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Significant advances have been made uncovering the factors that render neurons

vulnerable in Parkinson’s disease (PD). However, the critical pathogenic events leading to

cell loss remain poorly understood, complicating the development of disease-modifying

interventions. Given that the cardinal motor symptoms and pathology of PD involve the

loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc), a majority

of the work in the PD field has focused on this specific neuronal population. PD however,

is not a disease of DA neurons exclusively: pathology, most notably in the form of Lewy

bodies and neurites, has been reported in multiple regions of the central and peripheral

nervous system, including for example the locus coeruleus, the dorsal raphe nucleus and

the dorsal motor nucleus of the vagus. Cell and/or terminal loss of these additional nuclei

is likely to contribute to some of the other symptoms of PD and, most notably to the

non-motor features. However, exactly which regions show actual, well-documented, cell

loss is presently unclear. In this review we will first examine the strength of the evidence

describing the regions of cell loss in idiopathic PD, as well as the order in which this loss

occurs. Secondly, we will discuss the neurochemical, morphological and physiological

characteristics that render SNc DA neurons vulnerable, and will examine the evidence for

these characteristics being shared across PD-affected neuronal populations. The insights

raised by focusing on the underpinnings of the selective vulnerability of neurons in PD

might be helpful to facilitate the development of new disease-modifying strategies and

improve animal models of the disease.

Keywords: Parkinson, vulnerability, dopamine, cell death, neurodegeneration

INTRODUCTION

Parkinson’s disease (PD) was first described two centuries ago in An essay on the shaking palsy (1).
Since then, great strides have been made in understanding the disease basics. However—as with
many other neurodegenerative disorders—there is still no disease modifying treatment for PD.
Unfortunately, progress has been slow, and a thorough understanding of the pathological processes
has been elusive.

PD as a clinical diagnosis is characterized by the detection of significant motor deficits
(including bradykinesia, resting tremor, and rigidity) due, in large part, to a loss of
dopamine (DA)-containing neurons of the substantia nigra pars compacta (SNc). The
SNc is a neuronal population projecting to the caudate and putamen and is critical for
regulation of basal ganglia circuitry. At clinical presentation, it has been estimated that
40–60% of SNc DA neurons have already degenerated (2, 3). The clinical features of the
disease are diverse and include substantial non-motor features including, autonomic and
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olfactory dysfunction, constipation, sleep disturbances,
depression, and anxiety (4–6).

The diagnostic criteria for PD have been recently re-defined
by the International Parkinson and Movement Disorder Society
(MDS), with theMDSClinical Diagnostic Criteria for Parkinson’s
disease [MDS-PD Criteria (7)]. A diagnosis is made when there is
documented parkinsonism (defined as bradykinesia, with tremor
at rest and/or rigidity), followed by the exclusion of other
possible causes of parkinsonism, and with additional supporting
criteria, including olfactory dysfunction or cardiac sympathetic
denervation [see (7)]. The recent nature of this re-evaluation
illustrates both the heterogeneity of PD expression, and the
difficulties encountered in defining it.

In ≈70% of the ‘clinically typical PD cases’, the hallmark
pathological finding is the presence of Lewy pathology (LP) in
the SNc (4, 5)—however, LP is also found across the central,
peripheral, and enteric nervous system (CNS, PNS, and ENS)
(6). This includes both Lewy bodies and Lewy neurites: both
similar cellular inclusions, formed predominantly of aggregated
α-synuclein, but also including a large number of different
molecules, proteins and organelles, such as ubiquitin, tubulin,
neurofilaments, lipids, and mitochondria (8).

In considering the broad localization of LP and the origins
of the various symptoms of PD, a critical point to consider is
the dysfunction and loss of neurons in regions of the CNS and
PNS, other than the SNc. There have been, indeed, many studies
concluding that cholinergic neurons in the pedunculopontine
nucleus (PPN), noradrenergic neurons of the locus coeruleus
(LC), cholinergic neurons of the nucleus basalis of Meynert
(NBM) and of the dorsal motor nucleus of the vagus (DMV), and
serotonergic neurons of the raphe nuclei (RN) are lost in PD. The
strength of the evidence for actual neuronal cell body loss in these
regions is highly variable and is one of the questions addressed in
the present review. The fact that the diagnostic criteria for PD
have over time been refined adds another layer of complexity
to the task of identifying the origin of the diverse symptoms of
PD. Presently, PD is classified into either primary or secondary
subtypes. Primary parkinsonism includes genetic and idiopathic
forms of the disease and secondary parkinsonism includes
forms induced by drugs, infections, toxins, vascular defects,
brain trauma or tumors or metabolic dysfunctions. This second
subtype of PD is also sometimes called atypical parkinsonism
when concomitant to progressive supranuclear palsy, multiple
system atrophy or corticobasal degeneration, for example.

