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ABSTRACT: We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a
Python application programming interface (API) and command-line tool for high-dimensional mass
spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic
implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS)
calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected
features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic
signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition
instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater
separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching
confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We
demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a
multidimensional approach in each data processing step.

The ability to process raw instrument data reliably and
accurately is critical to any molecular profiling assay.

Though useful, commercial software solutions provided by
vendors of mass spectrometry (MS) instrumentation lack
flexibility required to rapidly adapt to evolving community
needs. Demand for open-source, community-driven develop-
ment has motivated researchers to pursue alternatives across
instrument platforms, for example liquid or gas chromatog-
raphy (LC or GC) and ion mobility spectrometry (IMS)
coupled to mass spectrometry (MS), including tandem mass
spectrometry (MS/MS). Software implementations also differ
in their offered functionality: data input/output, multidimen-
sional feature detection, alignment across samples, isotope
detection, and deconvolution of MS/MS spectra. However,
few available open-source, platform-agnostic solutions provide
such core functionality for data of high-dimensionality,
hindering the development and application of new instrumen-
tation and analysis paradigms.
These limitations are predominantly tied to the specificity

and thus, relative inflexibilityof existing software and
algorithm implementations. For example, LC or GC coupled
to MS or MS/MS results in two primary feature dimensions,
the retention time/index and MS mass-to-charge ratio (m/z),
which is reflected in community software algorithms.1−13

Existing feature detection algorithms are tailored to the
underlying data: features are detected in one or two
dimensions, and dimensions are often inflexibly constrained
based on respective assumptions. In the short term,
instrumentation advances14−19 force platform-specific software

to either ignore additional dimensionsfor instance, summing
across the least-distinguishing dimensionsor iteratively apply
one- or two-dimensional algorithms.20 Over time, wider
instrument adoption engenders development to extend or
modify existing algorithms to take full advantage of additional
separation dimensions.20,21 The problem is thus cyclical in
nature: for software to adapt to technology, the technology
must be mature and widely used, but for technology to mature
and achieve widespread adoption, instrument data must be
robustly analyzed by user-friendly software.
To overcome this paradox, instrument vendors have

historically developed and supplied the software required to
process the data, for example, Agilent MassHunter, Bruker
MetaboScape, and Waters Progenesis QI. However, vendor
offerings have their own limitations.22 Because the underlying
software is proprietary, details of underlying algorithm
implementations are neither available to the public via open-
source codebases nor sufficiently documented in publications.
Moreover, vendor software is often tailored to a specific
instrument and involves proprietary data formats, limiting one-
to-one comparison of data across different instrument or
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vendor types. In some cases, existing software can also lack
customizability; for instance, algorithm selection tends to be
fixed to specific peak detection, alignment, and deconvolution
implementations, unless additional options are explicitly
implemented by the vendor. Thus, users are subject to the
functionality provided by the vendor software, or must
assemble multiple software solutions into one workflow.3,23

Finally, many vendor solutions are automated only to a small
degree, thus impeding reproducibility, and are not amenable to
high-performance (HPC) or cloud computing.
As a result, the metabolomics community has worked to

develop open-source solutions.8,10,20,24−27 Each cover either
some or all of the steps in a typical metabolomics workflow and
are positioned to analyze GC-MS or LC-MS data (MS-DIAL20

additionally handles some aspects of LC-IMS-MS data) and
tandem MS. These software tools offer insight into best
practices and algorithm implementations and serve as founda-
tional references for our work. However, challenges remain in
supporting data of arbitrary dimensionality, generalizing
algorithmic implementations to operate in native dimension-
ality, offering flexibility and control over the analysis workflow,
and scaling efficiently to computational resources.
To this end, we present the design and implementation of

