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Cerebral blood flow measurements with
15O-water PET using a non-invasive
machine-learning-derived arterial
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Abstract

Cerebral blood flow (CBF) can be measured with dynamic positron emission tomography (PET) of 15O-labeled water by

using tracer kinetic modelling. However, for quantification of regional CBF, an arterial input function (AIF), obtained from

arterial blood sampling, is required. In this work we evaluated a novel, non-invasive approach for input function pre-

diction based on machine learning (MLIF), against AIF for CBF PET measurements in human subjects.

Twenty-five subjects underwent two 10min dynamic 15O-water brain PET scans with continuous arterial blood sampling,

before (baseline) and following acetazolamide medication. Three different image-derived time-activity curves were

automatically segmented from the carotid arteries and used as input into a Gaussian process-based AIF prediction

model, considering both baseline and acetazolamide scans as training data. The MLIF approach was evaluated by com-

paring AIF and MLIF curves, as well as whole-brain grey matter CBF values estimated by kinetic modelling derived with

either AIF or MLIF.

The results showed that AIF and MLIF curves were similar and that corresponding CBF values were highly correlated

and successfully differentiated before and after acetazolamide medication. In conclusion, our non-invasive MLIF method

shows potential to replace the AIF obtained from blood sampling for CBF measurements using 15O-water PET and

kinetic modelling.
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Introduction

Measurements of cerebral blood flow (CBF) can be

used to separate pathological and healthy brain tissue

as well as for functional brain research. Tracer kinetic

modelling following dynamic 15O-water positron emis-

sion tomography (PET) imaging with arterial blood

sampling is considered the reference standard for

CBF measurements.1–6 However, arterial cannulation

is an invasive, laborious and time-consuming proce-

dure, and may, due to induction of pain and risk for

complications, discourage patients and volunteers from

participating in research studies. Furthermore, a useful

arterial input function (AIF) curve cannot be obtained
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without careful cross calibration of the blood measure-

ment detector and the PET scanner. In addition,

because the blood is most commonly sampled from

the radial artery, additional corrections for dispersion

and delay of the tracer must be applied, to obtain the

true AIF for the brain.3,7–9

The use of an image-derived input function (IDIF)

has been proposed as an alternative approach to over-

come the challenges with the AIF.10 In brain PET

imaging, an IDIF can be measured inside a suitable

intracranial blood vessel directly in the reconstructed

PET images, for instance in the intracranial carotid

arteries.11–13 Due to the limited spatial resolution of

the PET system, and the need for short time-frames

during the first pass of the bolus, image-derived meth-

ods suffer from both partial volume effects and image

noise. These limitations require complex and standard-

ized methods for partial volume correction and artery

delineation, which may be difficult to achieve in prac-

tice. Recently, a few clinical studies have suggested the

use of integrated PET/magnetic resonance imaging
(MRI) for deriving an IDIF in brain, where the latter

modality is used for artery delineation or even motion

correction.14–18 However these methods are sensitive to

registration errors between the modalities and require

detailed knowledge of the scanner resolution. Another

recent study overcame potential misregistration prob-

lems and formed a corrected IDIF by deriving total

number of counts and artery volume from the two

modalities separately.19 However, this method was

not yet validated with arterial blood sampling and as

hybrid PET/MRI is still an emerging modality, to date,

image-derived methods are rarely used in larger clinical

or research studies.10,20

Alternatively, a standardized, population-based AIF

can be calculated as an average AIF from a group of

subjects acquired with the same tracer, injection protocol

and population, and scaled to the specific subject.21,22

However, this method requires at least one blood

sample for curve scaling while individual physiological

differences and scan-dependent variations are neglected.
An approach on image data with simultaneous esti-

mation of AIF and kinetic parameters has also been
reported.23–25 This method, however, assumes a known

mathematical AIF model and requires at least one late

blood sample for parameter estimation. Recently, non-

invasive simultaneous estimation methods were devel-

oped that obviate the need for the single late blood

sample by using additional input variables from elec-

tronic health records into the models.26,27 The limita-

tion of such an approach is that a large set of clinical

variables must be collected and handled for each

patient. These variables may not necessarily be avail-

able in the health records for all patients and may even

complicate inclusion of healthy volunteers in research
studies.