Since pathology is likely to emerge through different processes
depending of PD subtypes, and since modern classification was
non-existent when a substantial part of the research literature

Abbreviations: AD, Alzheimer Disease; ADLB, Alzheimer’s Disease with Lewy

bodies; ADNLB, Alzheimer’s Disease with no Lewy bodies; ALS, Amyotrophic

Lateral Sclerosis; CBS, corticobasal syndrome; CGS, central gray substance; CJD,

Creutzfeldt-Jakob disease; ctrl, control; DLB, dementia with Lewy bodies; H&Y,

Hoehn and Yahr scale; iPA, idiopathic paralysis agitans; LBD or iLBD, Lewy

body disease or idiopathic Lewy body disease; LDB or iLDB, dementia with Lewy

bodies or idiopathic dementia with Lewy bodies; LID, levodopa (L-dopa)–induced

dyskinesias; MS, multiple sclerosis; MSA, multiple system atrophy; NPH, normal

pressure hydrocephalus; PD or iPD, Parkinson’s disease or idiopathic Parkinson’s

Disease; PSP, progressive supranuclear palsy; UPDRS, unified Parkinson disease

rating scale.

was produced, attempting to reach clear general vision of various
pathophysiological markers and their link to disease progression
for each sub-type of PD presents a significant challenge. This
review will primarily focus on idiopathic PD, since this category
represents the large majority of cases and is likely to represent
most of the subjects examined in studies where PD type was not
provided.

Another main hurdle in PD research is that the chain of
events that leads to the death of neurons is still not clear. The
fact that pathology is thought to begin years/decades before
the appearance of symptoms might, in part, explain this lack of
progress.

PD has been considered to exist as either a strictly
monogenetic or environmentally-triggered disease, as well as
a mixture of the two. The pathological mechanisms at the
core of each form have been proposed to converge in causing
cellular stress secondary tomitochondrial dysfunction, perturbed
proteostasis and elevated oxidative stress. A major conundrum
is that at first glance, these factors alone fail to explain why PD
pathology is restricted to very limited subsets of brain nuclei.
Therefore, a key question is what do these PD sensitive neurons
have in common and what is it about them that renders them
more vulnerable compared to neurons from other brain regions?

A better understanding of the fundamental nature of cell loss
and cellular dysfunction in the parkinsonian brain is required
to develop critically needed, novel, therapeutic strategies. In this
review, we aim to re-evaluate the evidence for cell loss in PD, then
to highlight the common characteristics that could explain their
selective vulnerability.

PHYSIOPATHOLOGY OF PARKINSON’S
DISEASE

The focus on SNc DA neurons has brought significant advances
in our understanding of PD pathophysiology, as well as of the
signaling pathways that lead to DA neuron death. Studies using
DA neuron selective toxins such as 6-OHDA and MPTP, as well
as investigations of gene products mutated in familial forms of
the disease (including α-synuclein, Parkin, Pink1, LRRK2, DJ-1,
and GBA1), have been instrumental to better understand some
of the key dysfunctional processes implicated in the disease.
These include protein clearance (9–11), mitochondrial turnover
(12–14), ROS management (15, 16), and inflammation (17, 18).
Perturbations of these processes have been proposed to underlie
distinct physiological dysfunctions in PD-vulnerable neurons
(19). Nonetheless, since the first introduction of Levodopa in
the 1950s and the development of deep-brain stimulation in the
1990s, increased understanding of PD pathophysiology has not
yet permitted the discovery of disease-modifying therapies.