DEIMoS, or Data Extraction for Multidimensional Spectrom-
etry, and include an initial evaluation on LC-IMS-MS/MS
metabolomics data from analysis of blood plasma samples.
DEIMoS’s functionality is generalized through use of N-
dimensional signal processing algorithms from the open-
source, efficient, and widely used Python-based scientific
computing packages NumPy28 and SciPy.29 Additionally,
DEIMoS’s design makes minimal assumptions about each
underlying dimension. As a result, researchers may analyze
GC-MS, LC-MS, IMS-MS, or LC-IMS-MS data, or another
hypothetical MS-based platform, with or without MS/MS,
using the same software with minimal reconfiguration. The
underlying source code has also been written to account for
hypothetical additional separation or analytical dimensions that
may be introduced as instrumentation continues to advance
(e.g., solid phase extraction30 and associated chemical class-
based separation, cryogenic infrared spectroscopy,31 or multi-
plexed higher resolution ion mobility separations such as
provided by structures for lossless ion manipulations, SLIM32).
That is, calls to the application programming interface (API)
and logic of the analysis may change, but the underlying source
code can remain intact. This paradigm facilitates rapid
advancement in metabolomics and introduces the potential
to unify community efforts in informatics software develop-
ment.
Furthermore, DEIMoS benefits from Python’s rich existing

ecosystem for scientific programming and offers even greater
flexibility beyond the core API. DEIMoS’s functionality is
organized into several modules, each addressing one or more
key data processing steps, including file input and output, peak
detection, alignment, isotope detection, MS2 spectra extraction
and deconvolution, and data subsetting operations. We
describe each module relative to LC-IMS-MS/MS data,
which represents higher dimensionalityand, by extension,
complexityamong most current metabolomics analysis
techniques. Data acquired on other platformsfor example,
LC-MS(/MS), GC-MS(/MS)require similar processing but
in a lower dimensional space. Future algorithms and additional
dimensions of data may be slotted in easily.

We architected DEIMoS to adhere to software development
best practices,33 including installation through Anaconda34 or
PyPI,35 in-line documentation via docstrings and aggregation
via Sphinx,36 unit test implementations with pytest37 coupled
with continuous integration and static code coverage analysis,
and version control with Git.38 DEIMoS is open-source and
freely available online at github.com/pnnl/deimos, and
community contributions via pull request are welcome.
Documentation, including a user guide, API reference,
examples, and contribution instructions are available at
deimos.readthedocs.io.

■ METHODS

Experimental Methods. To demonstrate DEIMoS, we
examined LC-IMS-MS/MS data from a large study of human
plasma samples consisting of 40 quality control (QC) samples
from the NIST Standard Reference Material 195039 and 112
study samples. An internal standard mixture was added prior to
extraction, its composition listed in the SI. Each sample was
spiked with 50 μL of a solution of the internal standards at
0.166 mg/mL in water. Metabolites and lipids were extracted
with concomitant protein precipitation using the Matyash
protocol40 described previously.41 The metabolite layer was
removed and dried in vacuo. Lipid and protein layers were not
analyzed.
An Agilent 1260 Infinity II high flow liquid chromatography

system (San Jose, CA) equipped with a Vial Sampler and
Binary Pump was used to inject and chromatographically
separate samples prior to introduction to the ion mobility
spectrometry-mass spectrometry instrument. A steady flow rate
of 0.300 mL/min was delivered through a Millipore-Sigma
(Burlington, MA) SeQuant Zic-pHILIC column (15 cm
length, 2.1 mm inner diameter, packed with 5 μm particles).
A corresponding guard column of the same packing material
was also used. Mobile phases consisted of (A) 20 μM
ammonium acetate in water and (B) 100% acetonitrile with the
following gradient profile (min, %B): 0, 90; 4, 90; 12, 20; 13,
10; 15, 10; 17, 90. An Agilent 1100 Column Heater was used
with a static temperature of 45 °C.
Ion mobility spectrometry-tandem mass spectrometry

