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Abstract: The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive
members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic
center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are
involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and
metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical
role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6
(IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17
activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has
a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin
subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity
and disease, both dependent and independent of its regulation of ADAM17.
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1. Introduction

Rhomboids are an evolutionarily conserved family of multi-span transmembrane proteins [1].
Some are catalytically active serine proteases capable of intramembrane cleavage of their substrates.
These were originally discovered in Drosophila melanogaster as intramembrane proteases of EGFR
ligands [2–5]. Other rhomboid family members, while structurally similar, are catalytically inactive
and known as pseudoproteases. These rhomboid pseudoproteases were nonetheless found to be
evolutionarily conserved indicating the presence of selective pressure despite absence of their proteolytic
activity [6]. This alludes to functions beyond rhomboid catalytic activity that are important enough
to be preserved. iRhoms 1 and 2, encoded by the genes Rhbdf 1 and 2, belong to the latter family of
pseudoproteases. They were named iRhoms to indicate their proteolytic inactivity while being part of
the rhomboid family [7].

Both Drosophila and mammalian iRhoms bind their partner proteins in the ER. Drosophila’s single
iRhom interacts with EGF family ligands resulting in ER associated ligand degradation (ERAD) and
inhibition of EGFR signaling [8]. However, the two mammalian iRhoms bind to ADAM17 rather
than the EGFR ligands, which results in trafficking of ADAM17 to the Golgi where it can begin its
post-translational modification journey to become a cell surface active protease. Furthermore, iRhom2
is reported to be involved in immune responses seemingly unrelated to ADAM17 activity [9,10].
There are excellent reviews on iRhom and ADAM17 structure [11], functional regulation and expression
patterns [12], cellular and pathophysiological roles as well as novel binding partners [13] and combined
biological functions [14]. This review however will focus on iRhom2, both as a regulator of ADAM17
as well as its ADAM17-independent roles in immunity and disease.
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2. Regulation of ADAM17 by iRhom2

Understanding the journey of ADAM17 from production to function is central to understanding
how iRhoms modulate ADAM17 activity. Ectodomain shedding of cell surface transmembrane proteins
plays a central role in several signaling pathways such as the EGFR and TNF pathways. These cleavage
events are performed by metalloproteases, such as ADAM17, also known as TNFα converting enzyme
(TACE) in reference to the original discovery of its role in TNFα shedding [15–17]. ADAM17 can shed a
variety of ligands including the adhesion molecule L-selectin, transforming growth factor alpha (TGFα),
the IL-6 receptor (IL-6R) as well as the TNFα receptors (TNFR) 1 and 2 themselves [18,19]. These and a
list of over 80 biologically active molecules shed by ADAM17, including growth factors, cytokines,
receptors and adhesion molecules are involved in a wide array of physiological processes and diseases
from innate immune responses to carcinogenesis [20]. Therefore, it is not surprising that ADAM17 is
regulated on multiple levels as briefly summarized here to highlight the interactions with iRhom2
(Figure 1), while a detailed description of these mechanisms have been reviewed elsewhere [12,20].
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Figure 1. ADAM17 post translational regulation. ADAM17 is processed in the Golgi to remove
its inhibitory pro-domain. Its cytoplasmic tail is phosphorylated, but that is not required for its
transport from the Golgi to the cell surface. However, when not phosphorylated this induces
ADAM17 dimerization and TIMP3 binding resulting in inactivation. Alteration in the disulfide bridge
arrangements can also alter ADAM17′s activation status. The phosphorylation status of the substrates
themselves can also alter ADAM17 shedding performance.