As stated previously, PD is more than just a disease of DA and
the SNc. Non-motor symptoms—including a reduced sense of
smell, constipation, orthostatic hypotension, sleep disturbances,
depression, and anxiety—are likely to be due to impaired
function and/or loss of non-DA neurons (20). There has thus
been a growing interest in better understanding the implications
of other regions of the CNS and PNS in the progression of PD
pathology. In the early 2000s, pioneering work by Braak and
colleagues defined stages in PD based on the appearance of LP in
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various regions of the nervous system, correlating their findings
to the symptomatic progression of the disease (21–23). Most
notably, LP was detected in the dorsal IX/X motor nuclei, the
intermediate reticular zone, the medulla oblongata, the pontine
tegmentum, the caudal RN, the gigantocellular reticular nucleus,
the coeruleus–subcoeruleus complex, the pars compacta of the
substantia nigra, the basal prosencephalon, the mesocortex, and
the neocortex. However, multiple lines of evidence suggest that
LP is not systematically seen in the PD brain and LP is also
documented in healthy individuals (24). Also, in some cases
of PD, and most notably in early-onset genetic forms, loss of
SNc DA neurons has been reported to occur in the absence of
detectable LP (25–27).

Although the role of LP in the pathogenesis of PD has
been the subject of much debate (28), the detection of LP has
remained central in investigations of the key brain regions and
circuits underlying PD pathophysiology. In this context, it may
be useful to focus attention on brain and PNS regions that show
documented cell death and/or axonal degeneration, irrespective
of the presence or absence of LP. This could perhaps provide new
perspectives on the actual, more proximate, causes of the major
symptoms of the disease and their progression. Relevant to the
present point, in their most recent and insightful work, Braak
and Tredici write, “We ascribed the same weight to axonopathy
and nerve cell dysfunction (presumably attributable, but not
limited, to the presence of Lewy pathology) as to neuronal
death because the development of pathology together with
neurotransmitter loss, axonal, and somatodendritic dysfunction
inmultiple neuronal populations could prove to bemore stressful
for involved neurons over time than premature cell death within
a select neuronal population” (6).

WHERE AND WHEN DOES NEURONAL
LOSS APPEAR IN PD?

Loss of neurons in the brain is thought to occur in the context of
normal aging. For example, there have beenmultiple publications
reporting significant age-dependent decline in neuron number
in the SNc (29–37), as well as in regions such as the PPN (38),
and LC (39, 40). Above and beyond such cell loss associated with
normal aging, a key question is where in the brain can one find
substantial neuronal loss in PD?

Although numerous publications have referred to cell loss
occurring in many CNS and PNS regions in the context of PD,
we believed it germane to re-evaluate the published scientific
literature addressing this question.

To do so, we took great care to find work concentrating
on neuronal loss and not only denervation [as is common for
the heart, for example (41–43)]. We found 90 primary research
articles reporting PD-specific cell loss in the following regions
(Table 1): the SNc, VTA, amygdala, cortex, DMV, hypothalamus,
laterodorsal tegmental nucleus, LC, NBM, OB, oral pontine
reticular nucleus, PPN, pre-supplementary motor cortex, RN,
supraoptic nucleus, sympathetic/parasympathetic ganglia, and
thalamus. These original articles span from 1953 to 2015.
The techniques used to quantify cell loss varied, and we have
classified them accordingly. Across all regions examined, 14 of

the examinations were defined as observational, 39 as implicating
manual counting, 18 used computer-assisted counting, and 26
used stereological counting methods. While informative, the
value of observational studies can be considered limited given
their lack of precision and the fact that they are greatly
influenced by the observer. Lack of bias is also difficult to
assure in studies involving manual counting. This technique is
also unable to assure that a cell is not being counted twice if
present in two subsequent sections. Other techniques such as
computer-assisted counting were developed to improve on these
aforementioned methods, however, these are also limited in that
they often lack rigorous systematic sampling, are sensitive to
tissue shrinkage, and are often unable to account for local tissue
thickness, or for cells damaged on slice edges. These issues are
systematically addressed using modern stereological counting
techniques. Another issue to consider is that many of the studies
included in this review, including those employing stereology,
either did not use age-matched controls, or did not state whether
counting was conducted blind to diagnosis. Yet another apparent
feature of this literature is the diversity of method iterations used,
the varying number of brain regions assessed in each study and,
importantly, the stage or type of PD studied (and how this was
defined). Here, we will discuss the evidence of cell loss (if not
otherwise stated, relative to healthy control cases), ordering the
regions in subsections according to the strength of the evidence
(Table 1).