analysis was performed using an Agilent 6560 Ion Mobility
LC/Q-TOF system. Spectra were acquired separately in both
positive and negative ionization modes. Data were collected in
the mass range of 50−1700 m/z. Ionization was accomplished
using a Dual AJS ESI source, with gas temperature set to 325
°C, drying gas set to 5 L/min, nebulizer set to 30 psi, sheath
gas temperature set to 275 °C, sheath gas flow of 11 L/min,
VCap set to 2500 V, nozzle voltage set to 2000 V, and the
fragmentor set to 400 V. For the ion mobility separations, the
trap fill time was 30 000 μs and released for 300 μs. Frame rate
was 1 frame/s, 19 IM transitions/frame, and max drift time set
to 50 ms. Fixed collision energies were employed at 10, 20, and
40 eV on alternating frames. Data were collected for 22 min
immediately following the injection of the sample.
To communicate generalizability to other instrument

platforms and/or data types, we acquired data from a Bruker
timsTOF Pro and a Waters UPLC i-Class coupled to a Synapt
G2Si. The former was obtained from the Mass Spectrometry
Interactive Virtual Environment42 (MassIVE, accession
MSV000088020), the latter from Metabolights43 (accession
MTBLS812). The Bruker instrument implements trapped ion
mobility, resulting in measurements of inverse reduced
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mobility as opposed to drift time; the Waters instrument
implements traveling wave ion mobility.
Overview. DEIMoS was developed as an instrument-

independent, high-dimensional metabolomics data analysis
tool, and design choices reflect this philosophy. DEIMoS is
written in Python, prioritizing user productivity, and ease of
development and use. While high-level interpreted languages,
such as Python, often suffer from reduced computational
efficiency, many popular scientific Python libraries, such as
NumPy28 and SciPy,29 wrap C or Fortran code and are, thus,
highly optimized. In addition, Python is ubiquitous across the
sciences and in industry, user-friendly, and largely agnostic to
client platform (Windows, macOS, Linux). As a result, Python
boasts a large, active, and continually growing community in
the sciences, positioning Python-based software for wide
adoption both by users and collaborative developers.44

DEIMoS is one of few Python-based offerings for metab-
olomics data processing uniquely offering support for data of
any dimension, algorithmic implementations that operate in
native dimensionality, flexibility and control over the analysis
workflow, and efficient scaling to computational resources. An
overview of functionality is depicted in Figure 1. All
computation was performed on AMD EPYC 7502 CPUs
with 4 GB of memory per core.
File Input/Output. To accommodate disparate instrument

types and manufacturers (e.g., Bruker, Waters, Thermo,
Agilent), DEIMoS operates under the assumption that input
data are in an open, standard format. As of this publication, the
accepted file format for DEIMoS is mzML,45 which contains
metadata, separation, and spectrometry data that reproduce the
contents of vendor formats. Conversion to mzML from several
other formats can be performed using the free and open-source
ProteoWizard msconvert utility.24 By default, DEIMoS exports
a lightweight, data frame-based representation in Hierarchical
Data Format version 5 (HDF5) file format.46 Additionally,
adaptors are included to support exporting to delimited text
(e.g., CSV), Mascot Generic Format (MGF), and mzML for
downstream use with other tools (e.g., MAME,47 LIQUID,48

GNPS49).
Feature Detection. Feature detection, also referred to as

peak detection, is the process by which local maxima that fulfill
certain criteria (such as sufficient signal-to-noise ratio) are
located in the signal acquired by a given analytical instrument.
This process results in “features” associated with the analysis of
molecular analytes from the sample under study or from
chemical, instrument, or random noise. Typically, feature
detection involves a mass dimension (m/z), as well as one or
more separation dimensions, the latter offering distinction
among isobaric/isotopic features.
DEIMoS implements an N-dimensional maximum filter

