
S U P P L E M E N T  A R T I C L E

S792 • jid 2021:224 (Suppl 7) • Burke et al

The Journal of Infectious Diseases

S U P P L E M E N T  A R T I C L E

 

Presented in part: 15th International Conference on Diarrheal Disease and Nutrition, 28–30 
January 2020, Dhaka, Bangladesh.

Correspondence: Rachel M. Burke, PhD, MPH, Centers for Disease Control and Prevention, 
1600 Clifton Road NE, Atlanta, GA 30329 (RBurke@cdc.gov).

The Journal of Infectious Diseases®  2021;224(S7):S792–800
© The Author(s) 2021. Published by Oxford University Press for the Infectious Diseases Society 
of America. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://doi.org/10.1093/infdis/jiab399

Global Experience With Rotavirus Vaccines
Rachel M. Burke,1,  Jacqueline E. Tate,1 and Umesh D. Parashar1

1Viral Gastroenteritis Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Rotavirus is a major cause of severe pediatric diarrhea worldwide. In 2006, 2 live, oral rotavirus vaccines, Rotarix and RotaTeq, were li-
censed for use in infants and were rapidly adopted in many high- and middle-income settings where efficacy had been demonstrated in 
clinical trials. Following completion of successful trials in low-income settings, the World Health Organization (WHO) recommended 
rotavirus vaccination for all infants globally in 2009. In 2018, 2 new rotavirus vaccines, Rotasiil and Rotavac, were prequalified by WHO, 
expanding global availability. As of March 2021, rotavirus vaccines have been introduced nationally in 106 countries. Since, Rotavirus 
vaccines have demonstrated effectiveness against severe disease and mortality, even among age groups in eligible for vaccination. Cross-
genotypic protection has been demonstrated, and the favorable benefit-risk profile of these vaccines continues to be confirmed. Ongoing 
research seeks to better understand reasons for the geographic disparities in effectiveness observed, in order to optimize vaccine strategies 
worldwide.
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Rotavirus is a leading cause of severe pediatric diarrhea world-
wide, estimated to have caused 258 million diarrheal episodes 
and >128 000 associated deaths among children <5 years of age 
in 2016 [1]. The mortality burden of rotavirus falls most heavily 
on developing countries where access to healthcare is subop-
timal [1, 2]. Rotavirus has been estimated to be the leading 
cause of pediatric diarrheal deaths in countries with low- to 
high-middle sociodemographic index (SDI), and as the third 
leading cause of pediatric diarrheal deaths in high SDI coun-
tries [3]. The proportion of rotavirus illness among infants and 
young children hospitalized for severe diarrhea prior to wide-
spread introduction of rotavirus vaccine has been found to be 
similar across geographies and in some studies was highest in 
the highest industrialization strata [4, 5], suggesting that tradi-
tional measures to improve hygiene and sanitation and access 
to safe water are unlikely to fully control the disease. Initial ro-
tavirus infections occur early in life, and in the prevaccine era, 
nearly all children suffered at least 1 rotavirus infection by the 
age of 5  years [4]. Rotavirus infection confers partial immu-
nity, with the level of protection against disease increasing with 
each subsequent infection [6]. Vaccination, through mimicking 
the effects of natural rotavirus infection, is considered the best 
means of control of rotavirus disease [7, 8].

EVIDENCE AND IMPACT OF THE FIRST 2 GLOBALLY 
LICENSED ROTAVIRUS VACCINES: ROTARIX 
AND ROTATEQ

In 2006, 2 live, oral rotavirus vaccines, Rotarix (GlaxoSmithKline) 
and RotaTeq (Merck), were licensed for use in infants based on 
data from trials conducted in the United States, Europe, and 
Latin America [9, 10]. Due to the experience with RotaShield, 
a tetravalent reassortant rhesus rotavirus vaccine that was with-
drawn from the US market in 1999 because it carried a risk of 
1 additional case of intussusception (a form of bowel obstruc-
tion) per 10 000 vaccinated infants, large clinical trials for both 
Rotarix and RotaTeq (60 000–70 000 infants each) were con-
ducted to examine safety [11]. Neither vaccine was found to 
cause an increased risk of intussusception in clinical trials, and 
both vaccines were highly efficacious against severe rotavirus 
gastroenteritis [9, 10]. On the strength of these data, in 2006 
the World Health Organization (WHO) recommended rota-
virus vaccines for use in high- and middle-income settings [12]. 
However, because of concerns about the efficacy of oral rota-
virus vaccines in low-income settings, WHO recommended ad-
ditional trials to examine vaccine efficacy in these settings [12].

