode
sequences by the Tn5 transposase [1]. Due to its high throughput
and applicability, massive reference atlases of ATAC-seq have
been constructed for diverse targets such as immune and neu-
ronal cells [2–4]. However, bulk ATAC-seq analysis often measures
the chromatin accessibility across a mixture of cell types, unless
each cell-type is isolated in advance. Indeed, previous studies that
analyzed ATAC-seq data for neuronal cell-type specific epigenetic

profiles used cell lines or recombinase driver lines [5], or micro-
dissection of a specific region [6,7]. Such approaches not only
require laborious work to obtain each cell or driver line but also
restrict the scope of the analysis to a biased set of cell types. In
addition, independent processing and sequencing of each sample
inevitably cause batch effects that may make it challenging to
make comparisons across datasets.

In principle, single-cell ATAC-seq (scATAC-seq) can resolve
many of the issues that are intrinsic to bulk ATAC-seq by obtaining
the ATAC-seq profiles from a broader sampling of individual cells.
One promising application of scATAC-seq is the identification
of cell-type specific gene regulation performed by multiple
proximal and distant enhancers [8–11]. To assign each chromatin
accessibility profile to the transcriptome space of known cell
types, it is common practice to estimate the gene activity profile
by summing the read counts around the transcription start
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site (TSS) and/or entire gene body for each gene. However, in
general, gene activity inferred from epigenetic profiles cannot be
perfectly aligned to RNA-seq because assessing epigenetic profiles
at the gene body alone ignores the complex regulation producing
transcripts [3]. Moreover, the limited number of chromosome
copies (e.g. two for diploid organisms) results in observed signals
that are nearly binary (0, 1 or 2) and are sparsely located across
genomic loci, making it difficult to obtain robust results from
single datasets [12]. Integration of data to improve robustness
is one solution to this noise and sparsity problem, but there is
still no gold standard approach that grapples with the profound
differences of scATAC-seq datasets across protocols [13]. To fully
reveal cell-type specific gene regulation from scATAC-seq data,
we need to develop methods to group shared cell-types and then
uncover the key regulatory features that are robust.

Despite the comparatively unbiased characterization of most
single cell methods, marker-based annotation has retained a
strong role in the validation of cell clusters as real “types.”
However, marker-based annotation is not immune to “dropout”
in general, which frequently arises especially for single-cell
analyses due to technical artifacts or stochastic expression of
mRNA transcripts. A potential solution to address the two main
shortcomings of scRNA-seq data, dropout and batch effect, is
to analyze the marker genes that are co-expressed, in addition
to distinctly expressed. This approach expands the repertoire of
markers, making it unlikely that all of them would be dropped
out in unison, thereby transforming a hard classification problem
into a soft classification problem [14]. In essence, scRNA-seq
experiments vastly expand our capacity to discover marker sets
and it is plausible this can be used to build a model applicable
to scATAC-seq data, where pure clustering is otherwise more
challenging (involving weak genome-wide trends).

In this study, we carried out a comprehensive benchmark
of cell-type classification for mouse brain scATAC-seq datasets
based on five marker gene sets. The mouse brain is one of the
most complex systems and also one of the most heavily assayed,
providing a useful test bed for assessment. We collected marker
sets from previous scRNA-seq and scATAC-seq studies, as well
as meta-analytic marker sets inferred from multiple scRNA-seq
datasets. Our comprehensive comparison of marker sets revealed
that the cell-typing performance of our meta-analytic marker
genes obtained by MetaMarkers [14] is highest among the marker
sets constructed in a variety of methods even though the markers
are obtained from independent scRNA-seq data, not scATAC-seq
data. Moreover, in a broad evaluation of marker sets, learning
methods, and datasets, we aim to simply characterize which
factors drive characterization performance. Our principal find-
ing is that careful selection of marker genes, especially when
they are chosen to increase redundancy meta-analytically, can
greatly improve performance; this occurs to such a degree that if
an adequately strong marker set is selected, simple aggregation
of the gene-specific scATAC-seq signal characterizes cell-type
remarkably well. This finding provides an important basis for
future data integration and downstream applications of scATAC-
seq analysis. Moreover, we trained a deep convolutional neural
network (CNN) to predict the cell-type specific accessibility for
an input DNA. By publishing those predictions with all collected
and re-annotated datasets at our server, the observed variations
within the experimental datasets as well as predictions are clearly
shown. Our novel resources, which are well curated with motif
information at subtype level and easy to access each gene, will
be applicable for the integrative analysis with future scATAC-seq
datasets.

Results
Benchmarking the influence of marker gene
selection on cell-type resolution across
scATAC-seq datasets
Figure 1A shows a general scATAC-seq analysis workflow includ-
ing the differences between experimental protocols and quantifi-
cation methods. While each experimental technology relies on
a different principle, the common downstream analysis is that
the cells are gathered into clusters according to the similarity
of the chromatin accessibility for each bin or region around TSS
and gene body of each gene, called gene activity. To infer the
cell-type specific regulatory network from scATAC-seq profiles,
it is essential to assign each chromatin accessibility profile to a
cell type, either through known marker genes or by mapping to
cell types inferred from transcriptome data. Averaging of gene
activity profiles for each cluster, which is a common step for
cluster-level cell typing, reduces the influence of stochastic noise,
decreases the sparsity of the dataset, and requires fewer computa-
tional resources, when compared to the single-cell analysis. Then
cluster-level cell typing is done by checking the cluster-specific
enrichment of biomarker genes based on prior knowledge of exist-
ing cell types as shown in Figure 1B. When a cell type is inferred
for each cluster, however, the resolution of cell typing is limited
by the cluster size. This especially matters for brain scATAC-seq
analyses, which potentially contain hundreds of cell types, and
clusters are expected to contain several finer grained cell types.