from scipy.ndimage that convolves the instrument signal with a
structuring element, also known as a kernel, and compares the
result against the input array to identify local maxima as
candidate features or peaks. We discuss what qualifies as a
dimension in the SI. Additional filters, including integral and
average intensity, kurtosis, skew, etc., can be applied to yield
statistics for later downselection. To provide additional
confidence in detected features, we required that a given
feature be observed across analytical triplicates.
Key to this process is the selection of kernel size, which can

vary by instrument, data set, and even compound. For example,
in LC-IMS-MS/MS data, peak width increases with increasing
m/z and drift time, and also varies in retention time. Ideally,

the kernel would be the same size as the N-dimensional peak
(i.e., wavelets1,5,12,50), though computational efficiency consid-
erations for high-dimensional data currently limit the ability to
dynamically adjust kernel size. Thus, the selected kernel size
should be representative of likely features of interest. In some
scenarios, dynamic kernel size may be appropriate, per the
kernel selection discussion in the SI.
While we recommend processing the data in its native

dimensionality, DEIMoS’s algorithms are flexible and can
detect features in iterative subspaces, for example 2D followed
by 1D, 1D followed by 2D, or successive 1D. We used the
same parameters per dimension to evaluate feature detection in
all dimensional permutations for LC-IMS-MS data. Features
were only kept if they appeared across all three analytical
replicates. To compare methods, we (i) compared feature
coordinates directly and (ii) used tolerances of ±20 ppm, ±
1.5%, and ±0.3 min for m/z, drift time, and retention time,
respectively, based on peak dimensions determined during
kernel size selection (Bruker and Waters values differ here, as
reported in the SI). We used relative tolerances, such as parts-
per-million and percent for m/z and drift time, respectively,
because unlike in the retention time dimension, peak widths in

Figure 1. Functionality overview. High level overview of available
DEIMoS functionality, with operations delineated as “per sample”
versus “per study”. That is, the former operations are performed for
each instrument acquisition, whereas the latter is performed among all
data from comparable samples acquired. Functionality and underlying
methods are easily extended or modified.
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m/z and drift time varied with mass (Figure S1). This analysis
was performed for all samples from the study, averaged per
ionization mode.
Alignment. Alignment is the process by which feature

coordinates across samples are adjusted to account for
instrument variation (drift, calibration, etc.) such that
matching features are aligned to adjust for small differences
in coordinates. To perform alignment, we first constructed a
model for each dimension of a sample by putatively matching
detected features against an in-study reference sample,
minimizing the residual, and subsequently applying the fit
transform. Next, we matched corresponding features across
data sets within a user defined tolerance. We refer to the
former as “reference-based alignment” and the latter as “cross-
sample alignment”.
For reference-based alignment, we defined corresponding

features between two samples based on minimum distance in
the dimension of interest and selected tolerances to
accommodate potentially complex nonlinear relationships.
We suggest visualizing putative matches with multiple
tolerance selections. Once features were matched, we modeled
the relationship between samples using support vector
regression (SVR) as implemented in scikit-learn.51 While
SVR was selected here for its broad applicability to both
linear and nonlinear alignment, many approaches have been
successfully developed in this space,2,13,22,52−55 and SVR is not
necessarily superior.
Many existing algorithms and implementations can perform

cross-sample alignment.8,13,55 We initially explored use of a
modified version of the “join align” method from MZmine8 but
ultimately arrived at an agglomerative clustering-based
approach. Though similar with respect to resulting alignment,
the agglomerative clustering-based approach was more
amenable to processing many samples simultaneously. Addi-
tional details on the agglomerative clustering implementation
can be found in the SI.
By default, alignment considers all features detected among

data sets, though users may design more complicated and
restrictive workflows using the DEIMoS API. For example,
users may choose to only align features that appear across
some number of replicates or exclude features that appear in
blank samples.
To demonstrate alignment functionality, we analyzed all

