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A B S T R A C T   

Diabetic foot ulcer (DFU) poses a significant threat to individuals affected by diabetes, often 
leading to limb amputation. Early detection of DFU can greatly improve the chances of survival 
for diabetic patients. This work introduces FusionNet, a novel multi-scale feature fusion network 
designed to accurately differentiate DFU skin from healthy skin using multiple pre-trained con-
volutional neural network (CNN) algorithms. A dataset comprising 6963 skin images (3574 
healthy and 3389 ulcer) from various patients was divided into training (6080 images), validation 
(672 images), and testing (211 images) sets. Initially, three image preprocessing techniques - 
Gaussian filter, median filter, and motion blur estimation - were applied to eliminate irrelevant, 
noisy, and blurry data. Subsequently, three pre-trained CNN algorithms -DenseNet201, VGG19, 
and NASNetMobile - were utilized to extract high-frequency features from the input images. 
These features were then inputted into a meta-tuner module to predict DFU by selecting the most 
discriminative features. Statistical tests, including Friedman and analysis of variance (ANOVA), 
were employed to identify significant differences between FusionNet and other sub-networks. 
Finally, three eXplainable Artificial Intelligence (XAI) algorithms - SHAP (SHapley Additive ex-
Planations), LIME (Local Interpretable Model-agnostic Explanations), and Grad-CAM (Gradient- 
weighted Class Activation Mapping) - were integrated into FusionNet to enhance transparency 
and explainability. The FusionNet classifier achieved exceptional classification results with 99.05 
% accuracy, 98.18 % recall, 100.00 % precision, 99.09 % AUC, and 99.08 % F1 score. We believe 
that our proposed FusionNet will be a valuable tool in the medical field to distinguish DFU from 
healthy skin.   

1. Introduction 

Diabetes Mellitus (DM), generally referred to as Diabetes is a chronic condition characterized by persistent hyperglycemia or high 
levels of blood sugar. This enduring state leads to crucial life-threatening issues, including kidney failure, cardiovascular diseases, 
lower limb amputation, and blindness, which is commonly caused by Diabetic Foot Ulcers (DFU) [1]. DFU is a crucial problem of 
diabetes that is detected based on types of foot injuries. As per the global diabetes report, the year 2014 witnessed a notable surge in the 
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number of individuals grappling with diabetes, reaching 422 million, a substantial increase from the 108 million reported in 1980. In 
the demographic of adults aged 18 and above, there has been a noticeable escalation in global prevalence, rising from 4.7 % in 1980 to 
8.5 % in 2014 [2]. The estimation indicates that by the conclusion of 2035, the global tally of individuals living with diabetes is 
anticipated to climb to 600 million worldwide [3]. 

Notably, it is crucial to highlight that approximately 20 % of these individuals will be from economically developed nations, and 
the remainder will be from economically developing nations where awareness is overlooked and healthcare facilities are limited [4]. A 
diabetic patient has a 15%–25 % probability of developing DFU in the future, and if treatment is not received, this could lead to lower 
limb amputation [5]. Over a million diabetic patients lose a portion of their leg annually as a result of improper management and 
diagnosis of DFU [6]. A patient with diabetes who has a “high-risk” foot necessitates regular medical check-ups, ongoing costly 
medications, and a healthy lifestyle to prevent the previously mentioned effects. As a result, this imposes a substantial financial strain 
on patients and their families, particularly in developing nations where the expenses associated with treating this condition can 
amount to a financial burden equivalent to 5.7 years of their annual income [7]. Doctors suffer from several indecisions in the process 
of judging DFU, including 1) a lack of confidence in making treatment decisions; 2) a lack of transparency in the diagnosis process; and 
3) the possibility of improper treatment plans and possibly negative effects for patients. 

Recently, different types of artificial intelligence (AI) techniques, like deep learning (DL) and machine learning (ML), have been 
used in medicine to create safe, low-cost, and automatic ways to diagnose diseases like cancer, tuberculosis, diabetic foot ulcers, brain 
tumors, and more [8–12]. In the field of medical image processing, various DL-based segmentation algorithms like thresholding, 
watersheds, region growth, etc. have been demonstrating a vital role in segmenting anomalous areas from images. These algorithms 
can identify a specific cancer cell through particular medical data. So, such AI techniques in the medical imaging sector can be a useful 
tool to create a more reliable DFU framework than conventional diabetic foot ulcer tests. Employing DL frameworks helps circumvent 
challenges that are time-consuming to address in traditional frameworks. However, it’s essential to acknowledge that these frame-
works necessitate substantial volumes of well-categorized training data. 

To address this challenge, the development of Transfer Learning (TL) has proven crucial. With its ability to effectively overcome the 
pitfalls of both reinforcement learning and supervised learning, TL is gaining widespread recognition [13]. TL encompasses four 
learning approaches: unsupervised, inductive, transudative, and negative. Each approach has been shown to be capable of handling the 
DL challenges [14]. A TL technique was applied to build up the frameworks [15] by obtaining the framework’s weight through 
pre-trained frameworks (i.e., ImageNet [16]). The main architecture of the framework comprises three elements: a prediction clas-
sifier, a pre-trained network, and a customized head (motivated from Ref. [17]). The pre-trained networks play a crucial role in 
extracting high-level DL features and are seamlessly integrated with the classification head and customized network. In numerous 
fields, TL is indispensable for improving accuracy by leveraging its contextual and discriminative feature extraction capabilities. 
Examples include sentiment classification [18], medical image classification [19], applications of web scraping [20], and social media 
[21]. This manuscript uses TL techniques to enhance diagnostic reliability and speed up clinicians’ decision-making as a result of the 
discussion above. 