In this study we use a machine learning-based
approach for AIF estimation. Machine learning-
methods are especially useful for function estimation
and regression.28 Briefly, one seeks to determine a
function, f, that predicts the machine-learning-derived
input function (MLIF), based on an input vector, x,
composed of multiple image-derived tissue curves,
such that MLIF ¼ fðxÞ. The function f is determined
by optimizing hidden parameters to find the best map-
ping, AIF ¼ f xð Þ; for a set of training data, where both
the AIF and the tissue curves are known. Once the
model has been trained and f is known, the MLIF
can be predicted for unseen test data using only the
tissue-curves extracted from the image data.28

In our previous work, we developed and validated a
machine-learning-based input function for 18F-
fluorodeoxyglucose (FDG) in a mouse PET cohort.29

In short, two learning models were evaluated that
predicted an AIF from time-activity curves of up to 7
different tissue regions as input. The main limitation
with our previous study was the lack of an AIF, thus
the models could only be validated against a reference
IDIF. However, in mouse PET scanning, the entire
body of the mouse fits in the PET field-of-view, thus,
time-activity curves from all organs are readily available
as input data for the models. We showed that, for
instance, the myocardium and liver were important for
AIF prediction, because their time-activity curves closely
resembled the reference IDIF. In contrast, these blood-
rich organs are outside the field-of-view in clinical brain
PET imaging, and thus, alternative input curves had to
be derived for the MLIF model in the current study.

In the present study, we have further developed the
MLIF approach for human 15O-water brain PET data
and evaluated the models against an AIF obtained from
continuous arterial-blood sampling. We aimed to show
that an AIF could be accurately predicted by an MLIF
model using multiple image-derived input data from the
carotid arteries. We hypothesized that there were no sig-
nificant differences in estimated CBF when using either
AIF or MLIF, and investigated similarities and differ-
ences between image-derived sampling in the brain
versus arterial-sampling from the arm. Further, we
investigated whether the MLIF method was capable to
predict a clinically relevant CBF difference between
scans before and after acetazolamide medication.

Materials and methods

Subjects

Pseudonymized data from 25 subjects were retrospec-
tively collected from a completed clinical research
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study at Uppsala University Hospital. The data com-

prised both patients with multiple sclerosis (MS) and

healthy volunteers (mean age (range) in years: 40 (23–

56); F:M 15:10). In this methodological study, we did

not differentiate between the two groups as we consid-

ered that the subject’s health status had no impact on

our evaluation of the MLIF model. Therefore, all

authors were blinded for the health status of each sub-

ject and thus, no comparisons were made between

healthy subjects and MS-patients. The results of the

parent study will be reported elsewhere.
The parent study was approved by the Swedish

Ethical Review Authority (reference 2014/453). All

subjects signed written informed consent prior to inclu-

sion. Since the present work was purely an image anal-

ysis methodology study using pseudonymized data, it

was not covered by the Swedish or Norwegian regula-

tions on medical research in humans and as such, no

additional ethics approval was necessary.

Image acquisition

All subjects underwent two 10min dynamic brain PET

scans on either an ECAT Exact HRþ stand-alone PET

scanner (Siemens, Knoxville, TN; n¼ 9) or a Discovery

MI PET-Computed tomography (CT) scanner (GE

Healthcare, Waukesha, MI; n¼ 16). The scans started

simultaneously with an automated bolus injection of 5

MBq/kg 15O-water (15O-water in 5ml saline at 1ml/s

followed by 35ml saline at 2ml/s). Each subject under-

went one scan at baseline and one scan 15–30min after

intravenous administration of acetazolamide (9mg/kg

up to a maximum of 1000mg; 5min infusion) such that

every subject was its own control. Acetazolamide med-

ication dilates the vascular system and thereby it

increases the cerebral arterial blood flow velocity.30–32

Attenuation correction was based on a 10min trans-

mission scan with rotating 68Ge rod sources (ECAT)

or an ultra-low-dose CT scan (Discovery MI). Images

were reconstructed into 26 time-frames (1� 10, 8� 5,

4� 10, 2� 15, 3� 20, 2� 30 and 6� 60 s). Image

reconstruction algorithms were chosen to result in a

matching image resolution for the two scanners:

ordered subsets expectation maximization with 6 iter-

ations, 8 subsets and a 4mm Hanning filter (ECAT)

and 3 iterations, 16 subsets and a 5mm Hanning filter

(Discovery MI).
In addition, all subjects underwent MRI on a 3T

MRI scanner (Achieva, Philips Healthcare, Best, The

Netherlands) with a 32-channel head coil. A three-

dimensional T1-weighted gradient echo sequence was

obtained with voxel size 1.0� 1.0� 1.0mm3, repetition

time¼ 8.2ms and echo time¼ 3.7ms.

Blood sampling

Continuous arterial blood sampling was performed
during 10min for each scan (3ml/min) using either an
ABSS V3 (Allogg, Mariefred, Sweden; subjects scanned
on ECAT) or PBS-100 (Veenstra-Comecer, Joure, The
Netherlands; subjects scanned on Discovery MI). A
single arterial blood sample was taken through a
three-way-valve on the arterial line 5min post injection
and measured in a cross-calibrated well counter for
calibration of the continuous arterial blood data.