acquired data files (N = 912, 54, and 21 for Agilent, Bruker,
and Waters data, respectively). First, we performed alignment
across analytical replicates and only kept features appearing in
triplicate. Next, we performed alignment across samples in
both positive and negative electrospray ionization (ESI)
modes, as available. Samples were aligned by agglomerative
clustering method with maximum linkage distance tolerances
in each dimension of ±20 ppm, ± 1.5%, and ±0.3 min for m/z,
drift time, and retention time, respectively. Tolerances for
Bruker and Waters values differ, as reported in the SI.
MS2 Extraction. With MS1 features of interest determined

by peak detection, corresponding tandem mass spectra, if
available, must be extracted and assigned to the MS1 parent
ion feature. For data independent acquisition, we use non-m/z
dimensions to assign fragments; for instance, drift time and
retention time are used to match fragments in LC-IMS-MS/
MS. These additional separations enable better attribution of
MS2 ions to parent ions, a form of deconvolution inherent in
the acquisition, but convolution artifacts can still occur.

Explicit, algorithmic deconvolution20,25,56−58 has been
implemented in DEIMoS such that MS1 and MS2 features
overlapping in non-m/z separation dimensions are disambig-
uated to minimize false assignments. In this form of
deconvolution, similar to the approach in Yin et al.,58 the
profiles of non-m/z separation dimensions are used to identify
only those ions in the MS2 with distributions that correspond
to the precursor ion distribution. This technique simulta-
neously excludes MS2 ions arising from noise or chemical
background, while also attributing MS2 ions only to precursor
ions with similar separation distributions. Correspondence is
determined by cosine similarity, producing a value between 0
and 100 for each separation dimension for all MS1: MS2
pairings. The user may then filter putative matches by this
value, for example considering only those above some
tolerance in one or more of the separation dimensions.

Collision Cross Section Calibration. To yield collision
cross section (CCS) from IMS arrival time, a calibration must
be performed using a standard tune mix containing
compounds of known CCS. Drift times, or analogous
measurement, such as inverse reduced mobility in TIMS, are
reported by the instrument and calibrated against the known
CCS values to yield calibration coefficients beta and tf ix. For
drift tube and trapped IMS, the single-field calibration
equation detailed in Stow et al. and as implemented in Lee
et al. was used.59,60 For traveling wave IMS, the relationship
between measurement and CCS was first linearized by the
natural logarithm, then fit by linear regression. DEIMoS
performs this calibration given arrival times (or analogous
measurement), known CCS values, m/z, and nominal charge
of each calibrant. Correlation coefficient and sum of residuals
are reported to characterize goodness of fit. Users may also
supply beta and tf ix directly.

Extracted Ion Approach. DEIMoS can locate features
based on extracted ion chromatograms (XIC), mobilograms
(XIM), or multidimensional analogs. Here, a specified m/z of
interest is supplied and the feature of maximal intensity in the
remaining dimensions is returned. This technique is useful, for
example, when detecting an internal standard that has been
spiked into a sample or when single or mixtures of pure
compounds are analyzed. Adduct m/z were calculated using
the mass spectrometry adduct calculator (MSAC).61 We
recommend multidimensional representations for targeted
feature detection. Further details are included in the SI.

Isotope Detection. Isotopologues, or molecules that differ
only in their isotopic composition, are common in mass
spectrometry analyses. In many analysis workflows, isotopo-
logues are used to down select the total feature list to include
only the most abundant feature, as well as to glean ion charge
state and provide further evidence for identification by way of a
detected isotopic signature. Details of the DEIMoS imple-
mentation, as well as examples of isotopic signatures for a
singly charged feature, a multiply charged feature, and
overlapping features, are available in the SI.

Automation. While DEIMoS functionality is implemented
as a Python API, a typical workflow has been implemented
using the Snakemake62 workflow management system62 and
made accessible via command line interface (CLI). Users need
only modify a configuration file and interact with a CLI to
process input mzML files into output feature coordinates and
extracted MS2. Moreover, Snakemake can automatically
handle scaling to HPC and cloud resources, enabling the
high-throughput processing of numerous samples. A graphical
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user interface (GUI) is currently in development to facilitate
accessibility of DEIMoS to those without programming
experience and will be reported in a subsequent manuscript.