In fact, the disparity in terms of the number of cells and clus-
ters for the heterogeneous datasets used in this study suggests
that cluster-level annotation is inadequate since it would likely
depend on an implausible lack of variation between pipelines.
For example, Figure 1C and D shows the variation in their gran-
ularity (9–36 clusters), from major cell types to more detailed cell
types, such as Pvalb or Vip within inhibitory neuronal cells. While
characterization of individual cells, or at most small cell groups,
is necessary for functional analysis, this strategy is only feasible
with high-coverage datasets, such as the BRAIN Initiative Cell
Census Network (BICCN) dataset, which has more than 110 000
cells. Besides, there is variation in marker gene selection, and thus
definition of brain cell types, limiting annotation to major cell
types, such as inhibitory (IN), excitatory (EX) and non-neuronal
(NN) cell types,

To examine the real feasibility of our cell typing approach,
therefore, we take two steps; benchmarking major cell-type anno-
tation and its robustness at the cluster and individual cell level,
then validating the annotation of more detailed cell types that
are shared in two high-coverage datasets (Figure 2A). Because the
appropriate parameters or data handling processes for each study
are unknown, we used the annotations provided by the authors
to define “true” cell-type labels. For six out of seven datasets, the
metadata about these cell types are published, or were provided
personally. Among the seven datasets, three datasets are coupled
with scRNA-seq data, one from the BICCN dataset [16] and two
joint profiling data from Chen et al. [17] and Zhu et al. [18]. Those
scRNA-seq data are later applied to validate the cell typing with
the reference.

Gene-set based approach using functional
marker genes has a strong potential to produce
practical and reproducible predictions at
single-cell level
Due to the sparseness and binary-like characteristics, scATAC-seq
data are prone to stochastic loss. To assess cell-type classification
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Figure 1. A workflow of scATAC-seq analysis and the seven scATAC-seq dataset used in this study. (A) A general workflow of scATAC-seq protocols and
quantification. (B) tSNE mapping of BICCN scATAC-seq data from mouse primary motor cortex (MOp). (C) tSNE mapping of seven scATAC-seq datasets
used in this study. Each cell is colored depending on the assigned cell type from three major cell types; blue for non-neuronal cell (NN), green for
inhibitory neuron (IN) and orange for excitatory neuron (EX). For the dataset without a cell-type annotation from [15], the total read count of each cell
is shown by a different color. (D) Relationship between the number of detected clusters and sampled cells after filtering based on the coverage for seven
scATAC-seq datasets. The cluster size of Preissl dataset is estimated by our re-analysis.

Figure 2. Cell-type characterization workflow at the cluster and individual cell level. (A) Graphical abstract of the cell-type annotation benchmark for
scATAC-seq data in this study. (B) and (C) The top 1000 features for major cell-type classification for the BICCN scATAC-seq dataset using the gene
activity of each single gene are shown for each cell (B) and cluster (C). (D) Classification of five marker sets used in this study. (E) and (F) The size and
overlap of five marker gene lists for the IN cell type used in this study. (G) The distribution of AUROCs of the IN cell-type classification within the BICCN
dataset using the gene activity of five marker gene sets.

performance of each gene beyond such noises, area under the
receiver operating characteristics curves (AUROCs) are computed
for gene activity in the BICCN scATAC-seq dataset among the
major categories: IN, EX and NN cell types. The informativeness
of individual genes, on average, only provides a modest predictive
power of cell-types from random as expected (AUROC 0.5–0.6,
Supplementary Figure 1A). For example, by focusing on the
top 1000 most predictive genes, we find that fewer than 200
genes achieved an AUROC greater than 0.625 for each cell-
type (Figure 2B). On the other hand, aggregating gene activity
at a cluster-level substantially improves the AUROC (Figure 2C).
It should be noted cell-level and cluster-level classification
have different sample sizes (number of cells vs number of
clusters), leading to a step-wise characteristic for cluster-level
performance.

Additionally, we computed the AUROC for cell typing based on
each genomic bin activity at cell-level classification
(Supplementary Figure 1B), as the features used in the previous
studies [19]. Evidently, the activity level specified by top bins
has the lowest predictive power with an AUROC < 0.55. We also
computed P-values for Fisher’s exact test and around 6.39 % of
bins had P-values smaller than 0.05 after Bonferroni correction for
three major cell types (inset in Supplementary Figure 1B). These
results show that no single feature provides sufficient accuracy,
even for major cell types.

Previously, we found that using an expanded marker set
that includes co-expressed genes of marker genes significantly
improves cell typing in terms of signal-to-noise ratio and AUROCs
for scRNA-seq data [14]. Thus, we hypothesize that this meta-
analytic marker gene set (defined by scRNA-seq data) could

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
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also help improve the performance of cell typing with scATAC-
seq data. To examine the validity of this idea, we collected five
marker gene sets established for single-cell sequencing data,
named, and SC, for meta-analytic integration of brain scATAC-
seq data (Figure 2D–F). Each marker set is based on different
strategies to extract reliable marker genes. Specifically, the
biomarker set determined in [11] (referred to as CU) is used as
a scATAC-seq oriented biomarker set while those from [20] and
[5] (TA and TN) are selected as the representatives of scRNA-seq
oriented biomarker sets. Additionally, the gene sets SF and SC are
newly constructed using six scRNA-seq datasets obtained in a
BICCN project, detailed in [16] (also see Methods). In Figure 2G,
the AUROCs of marker genes computed for IN cell-types are
substantially higher than random (0.5), particularly for our meta-
analytic marker set SF. These distributions are not sufficiently
high for practical cell-typing, but noticeably different from
those of all genes, suggesting the potential predictive power of
individual marker genes.

An extra advantage of the gene-set based approach is that the
integrated signals are expected to be more robust for the differ-
ence between the omics layers. For example, the gene activity
measured by scATACA-seq is known to imperfectly correspond
to transcriptome profiles because it ignores complex regulation
by distant or condition-specific enhancers [3]. However, the com-
parison of the gene activity profiles between the BICCN scRNA-
seq and scATAC-seq as well as proteome data [21] shows that the
overlaps of top cluster-specific genes can designate the cluster
pairs of the consistent cell types better than the correlation
coefficients for all captured genes (Supplementary Figure 2).