SUBSTANTIA NIGRA PARS COMPACTA

Loss of SNc DA neurons in PD is indisputable. Here we
found 38 studies addressing this directly with a total of 612
brains. However, if we consider the methods used, we found
that 10 of these studies were observational, 8 involved manual
counting methods, 8 used computer-assisted methods, and
12 used stereology. Considering stereological methods as best
practice for unbiased evaluation of cell number, 181 brains were
quantified as such for SNc: still a large number. The average
cell loss reported for studies involving stereological methods is
∼68%. The definition and clinical stage of PD in most studies

Methodology and Scales of PD Progression

We searched the scientific literature using the search engines and databases

of PubMed, Google Scholar and Science Direct. The following search terms

were used: “PD,” and “cell loss,” “cell death,” or “reduced cell/neuron

number.” Furthermore, these terms were used in combination with brain

structure keywords: “SNc,” “VTA,” “LC,” “Raphe,” “DMV,” “PPN,” “NBM,” and

“enteric system” (“ENS”), and “gut.” Review and original article abstracts were

screened, then, where appropriate, read. Where any direct or indirect claim

for cell loss was found (rather than only the presence of LP), the claim was

followed to its original source.

The Hoehn and Yahr scale (H&Y) is a widely used clinical rating scale, which

defines broad categories of motor function in PD (where 1 is the least severe,

and 5, most severe symptoms) (132).

Braak staging is a method of classifying the progression of PD pathology

and symptoms based on the presence of Lewy pathology (where 1 represents

initial pathology in the brain stem, and 6, severe pathology including the

neocortex) (21).
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varied greatly, especially in reporting. For example, for the 12
studies using stereological methods, three papers (74, 76, 79)
staged each case according to the Braak staging (to be expected
given that Braak staging only came about in the early 2000s).
In the same 12 studies, the age “since disease onset” varied
between 1 and 27 years when stated, the Hoehn and Yahr ratings
(H&Y, used to describe the progression severity of PD symptoms)
varied between 2 to 5 and the UPDSR score (that includes
H&Y rating, symptoms and quality-of-life scores) was also on
occasion provided. A correlation with disease duration/severity
was found in 10 studies. It is relevant here to mention that some
authors, including Gibb et al. (56) have discussed the selective
vulnerability of restricted sub-regions within the SNc. These
data are important and relevant to the progression of the field;
however, we found this distinction absent in the majority of the
work we examined.

PEDUNCULOPONTINE NUCLEUS AND
LOCUS COERULEUS

The evidence for cell loss for both the PPN (11 studies),
containing cholinergic neurons and the LC (18 studies),
containing noradrenergic neurons, is also relatively strong.

For the PPN, four studies used stereological methods. In these
four studies, the average loss of cholinergic PPN neurons was
41% and the range of PD stages amongst the subjects evaluated
was broad. For example, in Rinne et al. (99), the PD cases ranged
from a H&Y rating of 2.5 to 5; in Karachi et al. (73), UDPRS score
was used, and in both Hepp et al. (101), and Pienaar et al. (102),
the PD cases were between Braak stages 4 and 6 and between
2 and 4, respectively. Although sample sizes were relatively
small in these two last studies, nine and eight, respectively, it is
somewhat surprising that in the most advanced PD group, loss of
cholinergic PPN neurons was not higher than for less advanced
PD subjects, contrarily to the report by Rinne et al. (99).

Surprisingly, we found no study quantifying loss of LC
neurons using stereological counting methods. For the LC, 221
brains were studied, with cell loss ranging from “some” to 94%.
Five of the studies were based on observational quantifications, 4
on manual counting and 9 used computer-assisted counting. In
these 18 papers, when stated, the H&Y score was between 3 and
5, and disease duration was between 1 and 31 years. A correlation
of the extent of cell loss with disease duration was found in two
of these studies (81, 85).