Once produced, ADAM17 requires several post-translational modifications to become catalytically
active. It is proteolytically processed in the Golgi by the proprotein-convertases PC7 and furin to
remove its inhibitory pro-domain [21–23]. Its cytoplasmic tail is phosphorylated by extracellular
signal-regulated kinases (ERK) and mitogen activated protein kinases (MAPK) as part of protein
kinase C (PKC) signaling activity, as well as by Polio like kinase 2 (PLK2) [24–31]. Phosphorylation
of ADAM17′s cytoplasmic tail, or its deletion, is required for ADAM17 proteolytic activity as well
as its trafficking to the cell surface [32]. Unless phosphorylated, the tail serves to dimerize ADAM17
which in turn allows tissue inhibitor of metalloprotease 3 (TIMP3) to bind and inhibit ADAM17
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activity. Therefore, deletion or phosphorylation of the cytoplasmic tail allows ADAM17 to become
catalytically active [33–36]. Moreover, ADAM17 substrate phosphorylation has also been reported to
influence its ability to shed these post-translationally modified substrates [28,37]. At the cell surface,
alteration in the intramolecular disulfide bridge status of ADAM17 by disulfide isomerases, or in
response to changes in the local redox environment such as during inflammatory events, induces
a conformational change regulating ADAM17 activity as well [38–42]. The ADAM17-iRhom1 and
iRhom2 interaction governs ADAM17′s maturation, trafficking towards the cell surface and even its
proteolytic activity and substrate selectivity [43–49]. While ADAM17 has been reported to stabilize
cell surface iRhom2 in return [50]. Similar to ADAM17 iRhom2 levels are regulated transcriptionally.
iRhom2 is a p63 transcription factor target gene in keratinocytes [51], is induced in response to exposure
to lipopolysaccharides (LPS) or viral infections in macrophages [9,43,44] and induced in the liver post
bile duct ligation [52]. It may also be regulated through proteasomal mediated degradation. Its half-life
can be extended by treating cells with the proteasomal inhibitor MG-132 [53]. However, direct evidence
of k48 ubiquitination and proteasomal degradation is still lacking.

Once produced both iRhom1 and iRhom2 bind directly to ADAM17 [49]. The ADAM17-iRhom2
interaction was originally elucidated in relation to ADAM17 shedding of TNFα in hematopoietic
cells in iRhom2 deficient mice [43,44]. This interaction was shown to be specific to ADAM17 and
not its closest relative ADAM10 [43]. A panel of other ADAM proteins were also tracked in double
iRhom 1 & 2 knock out fibroblasts; none of which were found to traffic differently in the absence of
iRhoms [49]. The iRhom2 loss of function sincere (sin) mutation provided more nuanced insights into
the complete mechanism of iRhom-ADAM17 regulation. The sin mutation is present in iRhom2′s
first transmembrane helix and results in reduced TNFα shedding [54]. It was later identified that the
transmembrane helices of iRhom2 interact with ADAM17 [46,55], with the sin mutation disrupting
that interaction and resulting in iRhom2′s inability to traffic ADAM17 efficiently out of the ER and into
the Golgi [55]. The sin mutation also affected ADAM17′s substrate selectivity [55].

The same mechanism was later extended to ADAM17 shed EGFR ligands as well [53,56]. iRhom2
gain of function mutations in its N-terminal cytoplasmic tail, identified in the inherited Tylosis with
oesophageal cancer (TOC) syndrome, result in increased EGFR ligand shedding and subsequent
activation of EGFR signaling (Box 1) [57–59]. The same TOC gain of function mutations were also
found to enhance shedding of TNFRs [60]. Consistently, two studies employing the same mouse curly
bare (cub) iRhom2 mutation which deletes most of the cytoplasmic domain showed alterations in EGFR
signaling [53,56]. Mechanistically, iRhom2 mediates ADAM17 trafficking and its subsequent activation
which results in enhanced ADAM17 shedding activity (Figure 2) [45–47,49,61–65].

iRhom2 was found to efficiently bind mature ADAM17, and over-expressed iRhoms were found
to localize to the plasma membrane, indicating a continued relationship at the cell surface [43,60,66].
Furthermore, ADAM17 substrate shedding differs depending on which of the two iRhoms is present [45].
This selectivity was recently shown to be regulated through direct iRhom-ADAM17 interaction via both
their transmembrane helices and juxta-membrane domains, confirming their continued interaction at
the cell surface [46]. However, for ADAM17 to actually shed its target substrates it needs to be at least
momentarily relieved from iRhom binding [66,67]. In a similar fashion to ADAM17 regulation iRhoms
are also regulated by post-translational modifications and protein-protein interactions, adding a further
layer of control to the iRhom-ADAM17 relationship. ERK and MAPK-dependent phosphorylation of
the cytoplasmic tail of iRhom2 results in 14-3-3 proteins binding to iRhom2 and its dissociation from
ADAM17, which in turn allows stimulated shedding of ADAM17 targets [66,67]. Furthermore, and
similar to control of ADAM17 activity through its cytoplasmic tail, this phosphorylation event has no
effect on iRhom2 mediated ADAM17 maturation, and removal of the cytoplasmic tail altogether actually
increased constitutive ADAM17 shedding activity of TNFR [60]. This indicates that direct cell surface
phosphorylation controls iRhom-ADAM17 stimulated shedding. Further cementing the combined
control of both proteins on the cell surface through their cytoplasmic tails, iRhom2 cytoplasmic
tail binding partners also have a considerable effect on ADAM17 activity. Two groups published
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simultaneously that the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein
8 (FRMD8), also named the iRhom Tail-Associated Protein (iTAP), stabilizes the iRhom-ADAM17
complex at the cell surface. In its absence ADAM17 shedding of TNFα and EGFR ligands is impaired
and the iRhom-ADAM17 complex is endocytosed and degraded in the lysosome [68,69].
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Figure 2. iRhom regulation of ADAM17. iRhom binds to ADAM17 in the ER facilitating its export to
the Golgi where it can begin its posttranslational modification fueled activation. iRhom and ADAM17
continue to the cell surface where in the presence of iTAP the complex is stabilized. In its absence the
complex is sent for endocytosis and lysosomal degradation. Phosphorylation of iRhom by ERK and
MAPK allows iRhom to bind to 14-3-3 proteins, which in turn facilitate release of ADAM17 from the
complex to allow final activation and shedding of its targets.