While AI-based methods have demonstrated their advantage over disease diagnosis, many of these methods lack the comprehensive 
interpretability of models concerning crucial features related to pathological signs in medical data. Consequently, the clinical success 
of these approaches remains obscure until future experiments are conducted to explain the most important information retrieved by 
these algorithms. Even with extremely exact experimental outcomes, it is exceedingly unlikely that real-world medical experts will 
accept a black-box DL model. Furthermore, the AL-based diagnosis methods now in use are not very accurate. Another pitfall of black- 
box models is their sensitivity to hyperparameter selection, which can pose difficulties in the generalization and optimization of novel 
data. Additionally, this type of model can face an overfitting issue, and as a result, black-box models can exhibit lower performance on 
unseen images. While black-box models have demonstrated significant success in diverse applications, a significant drawback is their 
lack of transparency and interpretability. 

Explainable artificial intelligence (XAI) is becoming more and more popular in the medical sector, which aims to exhibit 
explainability and transparency for black-box classifiers that can solve the above limitations. For this reason, post-hoc approaches have 
gained much vogue in medical data analysis as a viable solution by presenting black-box models in a comprehensible manner for 
human understanding. These explanations prove valuable in assisting medical experts in uncovering potential discriminatory biases 
embedded within black-box models. Notably, local, model-agnostic algorithms that focus on interpreting the outcomes of provided 
black-box models, like SHapely Adaptive exPlanations (SHAP) [22], Gradient-Weighted Class Activation Mapping (Grad-CAM) [23], 
and Local Interpretable Model-agnostic Explanations (LIME) [24], are recently most popular among these algorithms. These algo-
rithms generate perturbations of a specific sample on a medical image dataset and observe the effect of these perturbations through the 
black-box model’s outcome to calculate the impact of individual information on a certain prediction. The above XAI algorithms will 
assist in creating an understandable and trustworthy network, which can contribute to enhancing prediction accuracy and confirm that 
the network is accountable, robust, and fair. 

This paper presents a new XAI-based multi-scale feature fusion network (FusionNet) to construct a novel foot ulcer diagnosis 
approach from the DFU dataset and three well-known XAI algorithms—LIME, Grad-CAM, and SHAP—to explain the prediction of 
FusionNet. The gradient explainer library of the SHAP algorithm is employed to explain our frameworks’ predictions. Grad-CAM 
highlights the pertinent regions of a sample by utilizing the gradient of the activation map in the last convolution layer of the CNN 
classifier. Lastly, the LIME algorithm is applied to explain DL features to identify DFU patients from others. Within this framework, the 
idea of transfer learning (TL) is applied, employing multiple pre-trained CNN networks assembled to execute the same classification 
challenge. A meta-tuner module utilizes all pre-trained network predictions and produces predicted outcomes. At first, we trained five 
well-known pre-trained CNN classifiers with fine-tuned layers called DenseNet201, VGG16, VGG19, NASNetMobile, and MobileNet 
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and then selected the best three among them to build the FusionNet, which is stacked utilizing a meta-tuner module to find the optimal 
classification outcome. Then, we conducted the proposed FusionNet and all classifiers with the help of the DFU dataset, which contains 
6963 images (3574 healthy and 3389 ulcer classes). At last, to create heatmaps that strongly signify ulcer patches and healthy patches, 
a novel explainability approach is devised by utilizing three well-known XAI algorithms such as LIME, Grad-CAM, and SHAP. For 
clinical trials, the FusionNet can learn crucial DL patterns and features from the DFU dataset and provides an affordable and un-
derstandable method for identifying diabetic-caused ulcer skin. Our manuscript has made vital improvements in the following 
domains:  

● Introduction of FusionNet, an XAI-based multi-scale feature fusion network, for early detection of diabetic foot ulcers.  
● Utilization of transfer learning with multiple pre-trained CNNs addressing the same classification challenge.  
● Comprehensive analysis of FusionNet’s predictions utilizing XAI, demonstrating an accuracy of 99.05 %. 

Section 2 presents the literature review. Section 3 demonstrates the proposed methodology. The five subsections in Section 3 are 
the DFU dataset, data pre-processing, building FusionNet, fine tuner, and three XAI algorithms (LIME, SHAP, and Grad-CAM). The 
analysis of the results is described in Section 4 which has 4 parts. These parts are environment settings, evaluation metrics, results 
analysis, and XAI algorithms result analysis. Finally, we conclude Section 5 and highlight future work. 

1.1. Research objectives 

The main objectives of this research are as follows:  

• Develop an automated, explainable DL-based approach for detecting DFU and analyzing the entire dataset.  
• Evaluate transfer learning (TL) on multiple pre-trained CNN models using a meta-tuner module.  
• Construct a composite model by integrating various pre-trained CNN models and assess its performance metrics.  
• Provide explanations for the results of the composite model using a range of XAI algorithms. 

1.2. Research questions  

• How can DFU be distinguished from healthy skin using DL-based methods?  
• Which pre-trained CNN networks are utilized for classifying DFU skin and healthy skin?  
• What XAI algorithms are employed to elucidate the classification results? 

In the field of diabetic foot ulcer (DFU) detection, medical specialists require a transparent and explainable DL-based diagnosis 
method to accurately identify the exact location of the DFU. However, the main problem of the current research is the lack of 
transparency and explainability of their proposed method. The main aim in this research is to address this crucial problem by attaching 
various XAI-based algorithms to the proposed DL-based FusionNet. These XAI-based algorithms help the DFU specialist make their 
decision stronger by providing a reliable and trustworthy DFU diagnosis method. 