The measured blood signal, g(t), was affected by
dispersion in the vessels and in the detector system
tubes. This could be modelled as a convolution of the
true AIF, CA(t), and a dispersion function, d(t)8

g tð Þ ¼ CAðtÞ � dðtÞ (1)

A mono-exponential dispersion model was assumed8

d tð Þ ¼ 1

s
e�

t
s (2)

where s is the dispersion constant. An expression for
the true AIF, CA(t), could be obtained by the Laplace
transform33

CA tð Þ ¼ g tð Þ þ s
dg

dt
(3)

The dispersion constant was fixed to 15 s for all sub-
jects in this study, as suggested in the literature.8

The dispersion-corrected AIFs were delay-corrected,
as described in the ‘Image processing’ Section.

A visual assessment of the AIF curves was per-
formed to identify abnormal AIFs due to failures in
tracer administration or continuous arterial blood sam-
pling. Three subjects were excluded after the visual
assessments.

Image processing

All images were corrected for inter-frame motion
using in-house written software in Matlab
(Mathworks, MA, USA). A simple and objective
multi-VOI thresholding method, that could capture
blood information from the carotid arteries, was empir-
ically developed. First, to remove noise close to the
edge slices, a PET search-volume was defined by trim-
ming 20 voxels in the x-y-plane periphery, and by
removing 5 slices in the z-direction. The algorithm for
identifying the time-frame for carotid-VOI threshold-
ing was based on a frame-wise graph of whole-brain
gray-matter total intensity. The time-frame used for
VOI thresholding was the first frame where the total
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intensity was larger than 25% of the maximum value

in this graph. Three VOIs were generated, comprising

the 10, 100 and 1000 highest-intensity voxels (Figure 1a

to c). The median voxel value was derived for each

time-frame and VOI, resulting in three IDIF time-

activity curves, named IDIF10, IDIF100 and IDIF1000

(Figure 1d), which could be interpreted as three differ-

ent image-derived blood-curves with different amounts

of partial volume effect.
Subsequently, to match the AIF sampling, all PET

data were interpolated linearly to one second time

framing. To correct for delay between the AIF and

the PET data, the dispersion corrected AIF was shifted

to provide the best overlap with the IDIF10 curve, i.e.

where the dot product between the two curves was

maximized.
In all following analyses, only PET and AIF data

from 0–6min were used, to minimize noise from late

parts of the scans. Calibration of the AIF curves with

the single arterial blood sample was only conducted for

the training data, and thus no AIF or blood sample

was required for the test data.
To extract time-activity curves for whole-brain grey

matter, T1-weighted MRI images were co-registered to

PET images and segmented using SPM8 (The

Wellcome Centre for Human Neuroimaging, UCL

Queen Square Institute of Neurology, London, UK).

All image analysis was performed in the native PET
image space.

Function prediction using Gaussian processes

Gaussian processes (GP) is a well-known, non-para-
metric Bayesian regression method which has been fre-
quently used within machine learning for data-driven
function estimation and regression tasks.34,35 One
advantage with GP is that it predicts not only the
mean function, but also its variance, thus providing
an uncertainty measure of the model.36 Furthermore,
GP, is known to work well with sparse training data-
sets, as opposed to neural networks.37,38

In GP regression, the output y, is approximated by a
probability distribution of functions of the input, x,
such that fðxÞ�GP m xð Þ; k x; x0ð Þ� �

, which is a general-
ization of the multivariate Gaussian distribution to
infinitely many variables. Here, m xð Þ is a mean func-
tion and k x; x0ð Þ is a covariance function.36 Assuming N
available input-output training samples in a dataset
fxn; yngNn¼1, each including the three IDIF time-
activity curves, xn (see Figure 1), with corresponding
known AIF, yn. Then the mean value MLIF of the
test sample, E y�½ �, and the variance, V y�½ �, can be pre-
dicted by

E½y�� ¼ kT� ðK þ r2� IÞ�1y (4)

V½y�� ¼ k x�; x�ð Þ � kT� ðK þ r2� IÞ�1k* (5)

Here k� is the covariance between the training sam-
ples xn and the test sample x�; K ¼ k xn; xmð Þ is the
covariance between all training samples; r2� I is a
scalar matrix with diagonal elements equal to the
noise level; k x�; x�ð Þ is the covariance between the test
sample and itself.36

Input function prediction

For input function prediction, leave-one-out cross val-
idation was employed, which is a common validation
method in machine learning with limited amounts of
data.28 In short, one sample was withdrawn from the
dataset and assigned as test sample, while the remain-
ing samples were allocated for training. The three time-
activity curves (Figure 1) were used as input vectors
into the GP framework, and the MLIF and variance
of the test sample were predicted using equations (4)
and (5), respectively. The process was repeated by
assigning a new sample as test sample, until all samples
had been tested once.