As iRhom2 regulates EGFR ligand shedding, one would expect that the iRhom2 null mice share a
similar open eye phenotype seen in EGFR and ADAM17 null mice [18,70]. This is not the case despite
iRhom2 being expressed in the skin. iRhom2 deficient mice appear healthy, viable, and show no
gross phenotype, while ADAM17 deficient mice exhibit severe symptoms after birth [18]. However,
iRhom 1 and 2 double knockout mice show similar phenotypes compared to ADAM17 and EGFR
null phenotypes, indicating redundancy in the cellular functions of the two iRhoms [48,49]. Indeed,
iRhom1 triggers shedding of a selection of ADAM17 substrates in mouse embryonic fibroblasts [48].
Moreover, tissue- or cell type- specific expression of iRhom1 and iRhom2 might compensate for loss of
one iRhom protein. iRhom1 seems to be important in neuronal tissue, excluding microglia [8,48,71–73],
while iRhom2 may have more of a functional role in immune cells including brain microglia and liver
hepatic stellate cells [48,52,54,61].

3. iRhom2 Regulated Pathways

3.1. TNF Signaling

TNFα is the founding member of a superfamily of cytokine-like molecules. Along with their
cognate receptors, the TNF receptor (TNFR) superfamily, they control survival, proliferation and
pro-inflammatory functions on both immune and non-immune cells [74]. TNFα binding to TNFR1
results in formation of two distinct complexes with diverging functions based on the cellular
context; complexes I and II. Complex I consists primarily of the receptor itself, the adaptor protein
TNFR1-associated death domain (TRADD), TNFR-associated factor 2 (TRAF-2), cellular inhibitors of
apoptosis 1 and 2 (cIAP1/2), linear ubiquitin chain assembly complex (LUBAC) and receptor-interacting
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serine/threonine-protein kinase 1 (RIPK1). Based on the phosphorylation and ubiquitination status
of RIPK1, this complex can activate downstream NF-κB signaling resulting in the expression of
pro-inflammatory and pro-survival genes [75–78]. However, if NF-κB dependent transcription is
inhibited or RIPK1 phosphorylation and ubiquitination status is changed this will alternatively result
in formation of complex II [79,80]. Complex II, which is actually 3 distinct sub complexes a-c, results
in cell death. Complexes IIa and IIb induce apoptosis, are caspase 8 dependent and contain either
TRADD or RIPK1 respectively, while complex IIc, also known as the necrosome, depends on RIPK1,
3 and mixed lineage kinase domain-like (MLKL) to induce necroptosis [74,75,81].