1.3. Research weaknesses 

The proposed approach is limited to binary classification, specifically distinguishing between DFU and healthy skin. When sub-
jected to testing with other types of ulcers (such as venous foot ulcer (VFU), arterial foot ulcer (AFU), and neurotic foot ulcer (NFU)), 
the model tends to classify them erroneously as either healthy or DFU. Consequently, the applicability of the proposed approach is 
confined to binary classification scenarios and does not extend to multi-class classification. 

1.4. Research strengths 

The proposed work exhibits several strengths:  

• Extraction of high-dimensional DL features across various scales is achieved through the utilization of multiple pre-trained CNN 
networks. 

• Integration of a meta-tuner module aids in the selection of optimal features from the extracted set, thereby reducing the compu-
tational complexity of FusionNet.  

• Incorporation of XAI-based algorithms facilitates the elucidation of the network’s predictions, offering researchers insights into 
FusionNet’s DFU prediction mechanisms.  

• The proposed XAI-based diagnostic and prognostic system holds the potential to assist clinicians in making informed decisions, 
consequently enhancing diagnostic accuracy and patient care outcomes. 

2. Literature review 

The constraints outlined underscore the need for developing resilient and intelligent approaches for the automated detection of 
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ulcers, ensuring swift services for frontline clinicians, and encompassing both novice and seasoned experts in the realm of DFU. As a 
result, there has been a rise in the development of algorithms for the automated detection of ulcers. Notably, algorithms capable of 
extracting features from DFU images have gained prominence, offering valuable support to clinicians during the diagnostic phase 
through the provision of automated screening. In this context, two prevalent machine learning (ML) approaches are frequently 
employed. Initially, conventional classification methods rely on features derived from DFU images, a process that is often challenging 
and reliant on domain expertise [25]. In contrast, deep learning (DL) approaches [26], notably convolutional neural networks (CNN), 
demonstrate the capability to autonomously extract features from given input samples, streamlining the process of disease 
classification. 

A multitude of works have explored the detection and classification of DFU data, aiming to differentiate between abnormal skin and 
normal skin. Many writers have advocated for image processing and ML methods, focusing on the analysis of diverse features such as 
morphological textures, hues, and patterns. The efficacy of the proposed methodologies is intricately tied to the chosen algorithms and 
training strategies. DL has emerged as a prevalent and widely adopted approach for the development of medical image segmentation, 
classification, and detection tasks [27]. Notably, DL models have demonstrated superior performance compared to traditional ap-
proaches using DFU images from diabetic-affected patients. 

Manu Goyal et al. [28] introduced a conventional computer vision (CCV)-based efficient and economical approach for classifying 
normal and ulcerative foot skin (2017). They proposed a deep neural network-based classifier named DFUNet to classify healthy and 
ulcer patches from the DFU dataset. Their proposed DFUNet obtained maximum AUC (96.2 %) by leveraging a cross-validation 
technique whose outcome exhibited superior performance compared to applying conventional DL and ML methodologies. 

Wang et al. [29] utilized a specialized capture box to acquire normal and healthy images from the DFU dataset (2017). They 
applied a two-phase Support Vector Machine (SVM) classifier to precisely identify the ulcer location. The two phases involved (i) 
segmentation, which retrieved super-pixels, and (ii) feature extraction, focusing on retrieving crucial DL features from the DFU 
samples. Their proposed SVM-based method attained the highest sensitivity (73.3 %) and specificity (94.6 %). 

Alzubaidi et al. [30] proposed a framework utilizing a dataset of 754 feet of images encompassing both normal and ulcer skin 
(2020). They proposed a novel deep CNN-based network, called DFU_QUTNet, based on the concept of traditional CNN networks. They 
developed their model by increasing the width rather than the depth. This network tackled the gradient propagation issue by 
dispersing errors across multiple channels. 

Doulamis et al. [31] proposed a non-invasive platform based on a photonic-based system for handling diabetic patients (2021). This 
innovative platform utilizes hyperspectral and thermal imaging to monitor the present condition of the ulcer, predicting biomarkers 
such as deoxyhemoglobin and oxyhemoglobin through imaging techniques. Furthermore, this platform was boosted by integrating 
signal processing techniques, leveraging DL to improve pixel quality, and reducing noise through the implementation of 
super-resolution techniques. 

Alzubaidi et al. [32] suggested four types of hybrid networks for DFU classification (2021). These networks were built based on two 
layers: the parallel convolutional layer (PCL) and the traditional convolutional layer). Each network comprised six components of the 
PCL, with the number of branches in the PCL ranging from two to five. The same input samples were fed into all networks to retrieve DL 
features from the samples. These retrieved DL features were merged by leveraging the PCL. Among all the networks, their proposed 
four-branch hybrid network reached the highest F1 measure (95.8 %). 

Juan et al. [33] introduced a new deep-neural network called DFU_VIRNet, designed for the automated classification of DFU skin 
(2023). Their methodology also emphasized feature maps to discern the likelihood of risky regions to detect ulcers. The proposed 
scheme was trained and tested with two types of samples—visible and invisible. Notably, DFU_VIRNet exhibited superior performance 
with the highest AUC (0.99301) and accuracy (0.97750), surpassing recent DFU classification tasks. 

Das et al. [34] suggested an innovative stacked parallel (SP) framework named DFU_SPNet, which was built based on SP con-
volutional layers (2022). They used multiple diverse convolution filter sizes in DFU_SPNet to retrieve estimation maps. The DFU_SPNet 
was evaluated by setting the SGD optimizer and learning rate 1e-2 on the DFU dataset. They achieved maximum test accuracy (96.4 %) 
on this dataset, which was higher than other existing works. 