Taken together, our results indicate that a small number of
marker genes substantially and consistently increase their activ-
ity in a specific cell type while most genes do not – though no
single gene provides sufficient predictive power for consistent cell
typing at individual cell level.

A meta-analytic marker gene set shows
consistently increased signal across
heterogeneous scATAC-seq datasets
We further evaluated the reproducibility of the AUROCs of single
features across the different scATAC-seq datasets. By comput-
ing the Spearman’s correlation of AUROC scores for all pairs of
datasets, we found large variation in the AUROCs and correlation
between datasets (Supplementary Figures 3 and 4). For example,
the BICCN, Lareau, and Chen datasets were highly correlated with
each other, while the Cusanovich and Zhu datasets had a much
lower correlation with any dataset. Compared to the cell-level
classification, the correlation coefficients of cluster-level or bin-
level classification performances are comparable or even lower
(e.g. comparisons involving the BICCN dataset), suggesting that
the enrichment of high-performance features at cluster-level is
only weakly reproducible across the datasets.

Focusing on the performance stability of the marker genes, we
also computed the correlation for each marker gene set between
the BICCN and Lareau datasets, which give us the highest corre-
lation among all pairs of datasets for gene-level comparison. To
evaluate statistical significance, we generated a null distribution
by randomly sampling gene sets of the same size from all genes
10 000 times, and computed the correlation coefficients for each
between the two datasets. As a result, all marker sets for IN
type showed a higher correlation coefficient compared to the
comparison of all genes (SF: 0.931, CU: 0.921, TA: 0.779, TN: 0.851
and SC: 0.880), but only the P-value of SF is significantly lower
after multiple corrections (P-value < 5e-5, n = 5). Together, these

results demonstrate that cell typing by a single feature, such as
gene activity or genomic bin, is highly variable at both individual
cell and cluster-level across scATAC-seq datasets. At the same
time, choosing meta-analytic marker genes can greatly increase
the reproducibility of cell-type classification in scATAC-seq data.

Redundant and meta-analytic marker gene sets
enable robust and practical cell-type
classification
Following our evaluation of individual genes, we now consider
the integration of information across multiple genes. To address
this problem in a practical scATAC-seq analysis workflow, we
evaluated the performance of cluster-level annotation based on
two cell-typing strategies; the qualitative comparison of cluster-
specific genes, and quantitative comparison of the aggregated
pseudo-bulk profiles of gene activity.

As a cell-type classification using a gene list, the Jaccard index
was computed as a metric of overlap between each marker set
and cluster-specific genes for all clusters from seven datasets.
Specifically, the index is defined as J(M, C) = M∩C

M∪C , where M and
C are the marker gene set and cluster-specific genes, respectively.
Then, the indices of each cluster were normalized within the
range (0, 1) across three cell types as shown in Figure 3A. Finally,
we examined AUROCs based on the normalized Jaccard index for
each cell type classification against the reference true cell-type
labels for the clusters. In Figure 3B, the AUROCs of each marker
set are shown as a function of the number of top cluster-specific
genes selected (shown in the x-axis). The larger the number of
cluster-specific genes is, the higher the AUROCs of prediction are
for all marker sets. However, the classification based on the SF
marker set shows a sudden increase of the AUROCs to 0.8–0.9
only with around the top 100 cluster-specific genes. Because SC
is the top subset of SF, descent performance of SC compared to SF
indicates the importance of marker set redundancy for scATAC-
seq annotation as explored in [14]. Interestingly, most of the
marker sets except for TA reached around 0.8 for the classification
of IN cell type just by considering the top genes. This result
suggests that even a few genes are enough to accurately annotate
the IN cell-type group while additional genes can further improve
the accuracy of prediction for other cell types. As a redundant
gene set which is comparable to SF other than TA and TN, we
compared the AUROCs with those based on the cell-type specific
gene sets inferred from each scATAC-seq dataset (Supplementary
Figure 5). The SF marker set produced the highest and most stable
AUROCs across the different cell types compared to most of the
gene sets, suggesting the potential of our meta-analytic approach
to enhance the stability and applicability of marker sets beyond
the cell-type and batch-specific difference.

While cell-type annotation using a cluster-specific gene list is
a simple and effective approach, it relies on clusters partitioning
the cells appropriately into types and may be sensitive to over-
or under-clustering. For that reason, we evaluated another cell-
type approach by computing the absolute strength of marker gene
activities (rather than relative strength compared to other genes)
by aggregating the marker gene activities, which are also called
module scores in Seurat [22]. This generates a single cell-type
score for each cell group that can then, again, be summarized by
performance as AUROCs (Fig. 3C). For cell-level annotations, we
computed AUROCs from individual cell profiles, while for cluster-
level annotations we used the average pseudo-bulk profiles of the
cells that belong to the same cluster. Although there are only
small differences in AUROCs for the cluster-level classification,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
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Figure 3. Performance of cluster-level annotation based on qualitative and quantitative cell-typing strategies. (A) The heatmaps of normalized Jaccard
indices for meta-analytic marker sets and all clusters from seven scATAC-seq datasets including one dataset without cell labels (shown in dark gray).
Each panel shows the scores for the SF sets of major three cell types (top), subtypes of excitatory neurons (middle) and inhibitory neurons (bottom). (B)
AUROCs of major cell-type classification for six scATAC-seq datasets at cluster-level. For each cluster, a top group of cluster-specific genes is selected
based on Wilcoxon’s rank sum test within each dataset (shown in x-axis). Then the Jaccard indices normalized among the three cell types are used to
compute AUROCs for NN, IN and EX cell types. (C) AUROCs of NN, IN, and EX cell-type classification within each dataset using an aggregated marker
gene activity. Each boxplot represents the raw prediction accuracy of cell-level and cluster-level annotation as well as down-sampling simulation of
pseudo-bulk profiles from randomly sampled cells (also see Methods). (D) AUROCs of inhibitory neuronal subtype classification for the BICCN and Chen
datasets using SF marker sets for the corresponding subtypes.

the SF marker set outperformed at individual cell-level classifi-
cation with a median AUROC around 0.85. Moreover, to show the
robustness of marker set performance without a class imbalance
problem, we constructed simulation data of 100 average profiles
for each major cell type over a specific number of cells randomly
sampled from the original datasets. Along with the increase of the
AUROCs with the number of cells, the SF marker set is found to
show the most stable prediction accuracy for cell-type classifica-
tion. In summary, we found that our meta-analytic marker gene
set could improve the robustness of major cell-type classification
at a variety of cell resolution.