TNFR1 is ubiquitously expressed and can be activated by both shed and membrane bound
TNFα. TNFR2 on the other hand is expressed in a more limited fashion on immune, neuronal, cardiac,
endothelial and stem cells binding membrane bound TNFα with higher affinity [74]. TNFR2 does not
contain a death domain like TNFR1, however its signaling can result in cell death by loss of TRAF2.
Mostly its activation induces NF-κB signaling resulting in more tissue regeneration and repair [74,82,83].
TNFα and both of TNFR 1 & 2 are shed by ADAM17 under regulation of iRhom2 [15,16,43–45,60,84].
However, the effect of iRhom2 on shedding of ADAM17 ligands—specifically, TNFα-versus TNFR
shedding—can have opposing consequences. The outcome is context specific and depends on the
cellular composition and pathophysiological mechanisms within each tissue (Figure 3).
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iRhom2 null mice and those with the sin mutation, that inhibits iRhom2′s ability to efficiently traffic
ADAM17 from the ER to the Golgi, have reduced soluble TNFα (Table 1) [43,44,54]. The TNFα-TNFR1
pathway is crucial for bacterial defense [85–88]. Mice with reduced soluble TNFα due to iRhom2
absence succumbed to sublethal doses of Listeria monocytogenes [44]. They were also more likely to
develop severe disease after myocardial infarction due to altered TNFα signaling and macrophage
polarization [89], and were more likely to develop atherosclerosis when challenged with a high fat
diet, although the effect was not solely due to altered TNFα [90]. However, this is at odds with a
report of increased TACE expression and TNFα in localized samples of ruptured plaques in human
acute myocardial infarction, which also indicates a more complex process beyond TNFα shedding
alone [91]. Furthermore, iRhom2 null mice are more likely to develop fibrosis post bile duct ligation,
as a model of human cholestatic disease, due to reduced TNFR1 shedding from the surface of hepatic
stellate cells and subsequent enhanced TNF signaling [52]. The same mice conversely are protected
from LPS induced septic shock [44], rheumatoid arthritis [61,92], hemophilic arthropathy [93], lupus
nephritis [64], post intestinal ischaemia reperfusion acute lung injury [94], renal injury from particulate
matter [95] and inflammatory bowel disease [96], all of which are TNFα mediated with the exception
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of lupus nephritis which is TNFα and HB-EGF mediated [64]. A previous study shows the iRhom2
null mice being more susceptible to inflammatory bowel disease using a spontaneous colitis mouse
model relating it to altered T helper cell cytokine production [97].

Table 1. iRhom2 regulated pathways in immunity and disease.

Pathway Immune process/
Disease Mechanism References

EGFR

Tylosis with oesophageal
cancer

Activating iRhom2 mutation, increased EGFR ligand
shedding [57–59,98–103]

Increased squamous cell
carcinoma

iRhom expression induction, increased EGFR ligand
shedding, increased MET signaling [47]

Increased cervical cancer Increased iRhom expression, increased EGFR, WNT
and TGFβ signaling [65]

Lupus nephritis
resistance Reduced iRhom2, soluble TNFα and HB-EGF [64]

K6/16

Tylosis with oesophageal
cancer & keratinocyte

skin homeostasis

TOC mutated iRhom2 binds K16 altering K6-K16
dimerization. Reduced iRhom2, reduced K16

expression.
[104]

Increased oral squamous
cell carcninoma

Increased iRhom2 expression, migration and
proliferation [105]

TNF

Resistance to LPS
induced septic shock Reduced iRhom2,soluble TNFα and TNFR1 signaling [43,44]

Bacterial defense defect Reduced iRhom2,soluble TNFα and TNFR1 signaling [44]

Chronic inflammation &
reduced healing

Induction of iRhom2 expression resulting in reduced
membrane TNFα-TNFR2 signaling [62]

Rheumatoid arthritis
resistance Reduced iRhom2 and soluble TNFα [61,92]

Increased regulatory T
cell expansion

Reduced iRhom2, increased membrane
TNFα-TNFR2 signaling [106–109]

Inflammation &
hepatoprotection

Induction of iRhom2 expression, increased TNFR
shedding, reduced TNFR1 signaling [84,110]

Worsened atherosclerosis
& myocardial infarction

outcomes

Reduced iRhom2, altered TNF signaling and
macrophage polarization [89,90]

Hemophilic arthropathy
resistance Reduced iRhom2 and soluble TNFα [93]

Lupus nephritis
resistance Reduced iRhom2, soluble TNFα and HB-EGF [64]

Intestinal ischaemia
reperfusion acute lung

injury resistance
Reduced iRhom2 and soluble TNFα [94]

Particulate matter Renal
injury resistance Reduced iRhom2 and soluble TNFα [95]

Inflammatory bowel
disease resistance Reduced iRhom2 and soluble TNFα [96]

Inflammatory bowel
disease susceptibility

Reduced iRhom2 and IL10 resulting in altered T
helper cell cytokine production [97]