Das et al. [35] proposed a feature fusion framework to extract low-level handcrafted features using ML and high-level features using 
DL (2022). They used deeper residual blocks as DL extractors. Also, they used various algorithms like artificial neural networks, lo-
gistic regression classifiers, gradient boosting, and support vector machines as ML classifiers. Among all these classifiers, LRC provided 
the highest results with AUC (96.50 %), F1 score (95.37 %), and sensitivity (95.23 %). However, they could improve their results by 
selecting the most important features among the extracted features. 

Kaselimi et al. [36] provided an extensive study of the application of artificial intelligence (AI) in observing DFUs (2022). The study 
underscored the merits of these AI methods while allowing for the challenges associated with their effective implementation for 
faraway patient care. The analysis centered on optical sensors and imaging techniques utilized for DFU detection, considering both 
sensor characteristics and patient physiological aspects. Despite recommending various monitoring tactics based on image data 
sources, the study recognized pitfalls in the widespread application of AI algorithms. 

Biswas et al. [37] presented an efficient architecture, DFU_MultiNet, for separating DFU from healthy skin (2023). DFU_MultiNet 
was developed based on the multi-scale transfer learning (MTL) concept. MTL extracted information from the input data using three 
sub-models at the same time. They used a concatenation layer to combine the extracted features from the sub-models. However, the 
combination of several sub-models complicated their architecture and slowed the training time. Apart from that, DFU_MultiNet failed 
to explain the results of the classification. 

Thotad et al. [38] presented an innovative DL methodology called EfficientNet to detect DFU at early stages (2023). The study 
implemented the EfficientNet algorithm based on a DFU dataset where the image (ulcer and healthy) size was 844 feet. In this study, 
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the authors built up a reliable framework by optimizing three important attributes (depth, resolution, and width) of the CNN algorithm 
to effectively identify normal feet and diabetic feet. Comparatively, their algorithm outperformed contemporary algorithms (AlexNet, 
VGG19, VGG16, and GoogleNet), achieving exceptional accuracy (98.97 %), F1 score (98 %), precision (98 %), and recall (99 %), 
respectively. 

Das et al. [39] developed a robust CNN-based system (AESPNet) to identify DFU (2023). To distinguish between DFU and normal 
skin, they arranged convolution layers in parallel and used the attention module. The AESPNet consists of two segments, with 
convolution layers of heterogeneous kernel attached in parallel to form the final structure. The attachment of a bottleneck attention 
unit (BAU) followed every concatenation action in the scheme. They tested AESPNet on four classic CNN-based schemes (i.e., 
InceptionV3, DenseNet121, VGG16, and AlexNet), where AESPNet exhibited outstanding results with F1 scores (98 %) and sensiti-
vity/recall (98.44 %). Though BAU improved the architecture’s performance, it introduced challenges in explaining the architecture. 

Biswas et al. (2024) [40] proposed a novel transfer learning (TL)-based system, named DFU_XAINet, for distinguishing ulcer cases 
from normal cases. They trained and tested five pre-trained CNN models to predict the DFU and also evaluated three XAI algorithms (i. 
e., LIME, SHAP, and GradCAM) to explain the predicted results. Among these models, ResNet50 exhibited high accuracy with 98.75 %. 
However, using a combined model in place of a single model may improve the classification results. 

However, though the above papers have addressed similar problems, these papers have faced some crucial challenges. Some au-
thors identified DFU using a single CNN model with different or same-sized kernel convolution layers. A single model is capable of 
capturing inadequate high-frequency features, which may result in misidentifying DFU from healthy skin. Biswas et al. [37] used 
multiple CNN models to identify DFU, which were able to capture high-frequency features effectively. However, their architecture was 

Table 1 
A summary table of all the approaches.  

References Paper summary Performance results 

Goyal et al. [28], 
2017 

The authors proposed an ideal framework, named DFUNet, with a very small 
number of CNN layers. One potential limitation of this architecture is the lack of 
insufficiently extracted DL features due to the fewer layers. 

Accuracy (0.925), AUC (0.961), Precision (0.945), 
Specificity (0.911), and F1 score (0.939), 

Wang et al. [29], 
2017 

To locate the lesion zone on ulcer samples with the help of a capture box, a two- 
stage SVM system was designed. The detection reliability leaned on the photo- 
capturing conditions. 

Sensitivity (73.3 %), and Specificity (94.6 %) 

Alzubaidi et al. 
[30], 2022 

A novel approach, named DFU_QUTNet, was designed by increasing the width of 
the architecture without considering computational complexity. 

Precision (0.954), F1 score (0.945), and Recall (0.936) 

Alzubaidi et al. 
[32], 2021 

A hybrid classifier integrates standard and multi-branch parallel convolutional 
layers. The parameter fine-tuning process may improve the result of the proposed 
approach. 

Precision (97.3 %), F1 score (95.8 %), and Recall 
(94.5 %) 

Juan et al. [33], 
2023 

To exhibit consistent outcomes for the locations with features of the diabetic foot 
through generating the activation maps, DFU_VIRNet was developed. 

Accuracy (0.9775), AUC (0.993), Recall (0.982), F1 
score (0.978), and Precision (0.974) 

Das et al. [34], 
2022 

With the help of the heterogeneous filter in the middle layers and the multiple 
parallel convolution layers in each parallel module, unique features from the input 
instances were taken out. One potential limitation of this architecture is the lack of 
model explainability. 

Accuracy (0.964), AUC (0.974), Precision (0.926), 
Recall (0.984), Sensitivity (0.984), and F1 score 
(0.954) 

Das et al. [35], 
2022 

A feature fusion framework to extract low-level handcrafted features using several 
ML classifiers and high-level features using DL-based deeper residual blocks. They 
could improve their results by selecting the principle components among the 
extracted features. 