Rotavirus vaccine uptake in the Americas was rapid, and ev-
idence quickly accumulated on the effectiveness of these vac-
cines in reducing hospitalizations and deaths from pediatric 
gastroenteritis [13–19]. In the United States, an analysis of hos-
pital discharge data showed significant reductions in rotavirus 
hospitalizations in 2008 as compared to prevaccine years, even 
among older children and young adults 3–24 years of age, who 
would not have been vaccinated [14]; similar results were seen 
when the analysis was extended to 2010 [15]. These findings, 
which suggested that rotavirus vaccination may also offer indi-
rect protection to older children and adults by reducing overall 
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levels of community transmission of rotavirus, provided im-
portant evidence of the far-reaching benefits of rotavirus vac-
cine introduction. The potential life-saving impact of rotavirus 
vaccination was first demonstrated in Mexico, where an anal-
ysis of pediatric diarrheal mortality found significant declines 
after the introduction of rotavirus vaccine [16, 19].

One question that would urgently impact the viability of ro-
tavirus vaccines as a means of disease control was the extent 
to which these vaccines could provide cross-genotype protec-
tion, particularly against strains not included in the vaccine. 
Rotavirus genotypes are defined by 2 outer capsid proteins: VP4 
(which defines the G type) and VP7 (which defines the P type) 
[20, 21]. Although a limited number of strains tend to account 
for the bulk of infections (G1P[8], G2P[4], G3P[8], G4P[8], 
G9P[8], and G12P[8]), there are numerous other strains that 
circulate at a lower frequency, and overall circulating patterns 
vary geographically and over time [22, 23]. Rotarix is based 
on an attenuated G1P[8] human rotavirus, whereas RotaTeq 
is a pentavalent vaccine containing bovine-human reassortant 
virus with the G1, G2, G3, G4, and P[8] antigens [9, 10]. 
Encouragingly, data from a US-based active surveillance plat-
form demonstrated high vaccine effectiveness of both vac-
cines against a variety of strains, including nonvaccine-type 
strains [17, 24]. Similarly, data from an efficacy trial in Africa 
found Rotarix efficacy to be comparable across vaccine- and 
nonvaccine-type strains [25]. Results from postlicensure evalu-
ations in Latin America further confirmed the cross-protection 
conferred by vaccination [26–29].

In 2009, after the completion of additional clinical trials 
showing vaccine efficacy in low-income countries of Africa 
and Asia, WHO recommended rotavirus vaccines for inclu-
sion in national immunization programs worldwide [7]. This 

expansion opened up rotavirus vaccine recommendations to 
areas most in need of intervention, as it has been estimated 
that 65% of rotavirus deaths occur in just 10 countries—all in 
Africa and Asia [2]. Vaccine efficacy in clinical trials of Rotarix 
and RotaTeq in Asia and Africa ranged from 51% to 64%, mod-
erate in comparison to results from the initial trials in high-
income countries, in which efficacy was >85% [9, 10, 25, 30, 31]. 
However, given the higher burden of rotavirus disease in these 
settings, even a vaccine with modest efficacy can have a sub-
stantial public health impact. As an example, when comparing 
results from Malawi, a lower-resource country, with those from 
South Africa, a higher-resource country, it is clear that despite 
lower efficacy in Malawi, the health impact in terms of episodes 
of severe rotavirus disease averted by vaccination of 100 infants 
was greater in Malawi as compared to South Africa, which had 
a higher estimated efficacy [25] (Figure 1). The effectiveness and 
public health impact of these vaccines continues to be borne out 
in postintroduction evaluations, with evidence suggesting that 
although effectiveness tends to be lower in countries with high 
all-cause child mortality burden, impact of rotavirus vaccine 
in terms of reducing rotavirus-associated hospitalizations and 
deaths tends to be greater in these high child-mortality coun-
tries as compared to other settings [32, 33].

To further support expansion of Rotarix and RotaTeq into 
additional national vaccination programs, more evidence was 
needed on the safety of these 2 vaccines during routine use. 
Although no evidence of an association with intussusception 
was noted during clinical trials, these studies were not powered 
to detect an increased risk smaller than 1 per 10 000 children 
vaccinated. Postintroduction evaluations in several high- and 
middle-income countries found an even smaller but signif-
icant risk of intussusception associated with both vaccines, 

15 50% vaccine e�cacy

6.6 episodes
prevented

4.2 episodes
prevented

77% vaccine e�cacy

10

5

R
ot

av
ir

us
 e

pi
so

de
s 

pe
r 

10
0 

ch
ild

-y
ea

rs

0

Malawi South Africa

Placebo Vaccine

Figure 1. Vaccine impact (episodes prevented) and vaccine efficacy by country: Malawi and South Africa. Adapted from Madhi et al 2010 [25] analysis of clinical trial data 
collected 2005–2007.
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approximately 1–6 additional cases per 100 000 infants vaccin-
ated [34–42]. However, as the benefits of vaccination still ex-
ceeded the possible intussusception risk [43], no changes were 
made to overall recommendations. Furthermore, later analysis 
of data from 7 African countries using Rotarix found no evi-
dence of a significantly increased risk of intussusception after 
vaccination [44], nor did another analysis of data from South 
Africa [45] (Figure 2). These analyses reaffirm the favorable 
safety profile of rotavirus vaccines and suggest that the benefits 
of rotavirus vaccination far outweigh the associated risks.