Increased cholestatic
liver fibrosis

Reduced iRhom2, reduced TNFR1 shedding in
hepatic stellate cells and increased TNFR1 signaling [52]

Notch signaling

Hepatocellular
carcinoma induction

Increased iRhom2 activity by inducible nitric oxide
synthase, ADAM17 cleavage of Notch receptor [111]

Reduced hair
development

Spontaneous iRhom2 mutation, reduced ADAM17
activity and Notch receptor processing [112,113]

MAVS & STING

Defective innate immune
response to RNA viruses

Reduced iRhom2, increased E3 ubiquitin ligase,
reduced MAVS by increased proteasomal

degradation
[10]

Defective innate immune
response to DNA viruses

Reduced iRhom2, reduced STING nuclear
translocation & increased proteasomal degradation [9,114]
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Accordingly, there may likely be more nuances to iRhom2′s role in inflammatory bowel disease as
yet undiscovered, especially that iRhom2 T cell modulation has been reported elsewhere. Adoptive
transfer of iRhom2 null CD8+ T cells into CD8 null mice with an ongoing viral infection resulted
in a greater expansion of the immunosuppressive Vβ5+ regulatory T cells (Tregs), indicative of
increased membrane TNFα-TNFR2 signaling [106–109]. iRhom2 null mice do indeed have increased
presence of unprocessed membrane bound TNFα on their CD8+ T cells [106]. Conversely, increased
iRhom2 expression in chronic inflammation results in enhanced membrane TNFα cleavage from
endothelial cells. This results in reduced membrane TNFα-TNFR2 signaling to the detriment of the
healing process [62]. Finally, increased TNFR shedding under inflammatory conditions, in response to
increased iRhom2 and TACE phosphorylation, protects hepatocytes through reduced TNFR1 signaling
and soluble TNFRs binding circulating TNFα [84,110]. Hence, depending on the cellular tissue
composition in the disease process and the equilibrium of TNFα shedding vs its receptors, the outcome
of iRhom2 regulation of TNF signaling varies greatly.

3.2. EGFR Signaling

EGFR, also known as ErbB-1, is a member of a family of four transmembrane tyrosine kinase
receptors. It is activated through binding of its ligands to the extracellular domain, which leads to
dimerization, trans-autophosphorylation, internalization and either recycling or degradation of the
receptors dependent on ligand binding affinity and duration. This results in ligand specific activation
of genes responsible for cell proliferation, migration, survival, and differentiation [115]. Signaling
pathways activated by EGFR include MAPK, PI3K/AKT, JAK/STAT, and PKC [115–118]. The EGFR
ligands can be membrane bound and shed by ADAM10 and ADAM17 [115,119]. Of the seven ligands,
amphiregulin (AR), heparin-binding-EGF-like growth factor (HB-EGF), epiregulin (EPR), TGFα and
epigen have been reported to be shed by ADAM17 [115,119,120]. EGFR signaling is required for
normal epithelial development and homeostasis, as is evidenced by several mouse knock out models.
In addition to the open eye phenotype, EGFR deficient mice exhibit developmental defects in several
organs including skin, lung and gastrointestinal tract [70]. Furthermore, several epithelial cancers are
characterized by enhanced EGFR activation [115,121–124]. This correlates with a poor response to
conventional therapy [125,126]. Increased EGFR signaling in epithelial cancers occurs by a number of
mechanisms, including over-expression of EGFR [126–128] or its ligands [27,117,121], defective ligand
processing [129], activating mutations in EGFR [130,131], or excessive EGFR transactivation [132–136].