DORSAL MOTOR NUCLEUS OF THE
VAGUS, RAPHE NUCLEI, NUCLEUS
BASALIS OF MEYNERT AND VENTRAL
TEGMENTAL AREA

Substantial cell loss has been documented in the DMV,
containing cholinergic neurons, with 7 studies evaluating this loss
in 49 cases. Of these, only one study (114) used stereology, where
they reported 55% neuronal loss in eight PD cases, ranging from
5 to 24 years post-diagnosis and reported correlation with disease
duration/severity.
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The importance of re-evaluating cell loss is PD is apparent
when considering the serotonergic RN. For these nuclei, which
are considered by many authors to be lost in PD, we found
7 papers describing neuronal loss varying between 0 to 90%.
Cheshire et al. however, using stereology in 44 late-stage PD
subjects, found no cell loss in the dorsal raphe nucleus (78). In the
NBM, containing cholinergic neurons, we found 13 papers, 12
using manual counting methods, and one observational, which
estimated an average neuronal loss of between “some” to 72%.
No correlation with disease duration was reported. The high
prevalence of concomitant PD and Alzheimer’s disease (AD)
might explain why cell loss varied so much for this region.
Surprisingly, only 8 studies directly evaluated neuronal loss in
the VTA, a dopaminergic region often considered to be only
modestly affected in PD.Of these, one study used stereology (120)
to evaluate the loss of neurons in 3 cases of PD (or 6 including
PD with a secondary diagnosis) that were between 1 and 27 years
post-diagnosis and reported an average neuronal loss of 31%.
One paper reported correlation of the extent of cell loss with
disease duration (68).

THALAMUS, HYPOTHALAMUS,
OLFACTORY BULB

Four studies reported neuronal loss in thalamic nuclei, with 2
using stereology (69, 126). In (69), 9 subjects with H&Y disease
ratings between 2 and 5 statistically significant loss of 30–40%was
reported in the centromedian-parafasicular complex. However,
no loss was found in themotor thalamus in 9 subjects with similar
H&Y disease ratings in the work of Halliday et al. (126). Neuronal
loss has also sometimes been reported in the hypothalamus
(9 studies), with one using stereology; Thannickal et al. (110)
reported a 50% cell loss in 10 PD cases, with increased loss with
disease severity. Olfactory dysfunction is now well established
as an early symptom of PD. Four studies evaluating cell loss in
the olfactory bulb were reported. One of these (121) described
a 57% decrease in neuronal number (identified as cells with “a
prominent nucleolus surrounded by Nissl substance”), while the
others (122–124), using stereology, reported a 100% increase in
the number of TH-positive neurons.

PERIPHERAL NERVOUS SYSTEM, SPINAL
CORD AND OTHER BRAIN REGIONS

Though there is substantial evidence for LP occurring in the ENS
(133), we did not find any study reporting direct—quantitative
evidence—for neuronal loss in the gut. Though it has been
inferred that ENS glial cell loss is occurring (134), there is
evidence that neuronal loss in the gut is not associated with PD
(135). Of note, a publication often cited in support of neuronal
loss in the ENS (115) shows, in fact, neuronal loss in the DMV.
With regards to the spinal cord, published evidence is also scarce;
of the studies most relevant here, Wakabayashi et al. (127),
using manual counting methods, described a loss of 31% and
43% respectively in the 2nd and 9th thoracic segments of the

intermediolateral of the spinal cord. For the amygdala, the pre-
supplementary motor cortex, several other cortical regions, the
laterodorsal tegmental nucleus and the oral pontine reticular
nucleus, we found only single studies supporting loss, with
stereology used for the amygdala (30% loss) (130), and cortex
(10% loss) (130) (see Table 1).

REGIONAL ORDER OF CELL LOSS?

In summary, it seems clear that there is some level of cell loss
in PD in restricted regions including the SNc, LC, NBM, PPN,
DMV, VTA, and probably the RN. However—because of the
lack of data for some regions, the variety of techniques used to
count neurons, potentially numerous unintentional sources of
bias, and because of the inconsistency in criteria used for subject
sampling—firm conclusions are somewhat limited. In particular,
it is difficult to conclude on the relative extent and temporal order
of cell loss in these different brain regions as a function of disease
progression, information that would be critical to advance the
field. Indeed, a direct comparison of the extent of neuronal loss in
different regions examined in different studies is hazardous, even
if stereological studies were to be selected. Interestingly, of the
38 studies we identified evaluating cell loss in the SNc, only 5 of
these also looked at the VTA, and of these only 1 used stereology.
Given the importance of the difference in vulnerability of these
two nuclei, a systematic evaluation of the extent of loss of these
neurons in PD would be very informative. But even if as a
technique, stereology mitigates for most of the classic biases, it is
still unable to account for the variation in subject sampling, i.e.,
variation in disease duration, sex and age, unless these criteria
were considered in a similar way for each study. Unfortunately,
this has not, thus far, been the case. In conclusion, it seems clear
that stereological studies comparing multiple regions in the same
subjects and these regions in subjects at different stages of PD are
critically needed to advance the field.

WHAT ARE THE COMMON FEATURES
SHARED BY NEURONS AFFECTED IN PD?