The robustness and feasibility of subtype
classification can be improved using
meta-analytic marker gene sets
In addition to the three major cell types, we can iteratively use
the SF marker sets to perform rare cell- or sub-type classification
as shown in Figure 3A. We first extracted two groups with the
higher Jaccard scores for either of IN or EX marker sets, then
computed the number of overlapping genes again between each
SF subtype marker set and cluster-specific genes. The cell-typing
performance of several inhibitory subtypes (Sst, Pvalb, Sncg, Vip
and Lamp5) was validated for the BICCN and Chen datasets,
which both contain the clusters associated with those subtypes
(Figure 3D). In the BICCN dataset, the AUROCs of five inhibitory
neuronal subtypes at the smallest cluster level are 1.0, 0.755,
1.0, 1.0 and 0.983, respectively. These clusters, except for Pvalb,
are considered to be substantially distinctive within the BICCN
dataset using SF subtype marker sets. In the Chen dataset, the

AUROCs of Sst, Pvalb and Vip of inhibitory subtypes are all higher
than 0.955. Since the SF marker sets were constructed indepen-
dently from the scATAC-seq datasets, the use of meta-analytic
marker sets is a promising approach to enable robust cell typing
even for neuronal subtypes at the cluster-level.

Furthermore, by carefully examining the consistency of the sig-
nals in Figure 3A, some clusters from other datasets show enrich-
ment for multiple marker sets. This suggests the heterogeneity of
those clusters and our cell typing at individual cell level would be
able to detect the existence of mixed subtype populations. Finally,
the clusters of the Preissl dataset, whose “true” labels are not
available in this study, also show an exclusive signal enrichment
for the SF major cell- and sub-type marker sets. This, too, indicates
their applicability to labeling unknown clusters.

Comprehensive assessment of cell-type
classification and marker sets with machine
learning classifiers
We next ask whether more sophisticated prediction methods,
such as supervised learning, can further improve performance
with our marker genes. To determine the degree to which robust
markers facilitate more sophisticated cell typing, we performed a
comprehensive assessment of scATAC-seq cell-type classification
at the individual cell level. Because of the extreme heterogeneity
of the scATAC-seq datasets, it is rarely possible to select the
most robust approach for not only clustering but also cell-type
characterization. Instead of exploring just the best combination,
we aim to address the question of whether the suitable fea-
ture selection based on marker genes is still critical beyond the
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Figure 4. Comprehensive comparison of cell-type classification at individual cell level using a combination of marker genes and supervised learning
methods. (A) and (B) AUROCs of six datasets and those average for NN cell-type classification at each cell level for all demonstrated combinations (A)
and top 10 combinations according to the average AUROCs (B). The columns shown at right represent the marker set, supervised learning method, and
training dataset used to construct each classifier. (C) and (D) AUROCs of six datasets and those average for IN cell-type classification at each cell level for
all demonstrated combinations (C) and top 10 combinations according to the average AUROCs (D). (E) AUROCs of two joint profiling datasets and those
average for IN cell-type classification at each cell level for top 10 combinations according to the average AUROCs. This result contains the combinations
using available scRNA-seq data of each dataset as a training data.

differences in the test datasets, training datasets, or prediction
methods.

We applied a variety of supervised learning methods for
scATAC-seq, such as raw signal aggregation (as used in the
previous section), machine learning (ML) classifiers, and joint
clustering methods. Importantly, raw signal aggregation of the
marker set is the only method that is applicable without a
reference training dataset. This provides scope for methods with
more parameter optimization to improve performance, although
the parameter optimization can sometimes reduce robustness.

As ML classifiers, we applied four different classifiers (e.g. logis-
tic regression, support vector machine [SVM]) and trained them
using the BICCN scRNA-seq data (RNA atlas) or other scATAC-
seq datasets (Consensus). As joint clustering methods developed
for the integration of scRNA-seq, BBKNN [23] and Seurat [22]
were selected. Further details on optimization and evaluation
are described in the Methods section (also see Supplementary
Figure 6).

Figure 4A shows the summary of the AUROCs for NN cell-
type classification at the individual cell level. The prediction
performance highly depends on the dataset quality or similarity
as shown in a clear contrast between the rows: when the dataset
is too deviated from others, no single method or training condition
seemed to work at a practical level. In Figure 4B, the top 10
combinations in terms of average AUROCs are extracted. Most of
the combinations are based on ML optimized on the Consensus

(using all other datasets for training) although also included is
one combination of the raw signal aggregation and SF marker
sets. The two best methods are the logistic regression classifier
trained on all genes, and Alternate Lasso trained on SF marker
genes. With respect to the marker sets selected, SF and TN gene
sets are dominant within the top 10 combinations while only
one combination utilizes all gene sets. This suggests the utility
and stability of redundant marker gene sets as a kind of feature
selection method against the dataset-dependent variability.

Next, the prediction performances for IN cell-type classifica-
tion are visualized (Figure 4C and D). Unlike the result of NN cell-
type classification, the AUROCs of the top and bottom combina-
tions are clearly distinct. Specifically, the combinations based on
Consensus training or raw signal aggregation show apparently
higher AUROCs than those using the RNA atlas from the BICCN
dataset. As previously, the top 10 combinations exploit the com-
binations involving the SF and TN marker sets as well as only one
set using all genes. Indeed, even the simple raw signal aggregation
method from the SF marker gene sets is ranked in the top 10
regardless of the target cell types while that with other marker
sets are not.