There has been a large body of work done relating iRhoms to EGFR ligand shedding and their
role in several EGFR related diseases. Autosomal-dominant inherited TOC familial cancer syndrome
patients were then found to have an activating mutation in iRhom2 that increased EGFR ligand
shedding, firmly putting iRhom2 in the midst of EGFR related cancers as well as epithelial homeostasis
(Box 1) [57–59]. The syndrome is characterized by palmar and plantar hyperkeratosis, accelerated
wound healing, oral leukoplakia, and a markedly elevated risk of developing esophageal squamous
cell carcinoma [58,98–103]. In mouse models of the syndrome it was shown that deletion of the EGFR
ligand AR or ADAM17 were able to restore normal skin phenotype [137,138] and that the defect was
skin specific [139]. While this cancer syndrome is extremely rare it gave us important insights into
the iRhom2-EGFR relationship. This relationship in squamous cancers was further cemented when
hepatocyte growth factor (HGF) signaling through its receptor MET was found to be dependent on
both iRhom1 and 2 regulation of ADAM17 shedding of EGFR ligands [47]. Indeed, iRhom1 had already
been reported to regulate EGFR ligand release and EGFR transactivation in vitro [140]. Recently both
iRhoms have been shown to play a role in cervical cancer. Cervical cancer tissue from 83 patients was
found to have high expression of both iRhom 1 and 2 compared to normal tissue. High expression was
correlated with poor outcome, which the authors relate through in vitro data to EGFR, WNT/β-Catenin
and TGFβ signaling [65]. Carcinogenesis however is a process that involves more than one pathway
as is evidenced by the mixed results of tyrosine kinase inhibitor clinical trials and increased dual
pathway inhibition approaches [141,142]. Furthermore, EGFR signaling is involved in much more than
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epithelial cancers alone. As mentioned above, lupus nephritis is dependent on both TNF and EGFR
signaling. In a mouse model of lupus nephritis, lack of iRhom2 resulted in protection from progressive
renal injury via these pathways [64].

3.3. Notch Signaling

The notch receptor is cleaved by ADAM 10 and 17. However, cleavage can only occur in the presence
of a bound ligand that induces a conformational change in the receptor. Alternatively, mutations in the
negative regulatory domain (NRR) of the notch receptor relieve this requirement [143,144]. Once cleaved,
the remaining transmembrane and cytoplasmic portions are then processed by γ–secretase releasing
the notch intracellular domain [145], which translocates to the nucleus affecting transcription [146].
The notch pathway is active during development and afterwards. It is responsible for regulating
replication, differentiation and the maintenance of stem cells [147]. It has a prominent role in
tumorigenesis acting as both a tumor suppressor in squamous cell carcinoma [148], and an oncogene in
T-cell leukemia [149]. This is the result of its transcriptional regulation being heavily dependent on the
cellular epigenetic context [147]. There are 4 notch receptors in humans (NOTCH1-4). The NOTCH1
NRR is commonly mutated in T-cell leukemias and its ligand-independent cleavage is ADAM17
dependent [143], signifying a potential role for iRhom2 in notch dependent carcinogenesis.

There are currently two studies relating iRhom2 to notch signaling regulation via ADAM17
receptor cleavage. One relates the role of iRhom2 to hepatocellular carcinoma (HCC) development,
specifically in liver cancer stem cells [111]. In 90 human HCC samples the authors found that
samples which had increased expression of stem cell markers also had elevated inducible nitric oxide
synthase (iNOS), active ADAM17 and notch signaling, all of which were iRhom2 dependent [111].
While increased iNOS activity has been shown to induce ADAM17 activity and be liver protective
through cleavage of TNFR1 [84], in this case it was associated with enhanced notch signaling and
poor survival [111]. The second paper relates to the spontaneous iRhom2 uncovered (Uncv) mouse
mutation which displays a hairless phenotype in the BALB/c background [112]. In these mice iRhom2
is incapable of supporting ADAM17 maturation which leads to reduced notch receptor processing and
reduction in hair shaft cell proliferation and development [112,113].

3.4. MAVS & STING

The innate immune response to non-self molecules (e.g., microbial products), known as pathogen
associated molecular patterns (PAMP), induces transcription of pro-inflammatory genes required to
control infections and mount an effective adaptive immune response [150]. PAMPs are recognized
through various germ-line inherited pattern recognition receptors (PRR) that induce production of
pro-inflammatory cytokines [151]. Viral PAMPs include their genome, especially in ways differentiating
them from host DNA or RNA [152]. Viral RNA is recognized through the retinoic acid-inducible
gene-I (RIG-I) like receptor pathways via mitochondrial antiviral-signaling protein (MAVS, also known
as VISA, IPS-1 and Cardif) [153–155], while viral DNA is recognized through the cyclic GMP-AMP
synthase (cGAS) via stimulator of interferon genes (STING) pathway [156].