Although, as mentioned previously, the evidence for the extent
of cell loss in regions other than the SNc in the PD brain is
not always sufficiently documented, it is clear that some level of
cell loss occurs in a limited subset of regions beyond the SNc
(Figure 1A), or, to the least, that neuronal functions including
neurotransmission are perturbed in multiple neuronal circuits.
It is therefore of great interest to identify some of the biological
features that distinguish neuronal subgroups in terms of their
basal vulnerability to some of the cellular stresses that are invoked
to trigger PD, including altered proteostasis (due to lysosomal
and/or proteosomal impairment), mitochondrial dysfunction,
and sustained oxidant stress (including from highly reactive DA
metabolites).

Several groups have been tackling this question by
interrogating the characteristics that render neurons, starting
with those of the SNc, particularly vulnerable to degeneration /
cell death (136–138). It is likely that some shared functional or
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FIGURE 1 | (A) Schematic representation of brain regions demonstrating cell loss in Parkinson’s disease. These are color-coded based on the evidence of cell loss.

Red = 60%, orange = 40%, and yellow = 20%. Color gradients indicate uncertainty in the extent of this cell loss. (B) Summary of the converging hypotheses that

may explain the origins of the selective vulnerability of neurons in Parkinson’s disease. This includes the exceptionally large axonal arbor of PD-affected neurons, their

electrophysiological properties, including calcium-dependent pacemaking, and high levels of oxidant stress in the somatodendritic and axonal domain, all thought to

be contributing to cellular dysfunction and cell loss. Pathological protein aggregation and reactive dopamine quinones are considered as additional precipitating

factors.

structural properties are responsible for selective vulnerability
of affected nuclei, as opposed to features truly unique to SNc
DA neurons. The causative characteristic(s) should be present
in all affected neurons, but also be absent in neurons that do
not degenerate or that degenerate much later in the disease.
Four main converging hypotheses on selective vulnerability in
PD have been gaining attention lately (Figure 1B), related to
DA toxicity, iron-content, autonomous pacemaking and axonal
arborization size. The next section will explore the likelihood that
these hypotheses can explain why select neuronal populations
are particularly vulnerable in PD.

DOPAMINE TOXICITY

Firstly, it has been suggested that DA neurons in general are
most at risk because they produce DA as a neurotransmitter,
a molecule that can be toxic in certain conditions through
the generation of reactive quinones during its oxidation (139).
This oxidation has been proposed to be implicated in the
production of neuromelanin in SNc DA neurons. These DA
quinones have been shown to interact with and negatively impact
the function of mitochondrial protein complexes I, III, and V
(140) and of other proteins such as tyrosine hydroxylase, the
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DA transporter and α-synuclein (141, 142). Such reactive by-
products can promote mitochondrial dysfunction, pathological
aggregation of proteins such as α-synuclein and oxidative stress
(143). Increasing the vesicular packaging of DA accordingly
reduces the vulnerability of DA neurons, while down-regulating
vesicular packaging has the opposite effect (144–147). Although
highly relevant, this phenomenon alone does not readily explain
the differential vulnerability of different dopaminergic neuron
subgroups (such as SNc vs. VTA) and cannot contribute to the
potential vulnerability of non-dopaminergic neurons in PD. Also,
in the context of DA-induced toxicity, it is puzzling that levodopa
therapy, acting to increase DA synthesis, does not appear to
accelerate cell loss (148, 149). For these reasons, even if DA
toxicity most certainly contributes to degeneration of SNc DA
neurons, it is certainly not the sole factor driving neuronal death
in PD.

IRON CONTENT

Secondly, iron content is thought to also be an important
contributor to the selective vulnerability of SNc DA neurons.
Iron is known to be able to generate ROS by the Fenton reaction
and has been shown to accumulate with age in SNc (150–
152). Since the mitochondrial electron transport chain relies on
iron sulfur clusters for its function and since it is believed that
SNc neurons have particularly high bioenergetic demands (136,
138, 153), elevated iron content could in part underlie elevated
and sustained mitochondrial activity. Another interesting feature
of iron in SNc DA neurons is that it can be chelated by
neuromelanin, which renders it unavailable for mitochondrial
function. Even if the affinity of iron for neuromelanin is much
lower than for other iron binding proteins such as ferritin,
it is possible that accumulation of neuromelanin and loss of
ferritin concentration with age impacts gradually mitochondrial
function, which could eventually promote cell death. However,
data about potential iron content and iron-binding protein
concentration changes in PD is still a matter of debate (154, 155).
In addition, data is lacking on iron levels in other brain regions
presenting cell death in PD. In fact, the only other region studied
in this context has been the LC, which did not show high iron
relative to the SNc (156–159).