In all experiments, the Mat�ern covariance function
was chosen, with �¼ 5/2, because it has been reported
to generate smooth functions.36 Data normalization

(a)

(d)

(b) (c)

Figure 1. Outline of the VOI thresholding method imple-
mented in this work. (a) to (c) shows an enlarged axial brain PET
slice of the optimal time-frame for a representative subject.
Highlighted are the parts of the IDIF10 (a), IDIF100 (b) and
IDIF1000 (c) comprising the 10, 100 and 1000 highest intensity
voxels. (d) The resulting time-activity curves during the first two
minutes for IDIF10-1000. The IDIF10 captures the highest activity in
the carotid artery, while the IDIF100 and IDIF1000 shows a lower
activity due to a higher number of voxels included.
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was applied on the input-IDIFs, which is a well-known

approach to improve convergence of machine learning

models.39 Normalization of the IDIF10 curves was per-

formed by identifying the IDIF10 curve with the highest

peak value among all subjects. Subsequently, each

IDIF10 curve was normalized by dividing with this

peak value. Similarly, the IDIF100 and IDIF1000

curves were normalized independently with their

respectively found highest peak value among the sub-

jects. Thus, the model was trained with three different

normalized IDIFs with values ranging between 0 and 1.

The normalization was only a scale factor, meaning

that relative amplitudes between subjects remained.

GP regression was implemented in Python 3.6.8,

using GPflow 1.2.0, in which the matrix inversion of

equation (4) was approximated by Cholesky decompo-

sition. The hyperparameters of the covariance function

were optimized by maximizing the logarithm of the

marginal likelihood of the training data.40

Kinetic modelling

Quantification of CBF was performed on the whole-

brain grey-matter region. A single-tissue compartment

model was used to generate CBF values. This model

assumes that water can diffuse freely between vascular

and tissue space, with activity concentrations CA and

CT, respectively, and is described by the following

equation41,42

dCTðtÞ
dt

¼ K1 � CA tð Þ � k2 � CT tð Þ (6)

where CA(t) is the whole-blood arterial time-activity

curve, also known as the AIF. The solution to equation

(6) is given by43

CTðtÞ ¼ K1 � CA tð Þ � e�k2�t (7)

where � denotes mathematical convolution. The activ-

ity concentration measured with PET, CPET, is mod-

elled as the sum of the tissue compartment, CT (t), and

the fractional arterial blood volume in the tissue, VA,

such that

CPET tð Þ ¼ 1� VAð Þ � CT tð Þ þ VA�CAðtÞ (8)

For tracers with high extraction fraction relative to
the blood flow, such as 15O-water, CBF equals K1.

43,44

Evaluation design

The aim of the current work was to investigate whether
an AIF could be accurately predicted using an MLIF
model in baseline and acetazolamide scans of the same
subject. In a first case, a GP model named MLIF1 was
trained and subsequently tested on baseline scans using
leave-one-out cross validation. Similarly, another GP
model, named MLIF2, was trained and subsequently
tested on acetazolamide scans using leave-one-out
cross validation.

In a routine setting, it is of interest to train a pre-
dictive model on normal subjects and apply the same
model on a disease, or medicated group. Therefore, in a
second case, an additional GP model named MLIF*

1,
was trained on all baseline scans, and subsequently
tested on all acetazolamide scans. Here, the asterisk
(*) in MLIF*

1 emphasises that all subjects from the
baseline scan were included in the training data for
this model, as opposed to the leave-one-out training
for MLIF1. Essentially, one might see MLIF*

1 and
MLIF1 as two models trained on the same dataset, as
the difference is only one subject.

Finally, we hypothesized that MLIF*
1 might be

more representative for a local AIF in the brain, com-
pared to an AIF sampled in the wrist. Therefore, in a
third case, we aimed to evaluate the CBF increase from
baseline to acetazolamide scans obtained by the two
different methods in case 1 and case 2, by using the
carotid arteries with the ten highest-intensity voxels
(IDF10) as input function during kinetic modelling.

The evaluation design is summarized in Table 1.

Evaluation methods

The GP predicted MLIF curves were first compared
point-by-point to AIF using orthogonal regression.

Table 1. The evaluation design of the MLIF method.

Case Training data Testing data Input function Procedure

1 Baseline Baseline MLIF1 Leave-one-out

Acetazolamide Acetazolamide MLIF2 Leave-one-out

2 Baseline Baseline MLIF1 Leave-one-out

Baseline Acetazolamide MLIF1* All baseline scans

3 a Baseline IDIF10
a Only used to calculated change

between baseline and acetazolamide CBFa Acetazolamide IDIF10
a

aIn case 3, no GP prediction was used, but instead, kinetic modelling was based on the 10 highest-intensity carotid artery voxels (IDIF10) as input

function.
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Subject scans with regression slopes that were more

than three scaled-median absolute-deviations away

from the median slope, were considered outliers, and

removed from further model comparisons.45 Time–

activity curves averaged over subjects were calculated

for: whole-brain grey matter, AIF, the MLIF models

and IDIF10. CBF and VA were estimated for whole-

brain grey matter using kinetic modelling with both

AIF and the GP-predicted MLIF (case 1 and case 2)

as well as with the IDIF10 time-activity curve as input

function (case 3).
MLIF-based CBF estimates were compared with

the one based on AIF by paired t-test (a¼ 0.05), ratio

calculation, orthogonal regression and Bland-Altman

plots.46 Normality was assessed using quantile–

quantile plots.
The GP variance (equation (5)) was considered as a

measure of prediction error. This measure was evalu-

ated by the relationship between the magnitude of the

CBF-ratio (CBFMLIF/CBFAIF) and GP variance for

case 1.