Additionally, we examined the classification performance
using a transcriptome-based reference from the exact same
sample (named RNA training) to show the potential of the
scRNA-seq reference. Figure 4E shows the top 10 combinations
that performed best for two joint profiling datasets. The top 10

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
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Figure 5. (A) Deep learning analysis workflow. The CNN model was trained to take DNA sequence as input and predict the sequence’s accessibility in
each cell type. Model interpretability is accomplished by visualizing layer convolutional filters and by cell-type specific saliency analysis for a given
sequence. Each can be used to visualize motif features extracted by the model. Motif analysis is then performed by employing two ways of motif search:
a motif comparison search against a database of known motifs (i.e. JASPAR) using Tomtom or via TF-MoDISCo, which splits saliency maps, clusters them,
and provides an averaged representation. Motif analysis of BICCN scATAC-seq pseudo-profiles (B–F). Sequence logos of saliency maps from a CNN model
trained at the sub-cell type level: (B) Lamp5, (C) Vip, (D) Sncg, and (E) Vip. Only 210 positions out of 5kb is shown for visual clarity. The known motifs
from the JASPAR database are annotated with a box above each saliency plot, labeled with a putative motif name and JASPAR ID. (F) Venn diagram of
motifs enriched in each cell type. The filter representations are shown, while the cell type-specific motif enrichment was determined with TF-MoDISCo
and the motif annotations were given by statistically significant matches to the JASPAR database using Tomtom.

ranks are occupied by methods of ML classifiers optimized by
Consensus and RNA reference data, in addition to raw signal
aggregation for the SF marker gene set.

In summary, our comprehensive assessment strongly suggests
that consensus training using other scATAC-seq data and simple
aggregation of large marker sets are comparably powerful for
major cell-type classification. Although optimization based on
the independent reference scRNA-seq was less powerful, training
on the joint-profiled scRNA-seq shows a comparable prediction
performance with consensus training. More importantly, in all
cases, the choice of marker genes most strongly characterized the
performance of a method/data/feature combination, suggesting
the wide-applicability of robust marker gene sets for integrative
analyses and interpretation of the resultant cell-type specific
ATAC-seq profiles for regulatory inference, as described next.

Meta scATAC-seq server with deep learning
prediction enhances cell-type specific motif
analysis
For future integrative analysis, we have published a new Meta
scATAC-seq server at https://gillisweb.cshl.edu/Meta_scATAC/ to
make all collected data and marker genes in this study available.
In this server, the average read count of each genomic location
can be visualized in a genome browser for certain cell types or
datasets. The accessibility signals can be aggregated for not only
the cluster-derived cell types provided by the authors (which are

not unified across the studies) but also the top 500 cells of each
subtype by calculating the marker activity of SF.

Furthermore, to assess the potential of genomic sequences to
regulate the cell-type specific cis-regulatory programs, we inte-
grated predicted chromatin accessibility data using a sequence-
based deep CNN trained on the BICCN scATAC-seq data. Specifi-
cally, we generated a multi-task classification dataset that con-
sists of cell-type specific pseudo-bulk chromatin profiles. The
pseudo-bulk profiles were then used to generate a dataset of 5kb
DNA with a corresponding label vector that specifies whether
the DNA is accessible or not in the BICCN dataset (see Methods).
We constructed a custom CNN with a Basset-like architecture
[24] and trained it to take DNA as input and simultaneously
predict chromatin accessibility across each cell-type (Figure 5A).
We found that the CNN’s classification performance on test data
(i.e. all data from held-out chromosomes: 1, 3 and 5) had good
predictive power with an area under the precision-recall curve
(AUPR) of 0.539 on average across each cell-type – this is a large
improvement upon DeepSea’s AUPR of 0.444 across 125 chromatin
accessibility datasets [25], most of which derive from cell lines.

For model interpretability, we performed filter visualization
and attribution methods, both of which are common techniques
in genomics [26]. We compared filter representations against
the 2020 JASPAR vertebrates database [27] using Tomtom [28].
We found that 36% of the filters match known motifs, which
is seemingly a low number considering that when applying a

https://gillisweb.cshl.edu/Meta_scATAC/
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similar network to the Basset dataset, our CNN yields a higher
match fraction of about 62% [29]. Using an attribution method
called saliency analysis [30], which takes the gradient of a given
class prediction with respect to the inputs, we can generate
sequence logos of the importance of each nucleotide in a given
sequence (see Methods). Within the 5kb binned sequences, we
often find that small patches within the attribution maps high-
light known motifs either alone (Figure 5B), in combinations with
their reverse complements (Figure 5C and D), and with other
partners (Figure 5E).

To demonstrate the efficiency of meta-analytic marker genes
for the interpretation of a deep CNN model, we examine enriched
patterns within the attribution maps, specifically nearby meta-
analytic marker gene sets, using a clustering tool for attribution
maps TF-MoDISCo [31]. Figure 5F highlights a Venn diagram of the
motifs enriched in different cell types: Lamp5, Vip and Sncg. Many
motif representations were shared between all three cell types,
including the binding motifs of NFIC, MYOG, DBP and FOSL1.
Vip and Lamp5 had many unique motifs enriched near meta-
analytic marker genes, while Sncg only had a single enriched
motif identified by TF-MoDISCo. This is consistent with the strong
overlaps among these cell-types within the observed transcrip-
tional hierarchy, where there is mixing across types when defined
purely by expression clusters [32]. A full list of the motif matches
for each filter is provided as Supplementary data. We also found
that many TF-MoDISCo cluster representations, which were also
supported by convolutio nal filter representations, do not have
any correspondence to a known motif in the JASPAR database –
these were labeled by just their filter name. This was expected to
an extent as the JASPAR database is not complete and the ability
to analyze cell type-specific regulatory regions within the brain
emerged recently with the advent of scATAC-seq data.