AUTONOMOUS PACEMAKING

A third highly attractive hypothesis to explain the vulnerability
of SNc DA neurons has its origins in the fact that these neurons
demonstrate autonomous pacemaking. Many receptors/channels
can potentially modulate the excitability and survival of DA
neurons (160). The fact that pacemaking activity in SNc DA
neurons is accompanied by slow oscillations in intracellular
calcium concentrations, caused by the opening of voltage-
dependent Cav1 plasma membrane calcium channels (Cav1.1
and 1.3) has recently renewed interest to this topic. In the
Cav1 family, Cav1.3 has been suggested to be of particular
interest because its voltage-sensitivity and inactivation properties
allow a subset of the calcium channels to always stay open
during pacemaking, causing extensive calcium entry (137). These

oscillations have a positive contribution to cell physiology
because they help maintain pacemaking and directly promote
mitochondrial oxidative phosphorylation (OXPHOS) (161).
However, by doing so, they have been proposed to also promote
chronically high levels of ROS production (162, 163). Along
with a reduction in mitochondrial function with age, chronically
elevated oxidative stress has been proposed to be a causative
factor in the decline of neuronal survival (164). Interestingly,
CaV currents and autonomous pacemaking are also a feature of
LC and DMV neurons (162, 163), and have been hypothesized
to be involved in their vulnerability. The fact that other neuronal
populations also expressing Cav1.3 such as hippocampal neurons
(165) and striatal spiny projection neurons (166) do not
degenerate in PD highlights the possibility that the particular
vulnerability of SNc DA neurons is due to a combination of
physiological phenotypes and not only intracellular calcium
oscillations. Intriguingly, recent post-mortem studies showed
that there was no decrease in Cav1.3 mRNA level in early or
late stage PD in human SNc compared to controls (166, 167),
despite significant loss of SNc neurons. Finally, in addition to
CaV channels, ATP sensitive potassium channels (K-ATP) have
also been reported to regulate the excitability and vulnerability of
SNc DA neurons (168).

AXONAL ARBORIZATION SIZE

A fourth hypothesis proposes that neurons such as those of the
SNc are particularly vulnerable because of the massive scale of
their axonal arborization, leading to very high numbers of axon
terminals, elevated energetic requirements, and chronically high
oxidant stress. Indeed, it has been shown that SNc DA neurons
have an exuberant and highly arborized axonal arborization
with estimates upwards of a million neurotransmitter release
sites per SNc DA neuron in humans (136, 169): this would
make them some of the most highly arborized neurons in the
nervous system. This characteristic has the potential to place
a very large bioenergetic burden on these cells, leaving little
margin for additional bioenergetic stress (136, 138, 153). Related
to this, it has been calculated that the ATP requirement for
propagation of one action potential grows exponentially with
the level of branching (170). In a recent publication (138),
we demonstrated in vitro that reducing the axonal arbor size
of SNc DA neurons to a size more similar to that of VTA
DA neurons using the axonal guidance factor Semaphorin 7A,
was sufficient to greatly reduce basal OXPHOS and reduce
their vulnerability to toxins including MPP+ and rotenone.
Although as previously discussed, the extent of neuronal
loss is still unclear for many neuronal populations, it does
seem likely that most neuronal nuclei affected in PD include
neurons that are relatively few in number, but all possess
long and profuse unmyelinated axonal arbors and a large
number of axonal terminals (171–176). However, comparative
data evaluating axonal arbor size amongst these populations
and in populations of neurons that do not degenerate in PD
is presently lacking. An interesting possible exception to this
hypothesis could be striatal cholinergic interneurons, which
were previously estimated in rats to present 500,000 axonal
varicosities (177, 178), but have not been reported to degenerate
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in PD. This estimate was obtained by dividing the estimated
number of terminals by the estimated number of cholinergic
interneurons in the striatum, which was based on the total
number of striatal neurons and the proportion of cholinergic
interneurons. Considering recent stereological counting of the
number of neurons in the rat striatum, it is possible that the
total number of terminals estimated for striatal cholinergic
neurons may have been overestimated by a factor of six
(179). Based on this report, axonal arborization size of striatal
cholinergic interneurons would be less than half of that of SNc
neurons. Careful quantitative and comparative studies are clearly
needed.