AUC (96.50 %), F1 score (95.37 %), and Sensitivity 
(95.23 %) 

Shuvo et al. [37], 
2023 

A novel system, named DFU_MultiNet, combines multiple CNN networks to extract 
discriminant features in a parallel fashion. The architecture was complex and had a 
very large number of training parameters due to the combination of multiple 
networks. 

Accuracy (99.06 %), F1 score (99.08 %), and Recall 
(98.18 %) 

Thotad et al. 
[38], 2023 

To build up an efficient system, named EfficientNet, three crucial 
parameters—width, depth, and resolution—of the CNN classifier to detect ulcers A 
fine-tuner unit could be added to the proposed EfficientNet to improve the training 
time. 

Precision (99 %), F1 score (98 %), Accuracy (98.97 
%), and Recall (98 %) 

Das et al. [39], 
2023 

An effective framework (AESPNet) to detect DFU by combining varying-sized 
kernel-based parallel convolution layers and a bottleneck attention module. One 
potential limitation of the AESPNet is the lack of explainability of the detection 
process. 

Accuracy (97.02 %), Sensitivity (98.44 %), Precision 
(94.02 %), AUC (98.60 %), and F1 scores (96.18 %) 

Shuvo et al. [40], 
2024 

Development of a transfer learning-based system named DFU_XAINet with the XAI 
method to predict DFU using the pre-trained ResNet50 model. Three XAI 
algorithms were used to interpret the predicted results. However, their predicted 
results can be improved by a combined network composed of multiple models 
because multiple models are able to extract more high-frequency features. 

Accuracy (98.75 %), Recall (97.6 %), AUC (98.5 %), 
F1-measure (98.4 %), and Precision (99.2 %) 

Proposed 
approach 

The novelty of the proposed method is to extract more high-frequency features from 
the input image using a fusion network composed of multiple pre-trained CNN 
models instead of a single CNN network. A meta-tuner module is used to reduce the 
computational complexity of the proposed architecture because it selects the 
optimal features. At last, three XAI algorithms are used to provide the transparency 
and explainability of the predicted results that help DFU specialists make their 
decisions stronger. 

99.05 % Accuracy, 98.18 % Recall, 100.00 % 
Precision, 99.09 % AUC, and 99.08 % F1 score  
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very complex, with a very high number of trainable parameters due to the combination of multiple CNN networks. Das et al. [35] 
utilized a parallel CNN scheme with bottleneck attention modules to identify DFU cases. Due to the incorporation of bottleneck 
attention modules, their architecture was very complex. Apart from that, the major limitation of the above papers is the lack of 
explainability of their proposed system. 

In summery, the novelty of the current article is as follows: 1) used a combined model to retrieve high-frequency and multi-scale 
features effectively, whereas the other literature used only a single model as a feature extractor; 2) reduced the computational 
complexity of the combined architecture using a meta-tuner module; 3) used several XAI algorithms to provide the transparency and 
explainability of the predicted results of the proposed model, where other literature fails to explain the model prediction system. This 
section succinctly outlines various works in the domain of DFU listed in Table 1, shedding light on the diverse approaches employed by 
researchers. 

3. Proposed methodology 

This section covered the suggested method. Fig. 1 shows the workflow of the proposed FusionNet for DFU detection. The FusionNet 
consists of the following stages: data pre-processing, feature extraction, optimized feature selection, final prediction, and predicted 
result explanation. Here, several pre-processing methods, including the Gaussian filter, the median filter, and the motion blur kernel 
method, were used to remove noisy, blurry, and irrelevant data. Then the pre-processed data was fed into three CNN models that had 
already been trained on the ImageNet database to pull out high-frequency features. The extracted features from each model were 
provided into a meta-tuner module to select the optimum features. A softmax (SM) activation function is employed to build the final 
predicted model using the selected optimum features. Finally, three XAI algorithms (LIME, SHAP, and GradCAM) were attached to the 
final model to provide transparency and explainability for the prediction results in this work. The root factors for choosing feature 
extraction and selection methods in identifying DFU are: (1) the multi-scale feature extraction method has the benefit of extracting 
more high-frequency features than the single CNN model; and (2) the fine-tuning-based feature selection method reduces the 

Fig. 1. Workflow of the proposed method.  
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computational complexity of the proposed architecture by selecting the optimal features. Additionally, we conducted two statistical 
test approaches, namely Friedman and analysis of variance (ANOVA), to find out the root statistical differences between the proposed 
network and other sub-networks. Fig. 4 displays the overall architecture of the suggested system. The FusionNet and all pre-trained 
networks are trained and validated on the same DFU dataset and meta-tuner module. Subsequently, the final FusionNet is 
employed to predict whether unseen images depict ulcers or healthy skin. The ensuing section provided an elaborate description of 
each stage of the suggested methodology. Algorithm 1 shows the step-by-step classification procedure of the suggested network. 

Algorithm 1. FusionNet for the screening of DFU images.  