EXPANDING GLOBAL ROTAVIRUS VACCINE CHOICE: 
IMPLEMENTATION OF ROTAVAC AND ROTASIIL

In 2018, interruptions to the global rotavirus vaccine supply 
underscored the importance of having multiple affordable vac-
cine options available to countries. That same year, 2 Indian-
manufactured rotavirus vaccines were prequalified by WHO: 
Rotasiil (Serum Institute) and Rotavac (Bharat Biotech), both 
live, oral vaccines given in a 3-dose infant schedule. Rotasiil is 
based on a bovine-human reassortant strain and contains G1, 
G2, G3, G4, and G9 antigens, while Rotavac is based on a natu-
rally occurring neonatal strain of G9P[11] [46, 47]. These vac-
cines have several features that make them attractive to many 
countries: Rotasiil is heat-stable for extended periods of time 
at high ambient temperatures, while Rotavac requires only 

a 5-drop dose, and both vaccines are available at a relatively 
low cost compared to Rotarix and RotaTeq [48, 49]. Clinical 
trials for these vaccines were conducted in India and Niger, 
and both demonstrated similar efficacy as was seen for Rotarix 
and RotaTeq in Asia and Africa [47, 50–52]. Both vaccines are 
in routine use in India, and each has also been adopted in a 
handful of other countries in Africa and Asia [53]. One country 
where a substantial impact might be expected is the Democratic 
Republic of Congo, which has both a large birth cohort and a 
high burden of rotavirus disease [2, 54, 55]. Given that Rotavac 
and Rotasiil were prequalified only in 2018, the evidence base 
for safety and effectiveness in routine usage is still being built. 
However, several postlicensure evaluations of Rotavac usage in 
India have been published, all showing no increased risk of in-
tussusception associated with vaccination [56–58]. Additional 
evaluations of Rotavac and Rotasiil are underway to further 
assess the safety and effectiveness of both vaccines under real-
world conditions of use.

NATIONAL VACCINES: ROTAVIN AND LANZHOU 
LAMB ROTAVIRUS VACCINE

In addition to Rotasiil and Rotavac, 2 other indigenously 
produced rotavirus vaccines are licensed and in use in their 
countries of origin: Rotavin (POLYVAC) is licensed for use 
in Vietnam, and Lanzhou Lamb Rotavirus Vaccine (LLRV; 
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Figure 2. Estimates of incidence rate ratio for intussusception in the 1–7 days following rotavirus vaccine administration, using the self-controlled case series method, by 
country and dose [34, 36, 39, 40–42]. Study data from 2006 through 2016. Dots indicate point estimates for incidence rate ratios, and lines and whiskers indicate 95% confidence 
intervals. Abbreviations: AFRO = African Rotavirus Surveillance Network Countries (Ethiopia, Ghana, Kenya, Malawi, Tanzania, Zambia, and Zimbabwe); UK = United Kingdom.
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Lanzhou Institute of Biological Products) is licensed for use in 
China [59–63]. Although neither vaccine is currently part of 
any national immunization program, both are available on the 
private market in their respective countries of origin. Rotavin 
has demonstrated immunogenicity in a phase 2 clinical trial 
and has been introduced into the immunization schedule in 
selected areas of 2 provinces, where its impact and effectiveness 
are being evaluated [59]. A phase 3 trial of a liquid presenta-
tion of the vaccine has been completed, and results are pending 
publication [64]. No efficacy data are available for LLRV, but 
vaccine effectiveness estimates have varied from 35% to 77% 
[63, 65–68]. Nationally produced vaccines are an important el-
ement in ensuring broad global access to affordable vaccines, 
and more data on these 2 nationally licensed products will in-
form the global research agenda.

RESEARCH GAPS AND FUTURE DIRECTIONS

Recently, there has been increased scientific interest in pos-
sible off-target effects of rotavirus vaccination. The most well-
documented such effect is a decrease in seizure hospitalizations 
following rotavirus immunization, which has been observed in 
several countries through both cohort studies and ecological 
analyses [69–73]. It is hypothesized that this effect is mediated 
through reduction in rotavirus disease, which has been shown 
to cause seizures in addition to (or sometimes in the absence 
of) gastrointestinal illness [74, 75]. Two autoimmune diseases, 
celiac disease (CD) and type 1 diabetes (T1D) have also been 
linked to rotavirus infection, although evidence suggests that 
the etiology of both autoimmune conditions is multifactorial 
[74, 76]. Two studies have found that rotavirus vaccination may 
have some protective effect against CD, in conjunction with 
other factors [77, 78]. Although 2 analyses have found rotavirus 
vaccination to be associated with reduced T1D diagnosis [79, 
80], several other studies have shown no significant effect [77, 
81–83]. Further research will be necessary to better elucidate 
possible relationships of rotavirus vaccination to CD and T1D, 
as well as to identify any other possible unanticipated benefits 
of rotavirus vaccination [74–76].