Results

CBF values based on AIF (CBFAIF) and MLIF

(CBFMLIF) are shown in Supplementary Table S1.

The average CBFAIF and CBFMLIF were similar for

both baseline and acetazolamide scans, about 0.45

and 0.60ml�min�1�g�1, respectively. The mean

CBFMLIF/CBFAIF ratio was 1.04 and 1.03 for baseline

and acetazolamide, respectively. No significant

differences were found between the average CBFAIF

and CBFMLIF for either scan.
Individual data points for MLIF and AIF from case

1 are shown as a scatter plot in Figure 2(a). Based on
the outlier removal criterion, four scans were removed

from model comparisons. There is a strong overall
linear relationship between AIF and MLIF curves for
both baseline (slope: 0.8) and acetazolamide scans
(slope: 0.9). Individual r2 values were high for both

baseline (mean: 0.90, SD: 0.1) and acetazolamide
(mean: 0.93, SD: 0.07). Histograms of slope values
indicate slopes close to unity for most subjects for
both baseline (median slope: 0.86, Figure 2b) and acet-
azolamide (median slope: 0.87, Figure 2c).

Displaying the CBF data from case 1 as a scatter
plot (Figure 3a), a strong linear relationship and high

overall correlation (r2>0.9) between CBFAIF and
CBFMLIF was obtained. Bland-Altman analysis
(Figure 3b) exhibited a prediction bias close to zero.

The fractional arterial blood volume, VA, from
equation (8), was found to be near zero for all scans
(0.001	 0.003).

As a visual illustration of the effect of prediction
errors on estimation of CBF, the AIF and GP-
predicted MLIF from the baseline scan for four repre-
sentative subjects are shown in Figure 4. Figure 4(a)

and (b) comprises two examples with less than 3% dif-
ference between CBFAIF and CBFMLIF, while Figure 4
(c) and (d) display cases with substantial differences
between both methods. Based on the CBF ratios

(CBFMLIF/CBFAIF), it can be observed that an over-
prediction of the AIF peak (Figure 4c) results in an

(a) (b)

(c)

Figure 2. (a) Scatter plot of MLIF and AIF data points for all subjects for baseline (blue) and acetazolamide (red) scans based on case
1. The 1 s time frames were interpolated back to the original PET time framing (26 time-frames). The solid lines are the orthogonal
regression fits. (b and c) Histogram of orthogonal regression slopes for individual subjects for baseline (b) and acetazolamide (c) scans.
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underestimation of CBF, while an underpredicted AIF
peak (Figure 4d) ends in an overestimated CBF.

Figure 5 displays box plots of whole-brain grey
matter CBF for baseline and acetazolamide scans,
when using different prediction models for MLIF (see
Table 1).

The GP variance was evaluated as prediction error
measure in case 1 (Supplementary Figure S1). No rela-
tionship was found between the magnitude of the
CBFMLIF/CBFAIF ratios and the GP variance values.
The predicted variance was not further considered in
this work.

(a) (b)

Figure 3. Evaluation of the GP-predicted MLIF for baseline (blue) and acetazolamide (red) scans based on case 1. (a) Scatter plot of
MLIF-based and AIF-based CBF. The solid lines are the orthogonal regression fits. (b) Bland-Altman plot of case 1.

(a) (b)

(c) (d)

Figure 4. Comparison of AIF (black dashed line) and GP-predicted MLIF (red line) for the baseline scan of four representative
subjects. (a and b) Two scans with less than 3% difference between CBFAIF and CBFMLIF. (c) Representative example of a scan where
the MLIF overpredicts the AIF peak, resulting in an underestimation of the calculated CBF. (d) Representative example of a scan where
the MLIF underpredicts the AIF peak, resulting in an overestimation of the calculated CBF.
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In case 1 we evaluated the MLIF method by training

and applying separate GP models for baseline (MLIF1)

and acetazolamide (MLIF2) data. There were no sig-

nificant differences between mean CBFAIF and mean

CBFMLIF in neither baseline, nor acetazolamide scans.