Discussion
In this study, we examined the usability of meta-analytic marker
genes for scATAC-seq cell-typing at a variety of levels of granular-
ity. We found that a robust marker gene set optimized for multiple
scRNA-seq data produced high performance at resolutions from
cell to cluster level. Interestingly, feature selection via marker
gene sets substantially improved neuronal and non-neuronal cell-
type prediction even without sophisticated supervised learning
methods. The choice of marker gene sets was a major driving
factor of the prediction performance rather than that of clas-
sification strategies. We also demonstrated the potential power
of this strategy for regulatory inference from scATAC-seq exper-
iments once heterogeneous data has been partitioned into cell-
type specific pseudo-bulk profiles. The resultant “cleaned” pro-
files can be used to train a CNN model to learn a relationship
between input DNA sequence and its accessibility for a given cell-
type – we showed this with the BICCN dataset. Interpreting the
trained CNN revealed learned motifs that were enriched near the
marker gene sets in a subtype-specific manner, suggesting the
existence of cell-type specific regulation for meta-analytic marker
genes in the motor cortex. The straightforward feasibility of using
robust marker gene sets for accurate subtype cell-typing within
scATAC-seq data opens up many important downstream possi-
bilities, most clearly condition- and subtype-specific regulatory
network discovery, as demonstrated in our own deep learning
analysis.

To further investigate the applicability of our meta-analytic
approach, we benchmarked the cell-type prediction for a differ-
ent system, the 10k PBMC dataset provided from 10X Genomics

(v1.0.1) [33]. The dataset is randomly divided into five groups
as a pseudo replicate to construct meta-analytic marker sets on
scRNA-seq data. The AUROCs for cell-type prediction are higher
than 0.9 for almost all cell types using top 100 meta-analytic genes
as the results of mouse brain datasets (Supplementary Figure
7A). Furthermore, Seurat integration using meta marker genes
detected a “platelet”-like cluster, which is not detected in the
default highly variable gene (HVG)-based integration and distinc-
tively isolated, with keeping the precision comparable (0.912 and
0.918 for meta markers and HVGs, respectively, Supplementary
Figure 7B–D). Hence, our approach using meta-analytic marker
sets may have a potential to improve the detectability of rare
cell types as well as cell-type annotation at cell-level. To evaluate
more heterogeneous scRNA-seq and scATAC-seq data of blood
cells from liver and femur tissues of three fetuses [34], the pre-
diction performance of meta markers for cycling cell types is
additionally tested. In fact, each cluster of scRNA-seq is associ-
ated with more than one cell type and cycling state by manual
annotation in the original study (Supplementary Figure 8A and
B). The simultaneous prediction of both cell-type and cycle state is
close to random (AUROC = 0.5) while the cluster prediction based
on marker sets from scATAC-seq data is drastically improved
(AUROCs >0.85 for six out of seven clusters using top 100 genes)
(Supplementary Figure 8C and D). The overlap of extracted meta
marker genes indicates only around 10% of genes are shared
between the marker sets from the same cell types under cycling
and not-cycling states (Supplementary Figure 8E). This result
suggests learning meta-analytic marker sets specific for cell-cycle
states might enable a fine-grained cell-type prediction for future
study.

ScRNA-seq has proven to be a remarkably effective technique
for the characterization of cell-types within the brain, shedding
new light on decades old questions regarding the form, function,
and organization of cell-types [35]. In turn, the complexity of the
brain has made it one of the strongest use cases for single cell
technologies. While cell-typing and characterization have been
major success stories, understanding the regulatory basis of the
observed cell-types remains an important challenge [8]. One of
our important contributions is to demonstrate just how effective
marker gene selection can be for brain epigenetic data. The cell-
type characterization based on marker genes has long been a
mainstay of wet-lab biology but typically focused on specificity,
rather than comprehensiveness [36]. In contrast, high-throughput
single-cell methods have generally preferred methods that rely
on information distributed across a large fraction of genes. Our
analysis suggests that a middle ground of picking redundant
marker sets meta-analytically satisfies a number of important
constraints: high classification performance, generalization, sim-
plicity and straightforward interpretability. While we see dramatic
differences from dataset to dataset, feature selection appears to
be the critical determinant for accurate cell-typing, as opposed
to more complicated modeling of the way those features interact
(which is less likely to generalize). Because marker sets can be
derived from high-performing scRNA-seq data, we exploit all the
existing success of cell-typing efforts there to inform the inter-
pretation of scATAC-seq data. Importantly, the utility of feature
selection for consistent annotation is likely to remain even as
wet-lab technology improvements (such as paired scRNA-seq and
scATAC-seq) will make clustering cells within a given dataset less
challenging. The significance of marker set selection is also high-
lighted by the improved interpretability it offered when we turned
to model the cell-type specific regulatory programs through deep
learning.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
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To predict chromatin accessibility across different cell-types
from just the DNA sequence, CNNs have demonstrated a remark-
able ability [24, 25, 37]. ScATAC-seq provides an opportunity to
study cell-type specific regulatory programs in heterogeneous
tissues, such as the immune cells [38] and the brain (this study),
using CNNs. By “purifying” scATAC-seq data by robust cell typing,
the accessibility signal is expected to become more reliable. This
may explain why our CNN yields improved performance both
in classification accuracy and interpretable motif representa-
tions. Since many accessible sites are shared across different cell-
types, these “overlapping” regions may not necessarily contain
the information we desire, that is to know which motifs drive
cell-type specific regulation. Hence, it remains a challenge to
decipher which motifs are relevant for cell-type specificity. Our
approach was to explore the enrichment of motifs nearby meta-
analytic marker genes that are cell-type specific, which shifts the
distribution of transcription factors that are learned genome-wide
to the ones that regulate genes of a given cell-type. Indeed this
approach reveals many known motifs (and some putative novel
ones). The predicted motif information is publicly available along
with the predicted chromatin accessibility profiles only from a
sequence. Moving forward, it would be beneficial to follow up this
work to try to decipher which proteins bind to these motifs in
each cell-type and explore which non-marker genes they regulate.
Since benchmarking the DL models for scATAC-seq datasets is still
known as a difficult task [39], our publicly available model will
be a good resource for a fair comparison between single-cell and
pseudo-bulk DL models.