■ RESULTS AND DISCUSSION
In total, sample acquisition resulted in 912 data files for 112
study samples, 40 quality control samples, and 10 blanks, each

in positive and negative ionization modes and collected at 3
collision energies (10, 20, and 40 eV): cumulatively 1.1
terabytes. These data were processed by DEIMoS using feature

detection, alignment, CCS calibration, and MS2 extraction by
deconvolution.
Acquired Bruker data was comprised of 54 data files for 9

study samples in triplicate, spanning 2 ionization modes:
cumulatively 83 gigabytes. The Waters data consisted of 21
data files for 6 study samples in triplicate and 3 blanks, each in
positive ionization mode: cumulatively 16 gigabytes. These
data were processed similarly, though no CCS calibration nor
MS2 deconvolution was performed for the Bruker data, in that
neither CCS calibration data nor MS2 was available.

Feature Detection. Feature detection for a subset of a
single sample has been visualized in Figure 2. The selected
region illustrates the inherent convolution of MS1 features
leads to overlap in both drift and retention time, resulting in
several putative precursor ions for MS2 assignment. The
requirement of explicit deconvolution to appropriately
attribute ions in the MS2 spectra becomes apparent, as
features are not sufficiently resolved by drift and retention time
coordinates. Representative features extracted from the Bruker
and Waters data are also included in Figures S2 and S3.
For all acquired samples, we compared permutations of the

possible feature detection modes (3D, 2D followed by 1D, 1D
followed by 2D, and iterative 1D). Notably, LC-IMS-MS/MS
data exist in a 3D space; thus, the underlying features are also
represented in 3D. Iterative feature detection in lower-
dimensional projections simplifies the resulting data structure
by summing along nonprojection axes, potentially introducing
artifacts. In practice, some projections, such as m/z versus drift
time, are affected less significantly than others, such as drift
time versus retention time, the latter suffering significant
information loss when summing along the m/z axis.
We anticipated that processing the data in all 3 dimensions

simultaneously would result in the greatest separation among
features to better isolate the local maxima. That is, given the
same feature detection tolerances across methods, 3D feature
detection would theoretically afford the least overlap and, by
extension, greatest number of features. Per Figure S4, a
contrary result was, thus, surprising. However, the coordinates
of the features detected by lower dimensional projections are
not always congruent with the 3D approach (Figure S5). This
signals that the projections along the various data axes, whether
1D or 2D, aggregate signal to the point of, in some cases,
losing the underlying feature defined in 3D − the sum
operation along a given axis “merges” previously separated
features, skewing the coordinate in that dimension.
However, this phenomenon is pronounced to varying degree

among methods: the most comparable technique, as
implemented by MS-DIALm/z versus RT followed by
DTresults in poor agreement when considering strict
tolerances (only ∼13% intersection in both positive and
negative mode), but intersection increases substantially (to
∼90%) when imposing the same tolerances that would be used
in cross-sample alignment. That is, tolerances that would result
in the combining of those features anyway. In this case, the
lower dimensional projections result in slight differences in
feature coordinates, but in practical application would be
treated as “same”. The difference resulted in slightly less
accurate characterization of feature coordinates, for example
exact m/z, drift time (and by extension CCS), and retention
time, where different, deviated by an average of 5.8 ppm, 0.2%,
and 0.05 min for m/z, drift time, and retention time,
respectively, when comparing 3D processing to m/z versus
RT followed by DT. Additional comparisons are depicted in

Figure 2. Multidimensional peak detection. Peak detection involves
convolving the input signal in N dimensions (here, in LC-IMS-MS,
3D) with a maximum filter. The input and maximum filtered arrays
are then compared point-by-point and, where equal, a local maximum
is indicated. While the data is collected in 3D, this approach is best
visualized in 2D and 1D projections, capturing all lower dimensional
representations of the underlying 3D data. Note a well-defined peak in
a given 2D view may or may not correspond to a true 3D apex, or can
be the product of multiple underlying features. It is, thus, important to
interpret the 1D projections carefully. For this subset of the data, the
top 10 most intense local maxima are shown, colored by m/z, with
similar m/z (i.e., isopologues) sharing hues.