ƞ = learning rate; β = batch size; δ = mini-batch size; ε = optimizer; λ = epoch; 
Input: DFU Training data Dtrain (70 %), Validation data Dvalid (10 %), and Test data Dtest (20 %); 
Output: ω = weight of the base-CNN networks; 
Start: 

Resize each sample into a dimension of 224 × 224; 
Apply the data augmentation technique to enhance the volume of data; 
Retrieve the DL features from the Dtrain using selected pre-trained CNN networks; 
Combine the retrieved DL features through the concatenation layer; 
Set four fine-tuning layers: CNNdropout, CNN batch normalization, CNNdense, CNNsoftmax; 
Initialize the training factors: ƞ, λ, ε, δ, and β; 
Calculate the initial weight ω through training the FusionNet; 

for λ = 1 to λ do 
Select a mini-batch size δ; 
Forward propagation and calculate the loss function; 
Backpropagation and updating the weight ω; 

end for 
Finally, apply XAI algorithms to explain the interpretability and transparency of the predictions of the proposed system; 

End   

3.1. Dataset 

In this experimental setup, the publicly accessible Kaggle “DFU-dataset” [41], originating from the diabetes hospital at Nasiriyah 
Hospital in southern Iraq [30], played a pivotal role in evaluating the novel FusionNet. It is essential to highlight that the acquisition of 
informed consent and ethical statements was meticulously undertaken by all pertinent patients and individuals involved in the data 
selection procedure. The images in this dataset were captured based on the variety of light and viewing conditions by the image la-
beling experts with the help of a Samsung Galaxy Note 8 and an iPad device. This dataset was composed of four folders. Among these 
folders, the “patches” folder images were utilized in this experiment because these images were cropped with dimensions of 224 × 224 
pixels from the images of the “original images” folder. This “patches” folder contains a total of 1055 images, with 543 of healthy 
(normal) and 512 of abnormal (ulcer) classes. Fig. 2 (a)-(c) shows some samples of healthy patches and Fig. 2 (d)–(f) shows some 
samples of ulcer patches from the DFU dataset. The “train_test_split” function is used to partition the dataset into a test set (20 %) and a 

Fig. 2. Some samples of the DFU dataset.  

S. Biswas et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e31228

8

train set (80 %). The “train_test_split” is a special type of function in the Python programming language that was imported from the 
“sklearn.model_selection” package. After that, 10 % of the data is again partitioned for the validation set from the training set using the 
same splitting function. Lastly, the whole dataset (i.e., 1055 patches) is separated into training (i.e., 760 patches), test (i.e., 211 
patches), and validation (i.e., 84 patches) phases at a ratio of 70:20:10 for each phase. Table 2 shows the number of samples in each 

Table 2 
Dataset distribution before augmentation.  

Dataset Label Training Validation Testing 

DFU Healthy 390 43 110 
Ulcer 370 41 101 
Total 760 84 211  

Fig. 3. Noise-removal and deblurring of a sample image.  

Fig. 4. Architecture of the proposed FusionNet. Here, ‘GAP’ stands for the global average pooling 2D layer, ‘Drop’ stands for the dropout layer, 
‘Concat’ stands for the concatenation layer, ‘BN’ stands for the batch_normalization layer, and ‘S’ indicates softmax. 
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category in the entire DFU dataset based on count. 

3.2. Data pre-processing stage 

Before giving the dataset to the proposed system, various pre-processing steps are performed. In the DFU dataset, the format of each 
sample was. jpg with a dimension of 224 × 224 and a configuration of RGB. These samples are transformed into Numpy arrays using 
the NumPy library in Python to facilitate quicker training and use less memory. Furthermore, we have applied a shuffling operation to 
train unordered images. However, while acquiring the image from the Kaggle online repository, sometimes the dataset contains noisy 
images. For this reason, we applied two popular image filtering operations, the Gaussian filter and the median filter, to filter out 
irrelevant or noisy data from the DFU dataset. Sometimes the quality of the data may be poor due to blurring, which may be caused by 
motion artifacts. This crucial problem is tackled in the proposed scheme by again employing the motion blur estimation method based 
on DL methods for motion blur kernel estimation [42]. In the motion blur kernel estimation technique, firstly, this technique estimates 
the probabilities of motion kernels at the patch level, then fuses the patch-based estimations into a dense field of motion kernels by 
CNN, and finally, deconvolve the blurry image to estimate the sharp image. Fig. 3 depicts examples of the noiseless and deblurring 
images from the DFU dataset. Fig. 3 (a) presents the noisy image; Fig. 3 (b)–(c) shows the samples of noiseless images; Fig. 3 (d) shows 
the intermediate sample after applying the estimated motion blur algorithm; and Fig. 3 (e) shows the final sample after applying the 
motion blur algorithm. 

To provide accurate predictions, CNN networks require a large number of labeled training sets. However, gathering a huge amount 
of medical imagery is difficult and costly. To tackle this problem, we implemented image augmentation techniques that enhance the 
volume of samples during training and boost training efficacy by preventing overfitting issues. In image augmentation, we applied five 
image processing approaches—rotation, flipping (horizontal and vertical), zooming, shearing, and shifting—to generate the required 
training samples. The values of the non-binary (false or true) operations—shearing, rotation angle, zooming, and shifting—are 
randomly chosen from pre-defined distributions or ranges. For example, in image zooming, the images are scaled from the range [1 - 
zoom_range] to [1 + zoom_range]. When rotating an image, the rotation_range parameter permits random rotation from degree 0 to 
360. The shearing operation changes the height and width of a sample by picking a floating-point value within a range from 0 to 1. 
Conversely, the flipping operation flips an image horizontally or vertically with the binary parameter False or True. With these ap-
proaches, we increase the training size to 6080 and the validation size to 672. Finally, the total amount of data increased from 1055 to 
6963, with the test set containing 211 images. We applied the augmentation technique only to the train set. Augmenting the test set can 
generate information leakage, biases, and erroneous evaluation scenarios, resulting in incorrect classification results. That’s why we 
use an unaltered and clean test set to develop an unbiased and reliable DFU detection system. Table 3 shows the augmentation pa-
rameters. Table 4 shows the number of total samples after applying image augmentation techniques. 