Methods and Materials
Meta-analytic marker genes for mouse brain
For robust and accurate cell-typing of single-cell data, we devel-
oped a method, MetaMarkers, and used it to define a new meta-
analytic marker gene set, called SF marker set [14]. MetaMarkers
consists of two simple steps; extract the list of marker genes
from single datasets with the order of detectability, then optimize
the marker sets by selecting replicable markers by computing
pareto front considering coverage and signal-to-noise ratio trade-
off. Using six scRNA-seq datasets obtained by the BICCN, top 100
marker genes were determined as the most robust marker set
for the SF marker set. The SF marker set is considered as the
expanded marker set that includes co-expressed genes of marker
genes. Additionally, SC is a subset of SF but restricted to have the
same number of genes as that of CU [11], which is a classical
marker set, to assess the importance of the number of genes.
TA and TN marker sets are the sets of differentially expressed
genes found in scRNA-seq datasets [5,20]. From the list of cluster-
specific genes, they visually inspected marker specificity and gave
preferences to the genes that are globally unique and expressed
in all or a large proportion of cells within the cluster.

Mouse brain scATAC-seq datasets
From the BICCN collection, we obtained single-cell combinato-
rial indexing ATAC-seq (sci-ATAC-seq) data that consist of four
batches with a transcriptome reference of SMART-seq v4 scRNA-
seq data (the cell number after filtering is 6278) for the mouse
primary motor cortex region [16]. Both datasets are available
from the BICCN data portal https://biccn.org. Moreover, we col-
lected scATAC-seq datasets of the mouse brain published on
Gene Expression Omnibus (GEO). Specifically, read count matrices
and metadata of 6 scATAC-seq studies were downloaded from
GEO. The corresponding GEO IDs of the collected studies are

GSE100033 [15], GSE111586 [11], GSE123576 [40], GSE127257 [41],
GSE126074 [17] and GSE130399 [18]. From the Paired-seq datasets
of GSE130399, the one for an adult mouse cerebral cortex sample
is applied in this study. To convert read counts to gene activities,
we used the gene structure information from an Ensembel GTF
file for GRCm38 as of November 2018. Each genomic feature in the
original study was then assigned to the closest TSS found in the
GTF file. A gene activity estimation was carried out by summing
the read counts of all assigned features within the 10kb upstream
or downstream from the TSS of all transcripts of the same gene
id. For the datasets whose feature is peak-based, the locations of
each peak center were used to associate each feature and gene.
A general pre-processing, filtering, clustering, and detection of
cluster-specific genes was performed on a SCANPY platform [42].

Assessment of cell-typing for scATAC-seq
We performed a comprehensive assessment of cell-typing
for six well-annotated scATAC-seq datasets using a different
combination of supervised learning methods, training sets, and
marker gene sets. A graphical outline is shown in Supplementary
Figure 6.

Supervised learning methods
The methods used in this study are classified into three cate-
gories: raw signal, ML classifiers and joint clustering methods. Raw
signal methods predict each cell type based on the raw signal
scores computed by aggregating the read counts for the pro-
moter regions of each biomarker gene. This method is the only
method that does not require any training dataset except for a
marker gene set. ML classifier methods consist of four popular
ML classifiers applicable to supervised learning of scATAC-seq
cell-typing. Specifically, SVM, random forest, logistic regression
with L1 regularization (Logistic regression) and a variant of logistic
LASSO “Alternate Logistic LASSO” [43] are included in this cate-
gory, which is expected to be more robust for sparse data. Due to
the limitation of computational resources, only Logistic regression
was carried out for the prediction using all genes and the other
three classifiers were applied with the feature selection based on
the marker gene set. The last category is a joint clustering method,
in which a test and training dataset is reanalyzed independently,
then jointly clustered two datasets to associate each cell in the
test set with the annotated cells in the training dataset. We chose
Seurat [22] and BBKNN [23] for a comparison referring to the
results of the previous study of an integrated analysis of single-
cell atlases [13]. To compute AUROCs from the results of BBKNN,
we implemented our own script to compute the scores for a cell-
type prediction by counting the nearest-neighbor cells for each
cell type.

Training set
The training set is applied in four different ways. Raw signal
methods use gene activity profiles from the test scATAC-seq
dataset only for selected biomarker genes. Consensus methods
use the scATAC-seq datasets except for the one used as a test
set. For this prediction, the prediction scores are computed by the
classifiers trained on each training set. Those scores are averaged
to compute the final prediction scores after normalization within
each dataset. RNA atlas methods use the BICCN scRNA-seq data
as a training set to optimize the parameters or infer the nearest-
neighbor cells. For the datasets based on joint profiling methods,
we also carried out ML-based supervised learning using scRNA-
seq from the same dataset, named “RNA” training.

https://biccn.org
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data


10 | Kawaguchi et al.

Gene set selection
In addition to the five marker gene sets collected from the pre-
vious studies, we performed the supervised learning with all
detected genes if an optimization process is feasible. Specifically,
supervised learning based on all genes was demonstrated for
Logistic regression from ML classifiers and both joint clustering
methods.

Supervised learning by machine learning
classifiers
To carry out supervised learning, we implemented a workflow of
optimization of ML classifiers using the scikit-learn library. The
parameters used for each classifier are as follows: degree is 3 and
kernel is set to an rbf kernel for SVM, n_estimators is set to 100
for RF, and C is set to 1.0 (default) for Logistic regression. Other
parameters are set to the default values. For Alternate Lasso,
we implemented an original classification function in which the
best and alternate predictors are averaged with different weights.
In this study, we extracted top n predictors at maximum and
summed their predictions with the weight 1/n, where n is set to 5.

Joint clustering methods for an integrative
analysis of single-cell omics datasets
BBKNN was applied to the pair of scATAC-seq and the BICCN
scRNA-seq dataset after applying a general normalization for the
scRNA-seq dataset by a Scanpy function “normalize_per_cell.”
The parameter for k-nearest neighbor used in the BBKNN algo-
rithm was set to k = 5, 10, 20, 30 with and without a graph trim-
ming option. We also run Seurat v3.2.2 to align the same dataset
combinations as used for BBKNN. The alignment of two datasets
was done via FindTransferAnchors and TransferData functions
using canonical correlation analysis by setting a parameter reduc-
tion = ”cca.”