Figure 3. Nonlinear alignment by support vector regression. Support
vector regression (SVR) was evaluated here on the retention time
dimension between 2 illustrative samples described by a nonlinear, “S-
shaped” relationship in retention time. To model this relationship, a
radial basis function (RBF) kernel was selected. Measurements
between samples varied negligibly in drift time and m/z, and thus
alignment was only necessary in retention time. An example involving
samples with a linear relationship in retention time is included in
Figure S7.
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Figure S6. Critically, the order of peak picking operations had a
large impact on the number and composition of the features
detected (e.g., comparing 1D−2D to 2D−1D operations, as
well as the consecutive 1D operations).
A key advantage of feature detection in native dimensionality

is that computation time does not scale with the number of
features (Figure S4). Peak detection in native dimensionality
required 0.54 ± 0.11 core-hours and 0.57 ± 0.11 core-hours
per data file for positive and negative ionization modes,
respectively (mean ± standard deviation). Cumulatively,
373.74 core-hours for all 912 data files.
For the Bruker data, because the data were collected at

higher resolution (1 728 842, 937, and 4769 unique values for
m/z, inverse reduced mobility, and retention time, respec-
tively; collectively 165 times the Agilent resolution),
processing time for peak detection was much longer at 12.20
± 1.35 core-hours and 35.83 ± 15.23 core-hours per data file
for positive and negative ionization modes, respectively (mean
± standard deviation). The Waters data, which was collected at

lower resolution (79 863, 200, and 707 unique values for m/z,
drift time, and retention time, respectively; collectively 0.25
times the Agilent resolution), required less processing time for
peak detection: 0.33 ± 0.03 core-hours for positive ionization
mode (negative mode not collected).
The longer processing times for the negative ionization

mode data were due to signal being observed over a larger
range of unique m/z, drift (or analogous measurement), and
retention times. The array partitioning leveraged for multicore
computation split along the m/z dimension. For each partition,
computation scaled with the number of observed measure-
ments spanning remaining dimensions. Computation also
scaled with number of partitions, in that empty partitions were
not processed. To ameliorate, a nominal intensity threshold
may be applied to decrease signal span of the 3D space. Said
threshold must be selected at or below the noise floor in the
data.

Alignment. We examined results from various SVR kernels
and found that the linear kernel achieved satisfactory results

Figure 4. MS2 deconvolution. The MS2 spectra belonging to the MS1 features highlighted in Figure 2 were algorithmically deconvolved. The
profiles of the MS1 features are indicated by respective colors, plotted along the positive y-axis for drift time (A) and retention time (B). These are
accompanied by corresponding MS2 profiles, plotted along the negative y-axis, colored according to the closest matching MS1 profile by cosine
similarity. Panels C and D show the pairwise cosine similarity of MS1 and MS2 profiles for drift and retention time, respectively. In panel E, ions in
the MS2 spectra are colored according to the closest matching MS1 drift time profile. As in Figure 2, only the 10 most intense MS1 features were
explicitly colored; the ions in the MS2 spectra corresponding to remaining MS1 features, or not sufficiently similar to an MS1 precursor, are
indicated in gray. Note that disambiguating among isotopologues is not possible here; thus, the difference in color among isotopic groupings is
largely superficial.
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when the instrument misalignment could be corrected by
linear regression, whereas the radial basis function (RBF)
kernel was able to account for nonlinear relationships. For
instance, the RBF SVR model could match features when
samples were run consecutively on a degrading LC column.
We selected example data sets to highlight both S-shaped