Furthermore, following acetazolamide medication, we

found on average 37% increase (P < 0.01) in mean

CBFAIF and 29% increase (P < 0.01) in mean

CBFMLIF (Figure 5a). For case 1, both the AIF and

the MLIF based methods resulted in similar CBF

values, while the CBF increase after acetazolamide

medication was lower for the MLIF method. The cor-

relation coefficient between AIF and MLIF-based

CBF changes for case 1 was 0.62.
In case 2, a predictive model (MLIF*

1) was trained

on baseline scans and then applied on acetazolamide

scans. Similar to MLIF1, the average CBFMLIF*1 was

non-significantly different from the corresponding

CBFAIF after acetazolamide medication. Also, there

was still a significant increase (17%, P < 0.01) in CBF

between baseline and acetazolamide scans (Figure 5b),

but notably smaller than the 29% increase observed in

case 1. The correlation coefficient between AIF and

MLIF-based CBF changes for case 2 was 0.14.
In a final case, the relative CBF increase from base-

line to acetazolamide scans was investigated by using

the IDIF10 as input function for each scan. A signifi-

cant CBF increase of 19% (P¼ 0.04) was found after

acetazolamide medication (Figure 5c), which was com-

parable to the change observed in case 2.
As CBF is based on underlying time-activity curves,

we proceeded to investigate the differences in CBF

after acetazolamide medication in the first two cases

by inspecting the mean time-activity curves across sub-

jects in Figure 6. We observed that the local brain input

function (IDIF10) (Figure 6e) showed a shape-

dependence on acetazolamide medication which was

not reflected in the AIF measured in the wrist (Figure

6b). In the AIF, the baseline and acetazolamide curves

were similar, while for IDIF10, the acetazolamide curve

had a larger area-under-curve compared to baseline.

Also, for IDIF10, there was a slight shift in the mean

time–activity curves between baseline and acetazol-

amide, which was not visible for the AIF. Thus, the

AIF measured in the wrist does not reflect physiologi-

cal changes due to acetazolamide, which are apparent

in the local brain input (IDIF10).

Discussion

Tracer kinetic modelling of dynamic PET data requires

accurate knowledge of an AIF, conventionally mea-

sured through arterial blood sampling. Our aim was

to investigate whether an AIF could be predicted as

accurately by an MLIF model using solely image-

derived input data from the carotid arteries.
AIF and predicted MLIF curves were found to be

similar, with no significant difference between whole-

brain grey matter CBFAIF and CBFMLIF estimates.

Furthermore, the correlation between the CBF esti-

mates was r2>0.9 and the mean differences were close

to zero. The MLIF model was also able to accurately

predict an increased CBF after acetazolamide medica-

tion, when trained on post-acetazolamide data.

(a) (b) (c)

Figure 5. Box plot of estimated whole-brain grey matter CBF for baseline and acetazolamide scans, when using different input
functions for case 1 (a), case 2 (b) and case 3 (c). For an explanation of the cases, see Table 1. For visual purposes, the data in panel (c)
was scaled to match the range of the AIF-based CBF values in panel (a). Percentage differences are shown as mean	 95% confidence
interval, and P values are based on paired t-test. In the box plots, red points indicate the data points; the horizontal line and the black
box represent median and interquartile range (25th to 75th percentile), respectively; the whiskers indicate the maximum and min-
imum data point up to 1.5� interquartile range.
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Altogether the results indicate that the MLIF method
has potential as an alternative AIF for generation of
CBF values using 15O-water PET and kinetic model-
ling, which in clinical practice implies evading of arte-
rial cannulation.

Initially, we evaluated an MLIF model trained on
pooled baseline and acetazolamide data. However,
this resulted in inferior generalization to new samples
compared to when training was done separately for
baseline and acetazolamide scans (data not shown).
The reason for this difference between the approaches
may be because the input IDIFs under the two condi-
tions vary in amplitude (Figure 6e), while the AIF

(Figure 6b) does not. Therefore, in a first case, input
functions of baseline scans were predicted using an
MLIF model trained on baseline data (MLIF1), and,
similarly, input functions of acetazolamide scans were
predicted using an MLIF model trained on acetazol-
amide data (MLIF2). There was a strong linear rela-
tionship between the data points from AIF and
predicted MLIF curves, although the peak values
were systematically underestimated (slope <1 in
Figure 2). In the time-activity curves, the number of
high data values, acquired during the first pass peak,

is low compared to the number of low values, acquired
during the rest of the scan. Also, the standard deviation
around the peaks was observed to be larger than at the

tails (data not shown). We speculate that this imbal-
ance affects the GP models and results in the system-
atically underestimated peak values. Previous work has
shown that when data is limited, the GP model may
underestimate the mean function.47