3.3. Building FusionNet 

This section presents the overall design of the suggested FusionNet. The widespread use of pre-trained neural networks for diverse 
medical image classification tasks has gained significant traction [43]. In the medical area, where obtaining a large number of 
categorized images for training deep CNN networks can be difficult, researchers have in recent times used powerful pre-trained CNN 
networks trained on ImageNet [16] to build a hybrid framework that improved medical image classification tasks. ImageNet is a huge 
database comprising over 14 M (million) subjects distributed across 20,000 labels, but it conducted 1.2 M subjects representing more 
than 1000 labels for benchmarking. These labels encompass a range of abstract objects, concepts, animals, scenes, etc. 

Inspired by the above advantages, in this paper, we used five CNN-based sub-models—NASNetMobile, VGG16, MobileNet, 

Table 3 
Data augmentation techniques and parameters.  

Strategies Parameter values 

Rotation range 90 
Zooming range 2 
Width shift range 0.2 
Shearing range 0.4 
Height shift range 0.2 
Vertical flip True 
Horizontal flip True  

Table 4 
Dataset distribution after augmentation.  

Dataset Label Training Validation Testing 

DFU Healthy 3120 344 110 
Ulcer 2960 328 101 
Total 6080 672 211  
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DenseNet201, and VGG19—trained on this database and simulated on the DFU dataset based on the idea of transfer learning. The 
weights of these sub-models were determined from the ImageNet dataset. From these sub-models, the three most successful 
ones—DenseNet201, VGG19, and NASNetMobile—are picked for constructing the combined network, named FusionNet. The 
FusionNet can contribute from both methodological and empirical perspectives. Each sub-model has distinct characteristics and 
architectural designs. VGG19 is a deeper network than VGG16, which captures fine-grained features, while NASNetMobile provides 
efficiency and scalability, and DenseNet201 facilitates feature reuse and propagation through dense connections. By combining these 
diverse architectures in a novel combination, the network can capture a wider range of features and representations from the data. On 
the other hand, if one sub-model fails to retrieve sensitive and high-level features from the data, the others can retrieve high-level 
features from the same data through their unique CNN layers, resulting in a reliable prediction system that could be designed. 
Thus, based on these facilities, we selected these sub-models based on their extracted features and proposed a novel combination using 
these sub-models. However, from a feature extraction perspective, Densenet201 is able to extract a large amount of features compared 
to other DL models, whereas VGG16 and VGG19 retrieve a smaller amount of features. On the other hand, NASNetMobile and 
MobileNet are able to extract a moderate number of DL features. The retrieved characteristics differ from one DL models to another:  

1) NASNetMobile (1056) features.  
2) VGG16 (512) features.  
3) MobileNet (1024) features.  
4) Densenet201 (1920) features.  
5) VGG19 (512) features. 

The primary goal of this network is to acquire and extract DL features through the selected networks. As depicted in Fig. 4, the 
fusion technique processes the input samples through three functional layers concurrently. Here, each layer indicates a pre-trained 
network based on DenseNet201, VGG19, and NASNetMobile, respectively. To achieve dimensionality reduction, the output from 
each functional layer undergoes a global average pooling (GAP) layer. The output from each GAP layer is flattened and merged using a 
concatenation layer to form a singular feature vector for each input sample. Following flattening, these networks produce an output 
feature vector with sizes of 1920, 1056, and 512, respectively (see Fig. 4). Thus, the merged feature vector is of size 3488, which is fed 
into a fine-tuner for tuning the network. The classification task is done through a dense (fully connected) layer. Merging all DL features, 
our FusionNet is comprised of 42,804,372 trainable parameters that are approximately 3, 3, and 9 times greater than the individual 
VGG19 (trainable parameters 14,781,890), DenseNet201 (trainable parameters 18,343,170), and NASNetMobile (trainable parame-
ters 4,370,900) networks, respectively. The next subsections detail the fundamental architecture of each pre-trained CNN network that 
has been used, as well as the fine-tuning procedure. 

The Fusion network is designed in a parallel fashion rather than a sequential fashion. A parallel network operates the same DFU 
dataset independently by using different pre-trained CNN networks. Each CNN network can retrieve discriminant multi-scale infor-
mation from the input image through its unique CNN architecture. By combining retrieved information from multiple CNN networks, 
the fusion network can collect both low-level and high-level information, resulting in improved overall classification performance. 
Thus, the Fusion network can work effectively to detect DFU. Table 5 shows various concrete parameters of FusionNet. 

3.3.1. DenseNet 
Huang et al. [44] pioneered the development of DenseNet, an exceptional pre-trained image classifier recognized for achieving 

superior accuracy on the ImageNet dataset. This classifier was built based on a feed-forward architecture akin to ResNet. This classifier 
incorporates dense connections that facilitate the efficient exchange of crucial information across the network. In this work, we utilized 
DenseNet201 as our first DL feature selector classifier. This is a complex image classifier because it contains 201 neural layers, each of 
which is specifically designed to tackle the overfitting challenge. Following training, this classifier encompassed a total of 18,343,170 
trainable parameters, which is more than others. 

3.3.2. VGGNet 
Simonyan et al. [45] pioneered the development of VGGNet, a basic pre-trained image classifier that was trained on the ImageNet 

database and achieved the top position at the ILSVRC competition. This classifier proved to be a far superior classifier to the AlexNet 
classifier by demonstrating a remarkable error rate (8.1 %). That’s why, in our experiment, we used the VGG19 classifier as the second 
DL feature detector classifier. This is a simple image classifier because it contains 19 neural layers, including sixteen convolution (CNV) 
layers and three fully connected (FC) layers. Each CNV layer supports filter sizes from 64 to 512 and a fixed window size of 3 × 3. The 
classifier comprised five units, of which the first two contained four CNV layers and the subsequent three were allocated to the 

Table 5 
Shows various concrete parameters of FusionNet.  