Sequence analysis of accessible sites with deep
learning
Data for binary classification
Given the 5kb bins, each of which contains a single bulk accessi-
bility profile value, we binarized each label with a threshold of
0.02, above which is given a positive label, and below is given
a negative label. We then filtered sequences with no positive
labels across all classes. Sequences were converted to a one-hot
representation with 4 channels (one for each nucleotide: A, C, G,
T) and a corresponding label vector with either a 0 for negative
labels or 1 for positive labels. We split the data into a validation
set (chromosomes 7 and 9; N = 24908), test set (chromosomes
1, 3 and 5; N = 14670), and training set (all other chromosomes;
N = 274689).

Model
Our CNN model takes as input a 1-dimensional one-hot-encoded
sequence with four channels, then processes the sequence with
three convolutional layers, a fully-connected hidden layer, and
a fully-connected output layer that have sigmoid activations for
binary predictions. Each convolutional layer consists of a 1D cross-
correlation operation followed by batch normalization [44], and
a non-linear activation function. The first layer used an expo-
nential activation, which was previously found to encourage first
layer filters to learn interpretable motif representations and also
improves the overall interpretability with attribution methods
[29]; while the rest used a rectified linear unit. The first convo-
lutional layer employs 200 filters each with a size of 19 and a

stride of 1. The second convolutional layer employs 300 filters
each with a size of 9 and a stride of 1. And the third convolutional
layer employs 300 filters each with a size of 7 and a stride of 1.
All convolutional layers incorporate zero-padding to achieve the
same output length as the inputs. The first two convolutional
layers are followed by max-pooling layer of window size 10, and
the last one is followed by a global average pooling layer. The
fully-connected hidden layer employs 512 units with rectified
linear unit activations. Dropout [45], a common regularization
technique for neural networks, is applied during training after
each convolutional layer, with a dropout probability set to 0.2 for
convolutional layers and 0.5 for fully connected hidden layers.

Training
All models were trained with mini-batch stochastic gradient
descent (mini-batch of 100 sequences) with Adam updates [46]
with a decaying learning rate using a binary cross-entropy loss
function. The initial learning rate was set to 0.001 and decayed
by a factor of 0.3 if the model performance on a validation set
(as measured by the Pearson correlation) did not improve for
7 epochs. Training was stopped when the model performance
on the validation set does not improve for 25 epochs. Optimal
parameters were selected by the epoch which yields the highest
Pearson correlation on the validation set. The parameters of each
model were initialized according to Glorot initialization [47].

Filter visualization
To visualize first layer filters, we scanned each filter across every
sequence in the test set. Sequences whose maximum activation
was less than a cutoff of 50% of the maximum possible activation
achievable for that filter in the test set were removed [24, 48].
A subsequence the size of the filter centered about the max
activation for each remaining sequence and assembled into an
alignment. Subsequences that are shorter than the filter size
due to their max activation being too close to the ends of the
sequence were also discarded. A position frequency matrix was
then created from the alignment and converted to a sequence logo
using Logomaker [49].

Saliency analysis
To test the interpretability of trained models, we generate saliency
maps [30] by computing the gradients of the predictions with
respect to the inputs. Saliency maps were multiplied by the query
sequence (times inputs) and visualized as a sequence logo using
Logomaker [49].

Key Points

• Seven scATAC-seq datasets of mouse brain are system-
atically compared to benchmark the efficacy of neuronal
cell-type annotation from gene sets.

• Redundant marker genes give a dramatic improvement
for a sparse scATAC-seq annotation beyond the hetero-
geneity of scATAC-seq data.

• We reannotated all scATAC-seq data for detailed cell
types using robust marker genes and their meta scATAC-
seq profiles are publicly available at a new Meta scATAC-
seq server.

• Predicted profiles from only DNA sequence using a
deep neural network are visualized together to explore
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sequence-dependent and -independent epigenetic regu-
lation.
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23. Polański K, Young MD, Miao Z, et al. BBKNN: fast batch alignment
of single cell transcriptomes. Bioinformatics 2019. ISSN 1367-
4803;36(3):964–5. https://doi.org/10.1093/bioinformatics/btz625.

24. Kelle DR, Snoek J, Rinn JL. Basset: learning the regulatory code
of the accessible genome with deep convolutional neural net-
works. Genome Res 2016;26(7):990–9.

25. Zhou J, Troyanskaya OG. Predicting effects of noncoding vari-
ants with deep learning-based sequence model. Nat Methods
2015;12(10):931–4.

26. Koo PK, Ploenzke M. Deep learning for inferring transcription
factor binding sites. Curr Opin Syst Biol 2020;19:16–23.

https://github.com/carushi/Catactor
https://github.com/carushi/Catactor
https://gillisweb.cshl.edu/Meta_scATAC/
https://gillisweb.cshl.edu/Meta_scATAC/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac541#supplementary-data
http://bib.oxfordjournals.org/
https://doi.org/https://doi.org/10.1038/s41592-021-01336-8
https://doi.org/https://doi.org/10.1093/bioinformatics/btz625


12 | Kawaguchi et al.

27. Sandelin A, Alkema W, Engström P, et al. Jaspar: an open-access
database for eukaryotic transcription factor binding profiles.
Nucleic Acids Res 2004;32(suppl_1):D91–4.

28. Gupta S, Stamatoyannopoulos JA, Bailey TL, et al. Quantifying
similarity between motifs. Genome Biol 2007;8(2):R24.

29. Koo PK, Ploenzke M. Improving representations of genomic
sequence motifs in convolutional networks with exponential
activations. Nat Mach Intell 2021;3(3):258–66.

30. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional
networks: visualising image classification models and saliency
maps. arXiv preprint 2013;arXiv:1312.6034.
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