(Figure 3) and linear (Figure S7) relationships in prealignment
retention time and illustrate the flexibility of the SVR-based
approach. In these data, m/z and drift time were already
sufficiently aligned; as such, plots for m/z and drift time were
omitted. The potential difference realized by kernel selection
motivates visual confirmation of the alignment relationship
between samples: an RBF kernel applied to linearly related
samples would be considered overfit, whereas a linear kernel
applied to a nonlinear case would achieve poor alignment.
Subsequent cross-sample alignment by agglomerative

clustering resulted in 11 698 and 14 784 features for positive
and negative mode appearing across each of 3 analytical
replicates, excluding features that appeared in all blank
samples. Though tolerances were selected according to
expected variance across samples, agglomerative clustering
resulted in tighter linkages (Figure S8), indicating intersample
variance is lower than typical peak width. This variance reaches
near-maximal values at 15 ppm in m/z, 1% in drift time, and
0.2 min in retention. Thus, exploratory analysis of the data
enables users to characterize interfeature and intersample
variance to set appropriate tolerances relative to the source of
maximum variance, though agglomerative clustering is
relatively forgiving so long as tolerances are not too small.
With respect to computation time, reference-based align-

ment required on the order of milliseconds per file. For cross-
sample alignment, each set of 3 analytical replicates (N = 304)
required 39.89 ± 6.59 and 44.90 ± 5.53 core-seconds for
positive and negative mode, respectively (mean ± standard
deviation); cumulatively 3.58 core-hours. Per-file processing
times did not significantly differ for the Bruker and Waters
data.
Aligning those features that appeared in each analytical

replicate required 0.66 and 0.94 core-hours for positive and
negative mode, respectively; cumulatively 1.60 core-hours.
Because of the relatively smaller number of samples, this step
only required seconds for the Bruker and Waters data.
MS2 extraction. For the MS1 features shown in Figure 2,

we performed deconvolution to putatively assign ions in the
MS2 spectra to corresponding ions in the MS1 spectra. The
utility of deconvolution is highlighted in Figure 4. A window-
based approach yields MS2 spectra that, in the worst case,
erroneously include all ions for all MS1 precursors to give
identical MS2 spectra or, in the best case, results in only two
distinct spectra among precursors. The limitation here is
visualized by the plot of drift time versus retention time, where
only two overlapping peaks emerge. Naiv̈e assignment would
thus yield convolved spectra, the degree of convolution
depending on window selection.
Notably, deconvolution results may differ substantially if

employing the cosine similarity scores of drift versus retention
time, as false positives can occur if using retention time alone.
For example, the masses between 77 and 83 Da would be
assigned to the precursor with m/z 212 using retention time,
whereas they are sufficiently separated in drift time (Figure 4).
Computation time required to deconvolve MS2 spectra was

a function of number of distinct non-m/z separation dimension
populations, as determined by agglomerative clustering, and

the size of each such population. Figure 4 shows one such
population. In this analysis, each data file required 1.18 ± 0.28
core-hours and 2.27 ± 0.31 (mean ± standard deviation) for
positive and negative mode, respectively; cumulatively 1579.07
core-hours. Per-file processing times did not significantly differ
for the Waters data (MS2 not collected for the Bruker data).

■ CONCLUSION
Metabolomics and exposomics data processing tools offer
immense value for diagnosis of disease, evaluation of
environmental exposures, and discovery of novel molecules.
However, few open-source solutions are currently positioned
to fully leverage the latest instrumentation. Importantly,
though demonstrated for LC-IMS-MS/MS data, DEIMoS’s
architecture supports extension to other measurement modal-
ities, such as cryogenic infrared spectroscopy, minimizing
development barriers as instrumentation evolves. Further, all
development has been accomplished using design principles
necessary for the long-term success for metabolomics data:
format interoperability, workflow flexibility, open-source
software implementation, community development, and
reproducibility.
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