Once RIG-I binds viral RNA, a conformational change has been suggested allowing it to bind
to MAVS [155]. However, it was shown without over-expression that RIG-I binds to MAVS even
in the absence of a viral infection, although no interferon regulatory transcription factor 3 (IRF-3)
recruitment to the complex occurred [157]. Regardless of how the interaction is induced, once the
complex is complete, innate immune antiviral responses can ensue via activation of IRF-3 and NF-κB
signaling [157,158]. MAVS can be sent off for proteasomal mediated degradation by several E3 ubiquitin
ligases including the E3 ligases Ring Finger Protein 5 (RNF5) and membrane-associated ring finger
(C3HC4) 5 (MARCH5) [159,160]. In the absence of iRhom2, murine innate immunity to Vesicular
Stomatitis Virus (VSV) infection was considerably impaired leading to neurological symptoms in all
iRhom2 deficient mice compared to 60% of wild-type mice. The authors also found that absence
of iRhom2 resulted in reduced MAVS levels [10]. Mechanistically, iRhom2 was reported to induce
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auto-ubiquitination of the E3 ligase RNF5 either in the absence of viral infection or during early viral
infections (4h). This resulted in proteasomal mediated degradation of RNF5 rescuing MAVS itself from
proteasomal mediated degradation. During late infections (>8h) iRhom2 reduced MARCH5 levels
saving MAVS again from proteasomal mediated degradation [10].

In response to detecting viral DNA, cGAS produces the second messenger cGAMP, which in turn
binds to STING in the ER. STING is then translocated in an iRhom2 dependent manner from the ER
to the Golgi and on to the perinuclear microsomes, in a mechanism reminiscent of iRhom-ADAM17
trafficking, albeit mediated by iRhom2′s recruitment of the translocon-associated protein (TRAPβ) [9].
However, iRhom2 also stabilizes STING by recruiting a deubiquitylating enzyme that rescues STING
from proteasomal mediated degradation. iRhom2 deficient mice were thus more susceptible to lethal
herpes simplex Virus 1 (HSV-1) infections than their wild type counterparts [9]. It further seems
that this is a conserved mechanism, as other DNA viruses have evolved mechanisms to evade the
innate immune response by disrupting the iRhom2-STING interaction to induce viral latency [114].
Human cytomegalovirus (hCMV) encodes the tegument protein UL82 which is capable of inhibiting
the STING-iRhom2-TRAPβ translocation complex. Moreover, in its absence antiviral gene responses
downstream of STING were enhanced [114].

3.5. K6/16 Balance

iRhom2 has a central role in the release of EGFR ligands. An activating mutation of iRhom2,
identified in TOC patients, results in palmar and plantar hyperkeratosis, accelerated wound healing,
oral leukoplakia, and a markedly elevated risk of developing esophageal squamous cell carcinoma.
In addition to iRhom2-induced ADAM17 EGFR ligand processing, iRhom2 can bind directly to the
stress-associated keratin K16 playing a pivotal role in the skin characteristics of the syndrome [104].
Keratins are thought to be mostly responsible for skin resilience of the palms and soles as they constitute
a vast majority of the proteins expressed in keratinocytes [161–163]. Keratins are expressed in pairs of
acidic and basic keratins which heterodimerize. For example, the acidic K16 keratin is paired with the
basic K6 keratin [164]. K16 is expressed in palmoplantar epidermis [164], at sites of wound healing [165],
associated with squamous cell carcinomas and induced during inflammation [166]. As K16 mutations
also present with palmar and plantar hyperkeratosis [167], the authors investigated iRhom2 gain
of function mutations in TOC and their relation to K16 expression. They find in hyperproliferative
TOC keratinocytes an enhanced iRhom2 K16 interaction, in the same binding region used for K6/K16
dimerization. This altered K16 filament organization and reduced expression of its binding partner K6.
While in the absence of iRhom2, proliferation and K16 expression are reduced and associated with
thinning of the epidermis of the mouse footpad. Changes in K6 and K16 expression are found on the
transcriptional level [104]. While iRhom2 activity was already linked to squamous cell carcinoma of
the esophagus in TOC patients, new evidence further links iRhom2 expression to oral squamous cell
carcinomas [105]. iRhom2 over-expression was correlated with reduced patient survival and enhanced
migration of an oral squamous cell carcinoma line in vitro [105]. In light of the effects of iRhom2
on K6/16 balance in skin keratinocytes as well as its role in EGFR signaling, further investigation is
required on iRhom2′s role in wound healing and related squamous carcinomas.
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Box 1. iRhom2 in human diseases.