For both baseline and acetazolamide, the mean
time-activity curves for AIF (Figure 6b), and MLIF1,
MLIF2 (Figure 6c) appeared similar in shape.
Following kinetic modelling, the average CBF values
obtained using an AIF are in line with previously pub-
lished work before48,49 and after administration of
acetazolamide.48 No significant differences were
found between AIF-based and MLIF-based CBF esti-

mates in whole-brain grey matter for neither baseline
nor acetazolamide scans (Figure 5a). Also, a slope close
to unity, an r2>0.9 and low bias between CBFAIF and
CBFMLIF estimates pointed towards an acceptable
agreement of both methods (Figure 3a). Across both
baseline and acetazolamide scans, differences between
CBFAIF and CBFMLIF estimates were relatively small
(Figure 3b), although several subjects had relative CBF
errors of> 20% for the baseline scans while there was a
somewhat lower spread for the acetazolamide scans.
Our hypothesis is that a GP model trained on acetazol-

amide data (MLIF2) generalize better to new samples,
compared to a model trained on baseline data
(MLIF1). We speculate that the reason for this is that

(a) (b)

(d) (e)

(c)

Figure 6. Mean time-activity curves across subjects for baseline (blue) and acetazolamide (red) scans during the first 2 min of PET
scanning. (a) Measured radioactivity uptake in whole-brain grey matter. (b) AIF. (c) MLIF1 model for baseline, and MLIF2 for acet-
azolamide scans. (d) MLIF1 model for baseline, and MLIF*1 for acetazolamide scans. (e) IDIF10 input function based on the 10 highest
voxels in the carotid arteries.
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a larger range of CBF values is a result from a larger
range of input values (IDIF10-1000), for acetazolamide,
compared to baseline scans. This may have resulted in
MLIF2 being valid for a wider range of unseen sam-
ples, compared to MLIF1, as mentioned and illustrated
in Supplementary material. Nevertheless, the CBF
increase between baseline and acetazolamide scans
was highly correlated to that of the AIF in case 1.
Furthermore, it was observed that the shape of the
input function had an impact on the accuracy of the
MLIF-based CBF estimates (Figure 4). Evidently,
an underpredicted AIF peak resulted in an overesti-
mated CBF while an overpredicted AIF peak caused
an underestimation of CBF. This can be explained
by the inverse relationship between K1 and CA in
equation (7).

In a second case, we trained an MLIF model on all
baseline scans and then applied that model on the acet-
azolamide scans (MLIF*

1). The idea was to resemble a
situation where the baseline scans reflected a database
comprising healthy subject with a normal CBF where-
as the acetazolamide scans reflected clinical data
from patients with an altered CBF. Even in this sce-
nario significant differences were found between the
whole-brain grey matter CBF from the baseline and
acetazolamide scan. However, the CBF increase
between baseline and acetazolamide scans in this case
displayed small between-subject variation (data not
shown) and, maybe because of that, low correlation
to the AIF CBF changes. Furthermore, unexpectedly,
the difference in CBF was only 17% (Figure 5b) com-
pared to 29% in the previous case (Figure 5a).

We found this difference between baseline and acet-
azolamide response striking. The local brain input
function (IDIF10) (Figure 6e) showed a shape-
dependence on acetazolamide which was not reflected
in the AIF measured in the wrist (Figure 6b).
Consequently, CBF calculated with a local brain
input would by necessity be different from AIF-based
CBF. This effect remained also for the MLIF1 and
MLIF1

* models (Figure 6d) and could possibly explain
the observed differences in CBF change.

In order to quantify the differences in CBF after
acetazolamide medication in the first two cases,
we attempted using a carotid artery region (IDIF10)
as input function for both baseline and acetazolamide
scans (case 3). In case 3 a significant difference of
19% was found between baseline and acetazolamide
scans which was similar to the observed difference
found in case 2. This supports that the difference in
acetazolamide provocation results were caused by the
different input functions in brain (case 2, Figure 6d)
and in the wrist (case 1, Figure 6c). Note that, case 3
was used only to investigate the relative increase
in CBF between baseline and acetazolamide scans

found in case 1 and case 2. IDIF10 cannot be
used as a substitute for AIF, due to the limitations
of image derived methods, as described in the
Introduction.

We suggest that the above discussed difference in
input function curve shape might be explained in part
by effects on the vascular system after acetazolamide
medication. Acetazolamide dilates the vascular system
and increases the cerebral blood flow velocity,30–32

which explains the increased mean time–activity curve
in whole-brain grey matter after acetazolamide medi-
cation (Figure 6a). A lower back-pressure due to dilat-
ed vasculature together with increased blood
velocity30,31 could possibly also explain the observed
effect on MLIF*

1 (Figure 6d) and on the IDIF
(Figure 6e). Figure 6e also indicated that the 15O-
water tracer arrived earlier to the brain after acetazol-
amide medication compared to the baseline scan,
resulting in a slight shift of the mean time–activity
curves. This observation might also support that the
differences in the IDIF10 peaks between scans were
partly due to an enhanced cerebral blood-flow velocity
in the acetazolamide scan. An additional contributing
effect to the increased amplitude of the IDIF after acet-
azolamide may be an increased spill-over from tissue
due to increased brain uptake.