A GLOBAL BIOENERGETIC FAILURE
HYPOTHESIS

One commonality between these four hypotheses is that
they all suggest that vulnerable neurons are under intense
mitochondrial/bioenergetic demand. This could alter the
oxidative stress response by depleting antioxidants like
glutathione (GSH), as previously suggested to occur in the
PD brain (180–182). This stress could also, at a certain point,
place the cells in a situation in which the rate of OXPHOS
required to sustain neurotransmitter release and cellular
excitability leaves too little of the cell’s resources to sustain
other key cellular functions such as degradation of damaged
or misfolded proteins (137). This could lead to preferential
dysregulation of axon terminals, triggering a dying back cascade
culminating later in cell death (3, 183, 184). Approximately half
of the oxygen consumed by mitochondria in SNc DA neurons
appears to be used by activity-dependent cellular processes such
as firing and neurotransmitter release (138). In this context,
axon terminal degeneration seen early in the disease, prior to cell
death, could be in part an attempt by stressed neurons to adapt
to such excessively high metabolic needs. Such a dying back
process could also lead to increased amounts of damaged axonal
proteins to manage, potentially promoting their accumulation in
intracellular inclusions. Since α-synuclein is highly concentrated
in axon terminals, it is possible that retraction of axonal processes
in a cell where protein degradation systems are overwhelmed,
promotes creation of pathological aggregates of this protein, thus
accelerating cell death. Interestingly, lysosomal defects secondary
to GBA1 gene mutations are present in up to 10% of PD patients.
This gene encodes a glucocerebrosidase responsible for breaking
down lysosomal glucolipid. When GBA1 is mutated, the level of
glucolipid and of misfolded proteins increases in neurons. This
is likely to represent a particular challenge for highly arborized
neurons such as those of the SNc, perhaps explaining why such
mutations are now considered the greatest genetic risk factor for
PD (185–191). Similarly, mutations in gene products implicated
in mitophagy and mitochondrial antigen presentation (PARK2,
PINK1) (192, 193), oxidative stress response (PARK7) (194, 195),
or vesicular trafficking (LRRK2) (196, 197) are present in familial
forms of PD and their detrimental impact on cellular functions
could also represent larger challenges for highly arborized and
energetically ambitious neurons.

TOWARD BETTER TREATMENTS OF PD

In the context of the hypotheses discussed here regarding
the origin of the selective vulnerability of neurons in PD,
novel strategies to promote survival and preservation of
cellular functions amongst challenged neuronal populations
could possibly come from approaches that aim to reduce
mitochondrial burden by either reducing neuronal metabolic
needs or optimizing mitochondrial function. As an example,
the CaV1.3 channel inhibitor isradipine is presently in phase
3 clinical trial and could possibly reduce the calcium- and
activity-related metabolic stress of SNc DA neurons leading to
neuroprotection (198). Other promising molecules could come
from the repurposing of drugs used to treat diabetes and other
metabolic diseases. One example is exenatide, a glucagon-like-
peptide-1 agonist that has the property to increase glucose-
induced insulin secretion, to prevent the rise of ROS and
prevent decreases of mitochondrial function in diet-induced
obese mice (199). This agonist was found to reduce the loss
of DA neurons in the MPTP mouse model (200) and a recent
clinical trial has shown improved motor function after 60
days of administration to PD patients (201). Overexpression
of the mitochondrial deacetylase SIRT3 has also recently been
shown in two studies to reduce basal OXPHOS by DA neurons
and to protect SNc neurons in rodent models of PD (202,
203). With further discoveries of the underlying causes of the
intrinsic vulnerability of neurons in the PD brain and PNS,
multiple other strategies may soon be devised to address some
of the specific challenges faced by energetically challenged
neurons.

In conclusion, although the presently available data strongly
argue that multiple populations of neurons are affected
in PD and degenerate to varying extents, new work is
needed to provide a more systematic, comparative, and time-
dependent quantification of neuronal loss in this disease. More
comprehensive and convincing data on cell death and axon
terminal dysfunction in PD will likely provide additional impetus
for new work aiming to solve the long-awaited challenge of
identifying disease-modifying therapeutic approaches for this
incapacitating and ill-treated disorder.
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