Tylosis with Oesophageal Cancer (TOC) is an autosomal dominant syndrome characterized by palmar and
plantar hyperkeratosis, accelerated wound healing, oral leukoplakia, and a markedly elevated risk of developing
esophageal squamous cell carcinoma. Using family pedigrees and DNA samples from 3 US, UK and German
families, single amino acid substitutions in exon 6 of RHBDF2 were identified as the underlying cause of the
syndrome [58]. This was further confirmed independently in a Finnish family [59] and an African family [103]
showing again a single amino acid substitution between the two identified before and all within the highly
conserved region of the N-terminal cytoplasmic tail of iRhom2: a p.Ile186Thr mutation in the US and UK families,
a p.Asp188Asn mutation in the Finnish family, a p.Asp188Tyr in the African family and a p.Pro189Leu mutation
in the German family. These mutations lead to an altered distribution of iRhom2 in skin and dysregulated
EGFR signaling [58]. The underlying mechanism was related to the mutations activating iRhom2 which leads
to increased ADAM17 maturation and activity in epidermal keratinocytes from TOC patients, which in turn
increases shedding of TNFα, AR, TGFα and HB-EGF and enhances EGFR phosphorylation [57]. Consistently,
both iRhom1 and iRhom2 expression was found to be enhanced in all histological cervical carcinoma types.
iRhom1, iRhom2 and Ki-67 expression were found to correlate with increased tumor stage, invasion and
poor clinical outcome [65]. Furthermore, oral squamous cell carcinoma patient samples have been shown to
over-express iRhom2, which was found to correlate with poor patient survival but no other clinico-pathological
variables [105]. Moreover, iRhom2 expression was increased in cirrhotic liver samples [52], kidney tissue of
Lupus nephritis patients [64], and colon samples from inflammatory bowel disease patients [96].

4. Discussion & Outlook

Taken together, iRhom2 has multiple functions during infections and diseases. iRhom2 was
originally linked to ADAM17 maturation and activation and accordingly to functions related to
ADAM17. However, its role during DNA and RNA viral defense through MAVS and STING suggests
that iRhom2 might have a central role during innate immune functions. Consistently, iRhom2 is
associated with several pathological conditions such as autoimmunity and cancer. Notably, severe
phenotypes observed in ADAM17 deficient mice are not observed in mice deficient for iRhom2 alone,
which might suggest little side effects for a therapy targeting iRhom2 specifically. Further studies could
focus on the role of iRhom2 in other ADAM17 substrates Moreover, a more thorough characterization
of both, iRhom1 and iRhom2 in multiple model systems will help to further clarify their specific roles
in these and other pathways in health and disease.
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Abbreviations

ADAM a disintegrin and metalloprotease
AR Amphiregulin
cGAS cyclic GMP-AMP synthase
cIAP1/2 cellular inhibitors of apoptosis 1 and 2
EGF epidermal growth factor
EGFR Epidermal growth factor receptor
EPR Epiregulin
ERAD ER associated ligand degradation
ERK extracellular signal-regulated kinases
FERM four-point-one, ezrin, radixin, moesin
FRMD8 four-point-one, ezrin, radixin, moesin domain-containing protein 8
HB-EGF heparin-binding-EGF-like growth factor
hCMV Human cytomegalovirus
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HGF hepatocyte growth factor
HSV-1 herpes simplex Virus 1
IL-6R IL-6 receptor
iNOS inducible nitric oxide synthase
IRF-3 interferon regulatory transcription factor 3
iRhom inactive Rhomboid
iTAP iRhom Tail-Associated Protein
LPS Lipopolysaccharides
LUBAC linear ubiquitin chain assembly complex
MAD mitochondria associated degradation
MAPK mitogen activated protein kinases
MARCH5 membrane-associated ring finger (C3HC4) 5
MAVS mitochondrial antiviral-signaling protein
NRR negative regulatory domain
PAMP pathogen associated molecular patterns
PKC protein kinase C
PRR pattern recognition receptors
PS phosphatidyl serine
RIG-I retinoic acid-inducible gene-I
RIPK1 receptor-interacting serine/threonine-protein kinase 1
RNF5 Ring Finger Protein 5
sin sincere
STING stimulator of interferon genes
TACE tumor necrosis factor alpha converting enzyme
TGFα transforming growth factor alpha
TIMP3 tissue inhibitor of metalloprotease 3
TNFR TNFα receptor
TNFα tumor necrosis factor alpha
TOC Tylosis with oesophageal cancer
TRADD TNFR1-associated death domain
TRAF-2 TNFR-associated factor 2
TRAPβ translocon-associated protein
Tregs regulatory T cells
Uncv Uncovered
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