In summary, when training and testing on the same
scans, similar CBF estimates for whole-brain grey
matter are obtained when using AIF and MLIF
(case 1). However, when using baseline scans for
training followed by applying the model to the acet-
azolamide scans (case 2) the blood input curves
are higher for the MLIF model, possibly due to the
increase in blood flow velocity after acetazolamide
medication. Consequently, CBFMLIF for whole-brain
grey matter was lower for acetazolamide, compared
to baseline, and the difference in CBF before and
after acetazolamide medication was reduced from
29% to 17%. Although these relative changes were
different for case 1 and case 2, both were significant
and hence suggesting that the MLIF method has a
clinical potential to differentiate baseline from acet-
azolamide scans.

A prerequisite for the MLIF approach is that repre-
sentative training data have been collected for the spe-
cific tracer and imaging system, including both images
and blood AIFs. Once an MLIF model has been
trained, it offers several advantages, compared to
various other image-derived and population-based
methods.11–13,20–25 A trained MLIF model is a non-
invasive method describing both the shape and the
amplitude of an AIF, without any need for calibration
blood samples. The MLIF models represents a learned
transformation, that directly maps the image-derived
input data, to a ready-to-use AIF, by inherently
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correcting for partial volume effect, with no predefined
assumption of the model function. Furthermore,
the input data required by the MLIF approach consists
of only three carotid artery regions which can be objec-
tively and automatically segmented in the PET images.
This makes the MLIF approach simple and convenient
to use, without the need for MRI-based artery segmen-
tation.14–19

One limitation of this study is that the GP models
were trained on at most 22 samples (MLIF*

1), which
might have resulted in an inferior generalization of the
model to new samples which were dissimilar from
the training data. To investigate the robustness of the
MLIF model to unseen test data, new IDIF curves
were created by scaling the existing input IDIF time–
activity curves for each subject during the leave-one-
out testing (Supplementary material). When the input
data was scaled, the MLIF model was stable for input
ranges encountered in the training data. For higher and
lower scale factors, the model performance was gradu-
ally degraded (Supplementary Figure S2A). The drop
of performance of machine learning models outside the
range of training data, so called domain shift, is
expected and well known.50–52

In a clinical setting where an existing MLIF model is
applied to a patient, it is important that the resulting
CBF is reliable. We have reported four outliers based
on abnormal regression slopes between the AIF and
MLIF data points. However, we cannot know if it
was the AIF or the MLIF curves that were abnormal.
The corresponding CBF values for these outlier scans
all indicate that the AIF was abnormally high as indi-
cated by CBFMLIF/CBFAIF 
 1 (Table S1). This sug-
gests that the outlier was caused by the AIF and not by
the MLIF model. Future research should investigate
methods for quality control of predicted MLIF
curves and CBF values from a trained model.

Another limitation of the study is the combination
of healthy and MS patients in the data set, as well as
data from two different scanners. This increased the
heterogeneity in the input data to the MLIF models,
and in combination with the effects of acetazolamide,
this might have affected the results. However, the lim-
ited number of subjects does not allow to study these
effects further in detail. Further, the evaluation of our
MLIF model was mainly based on differences in
whole-brain gray matter CBF. We expect similar
results to be obtained for CBF in smaller brain regions,
but this aspect should be investigated in future studies.
Also, the test-retest variability of the MLIF method
should be investigated and compared to that of the
blood AIF,53 as well as the evaluation of the model
sensitivity in relation to aspects such as injected dose,
time-framing, reconstruction settings and different type
of scanners. Finally, the generalizability of the MLIF

method to other diseases should be investigated. For
example, it is known that carotid stenosis alters the
temporal shape of the AIF,54 which might have impli-
cations for MLIF models trained on baseline scans and
applied to patients with pathological arterial
vasculature.

In this study, different MLIF models were evaluated
with 15O-labeled water. In our previous research29 a
machine learning approach was also feasible for AIF
prediction using FDG, although not yet evaluated in
clinical data. Thus, we suggest that the method can be
adopted to other tracers by merely training similar
MLIF models. With proper validation, it may also be
conceivable that tracers requiring metabolite correction
of the AIF can be included in the prediction model. As
for all data-driven models, the accuracy of the MLIF
approach for a particular PET application will depend
on the quality and quantity of the available training
data. Nevertheless, MLIF opens for simplified and
non-invasive input function measurements, and there-
by potentially eliminating the need for extensive arteri-
al blood sampling in future PET studies.

In conclusion, we demonstrated that our non-
invasive MLIF prediction method may be a viable
alternative for CBF measurements using 15O-water
PET and kinetic modelling, which in clinical practice
implies evading of arterial cannulation. The MLIF
method successfully differentiated CBF values before
and after acetazolamide medication.
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