Another area of ongoing research involves the differential ef-
fectiveness of rotavirus vaccine by setting, whereby higher effec-
tiveness is demonstrated in higher-income settings as compared 
to lower-income settings. Although this phenomenon has been 
well documented, the exact reasons for this disparity, and the 
best interventions, are still not well defined. Multiple possible 
factors have been identified, such as those that may act directly 
on vaccine virus in the gut (eg, maternal antibodies, breast 
milk, stomach acid, and oral polio vaccine [OPV]), as well as 
factors that act to impair general immune response (eg, mal-
nutrition, microbiome, and coinfections such as human immu-
nodeficiency virus [HIV]) [84–92]. Available evidence suggests 
that delaying rotavirus vaccination schedules may contribute to 
enhanced immune response due to waning interference from 

maternal antibodies [93], but it is not known if this would 
translate into increased effectiveness, and any changes to vac-
cine schedules must also be balanced with practical and logis-
tical concerns, as well as the desire to protect infants early in 
life. Similarly, while OPV has been well documented to interfere 
with rotavirus vaccine immunogenicity when coadministered 
(the converse does not occur) [85], this finding does not sug-
gest a clear public health intervention. Several interventions 
specific to the time of vaccination have been tested, for instance 
withholding breastfeeding and adding nutritional supplemen-
tation, but these were found to have little or no effect on rota-
virus vaccine immune response [88, 94]. Research also suggests 
that susceptibility to rotavirus (and thus live rotavirus vaccines) 
varies by histo-blood group antigens in a rotavirus P-genotype–
dependent way; the expression of these antigens is governed 
by polymorphisms in 2 genes, the prevalence of which varies 
by population [95–107]. As a specific example, the genotype 
conferring increased susceptibility to P[6] rotaviruses is more 
common in Africa, a setting where both increased circulation 
of P[6] rotaviruses and moderate efficacy of current rotavirus 
vaccines have been observed. Taken together, the evidence sug-
gests a need for holistic interventions, such as those that could 
improve overall infant nutritional status, and a potential role 
for parenterally administered rotavirus vaccines, which would 
not be subject to some of the same limitations as the current 
oral vaccines.

Indeed, there are several rotavirus vaccines under develop-
ment that are designed for parenteral administration; another 
candidate that has completed phase 2 trials is being developed for 
neonatal administration [108]. The most advanced parenteral 
vaccine candidates are 2 subunit vaccines: one contains the P[8] 
antigen, and the other contains P[4], P[6], and P[8] antigens, 
both being developed by PATH and both demonstrating immu-
nogenicity [109, 110]. RV3-BB, the rotavirus vaccine candidate 
being developed for neonatal administration, is based on a nat-
urally attenuated neonatal strain of G3P[6] rotavirus that was 
initially isolated in Australia [111, 112]. A phase 2b trial dem-
onstrated both safety and efficacy of this vaccine when given on 
a schedule that includes a birth dose (along with doses at 8 and 
14 weeks of age) as well as a more standard infant schedule at 8, 
14, and 18 weeks of age (although the trial was not powered to 
detect extremely rare side effects such as intussusception) [111].

CONCLUSIONS

As of March 2021, rotavirus vaccines have been introduced na-
tionally in 106 countries, and regionally within 4 countries (Figure 
3) [53]. It is not yet clear what impact the coronavirus disease 2019 
(COVID-19) pandemic may have had on rotavirus vaccine cov-
erage or burden, but encouragingly, despite the pandemic, several 
countries introduced rotavirus vaccines into their national sched-
ules during 2020. Although great progress has been made over the 
past 15 years, there is a notable gap evident: in much of Asia, an area 
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with a substantial rotavirus burden, no national immunization pro-
gram is in place. A 2018 analysis estimated that early introduction 
of rotavirus vaccines throughout Asia could have averted >700 000 
hospitalizations and approximately 35 000 deaths among children 
<5 years of age, with impact concentrated in the highest-burden 
countries [113]. As we look forward towards the next 15 years of 
rotavirus vaccines, our goal must be to close these regional gaps to 
protect more children from severe gastroenteritis. With multiple 
planned introductions in 2021, including in Bangladesh, a country 
with an extraordinarily high rotavirus burden [114], we can look 
forward to continued progress in improving child health.
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