Parameter Value 

Extracted features 3488 
Activation functions ReLU, SoftMax 
Fusion operation concatenation 
Number of fine tuning layers six  
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remaining twelve. Following each block, a max-pooling (MP) layer supports a window size of 2 × 2 employed to uniquely identify key 
DL features from the adjusted activation maps. Each CNV layer operated using a rectified linear unit (ReLU) activation function. 
Following training, this classifier encompassed a total of 14,781,890 trainable parameters, which is more than the third classifier 
named NASNetMobile. 

3.3.3. NASNetMobile 
Zoph et al. [46] pioneered the development of NASNetMobile, another exceptional pre-trained image classifier recognized for 

achieving a minimum error rate (2.4) on the CIFAR-10 dataset through the ScheduledDropPath regression method. Saxena et al. [47] 
(2019) provided an optimal classifier composed of refined fundamental units that have undergone refinement through reinforcement 
learning. These units collectively improved the classifier’s overall robustness by merging diverse functions like separable convolution, 
convolution, and pooling. In our study, NASNetMobile is our last DL feature detector classifier. It is a very complex image classifier 
because it has 769 neural layers. It was built for edge and mobile devices. Following training, this classifier encompassed a total of 4, 
370,900 trainable parameters, which is fewer than others. 

In summary, the principle of the combined network is to train multiple DL models (i.e., VGG19, DenseNet201, and NASNetMobile) 
in a parallel fashion at the same time to retrieve optimal features from the training dataset. Then each DL model converts the retrieved 
features into a one-dimensional feature set using a GlobalAveragePooling (GAP) layer. After that, these feature vectors are fused into a 
unified feature file using a concatenation operation. Thus, the combined network produces an effective and optimal feature set from 
the training dataset, which contributes to accurately distinguishing DFU from healthy skin. 

Table 6 
Summary of the proposed framework.  

Layer (type) Output Shape Param # Connected to 

input_1 (224, 224, 3) 0  
densenet201 (7, 7, 1920) 18321984 input_1[0][0] 
NASNet (7, 7, 1056) 4269716 input_1[0][0] 
vgg19 (7, 7, 512) 20024384 input_1[0][0] 
GlobalAveragePooling2D (1920) 0 densenet201[0][0] 
GlobalAveragePooling2D (1056) 0 NASNet[0][0] 
GlobalAveragePooling2D (512) 0 vgg19[0][0] 
concatenate_4 (3488) 0 GlobalAveragePooling2D[0][0] 

GlobalAveragePooling2D_1[0][0] 
GlobalAveragePooling2D_2[0][0] concatenate_4[0][0] 

dropout (3488) 0  
batch-normalization (3488) 13952 dropout[0][0] 
dense (128) 446592 batch-normalization[0][0] 
dropout1 (128) 0 dense[0][0] 
batch-normalization1 (128) 512 dropout1[0][0] 
dense1 (2) 258 batch-normalization1[0][0] 

Total params: 43,077,398. 
Non-trainable params: 273,026. 
Trainable params: 42,804,372. 

Table 7 
Summary comparison of the characteristics of the three XAI methods.  

XAI Method Characteristics Description of DFU Image Spatial Resolution 

LIME ●An algorithm for approximating the 
prediction output of a black box classifier 
with another classifier. 

●Multiple skin wounds in the sample can 
be successfully visualized. 

The spatial resolution of a sample is altered by 
the number of extracted superpixels, 
permitting higher flexibility in the DL feature 
experiment. ●Approximate models are not always 

accurate. 
●Focuses on which superpixel area of the 
sample is most crucial for prediction. 

SHAP ●An algorithm for retrieving sample 
partially obstructive and quantifying the 
impact of an area leveraging a black box 
classifier. 

●Multiple skin wounds in the sample can 
be identified (visualized). 

The spatial resolution of a sample is altered by 
the stride size and kernel size, permitting 
higher flexibility in the DL feature 
experiment. 

●The impact of a combination DL activation 
map cannot be exhibited. 

●Focuses on which area of the sample is 
crucial for prediction. 

Grad-CAM ●An algorithm to build up the black box 
classifier itself has proof for judgment. 

●Targets on an important portion of large- 
scale wounds are why cannot detect 
(visualize) multiple skin wounds in the 
sample. 

Limited amount of spatial resolution in the 
final convolution layer which is 7 × 7 (in the 
case of VGG16). 

●Explain the areas that impact the final 
probability score. 

●Focuses on the important pixels that 
influence updating the final classification 
decision.  
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3.4. Fine tuner module 

In this section, the significance of the meta-tuner module is elucidated. The meta-tuner module is needed to adjust the weights of 
the model for the final classification task. The concatenated features from the concatenation layer are fed into the meta-tuner module. 
The meta-tuner module consists of six CNN layers with a softmax (SM) activation function. These layers are two dropout layers, two 
batch normalization (BN), and two dense. Each layer plays an effective role in enhancing the overall performance of the FusionNet. The 
key tasks of each layer are detailed below. 

The incorporation of the BN (batch normalization) [48] layer is highly important to improve the performance of FusionNet. The 
core contribution of this BN layer is to normalize and resize the images, which represents our framework as a powerful tool for DFU 
diagnosis. In DL, overfitting is a major problem, which arises when the DL algorithm is excessively trained on the training data and 
adversely affects the test set [49]. To tackle this condition, we implement 2 dropout layers where, during model training, the first will 
reject a 40 percent sample and the second will reject a 20 percent sample. In addition, this kind of operation helps to greatly reduce the 
training time. 

The dense layer establishes connections between every neuron in one layer and every neuron in the subsequent layer, creating a 
fully connected (FC) neural network. That’s why it is also called the FC layer, which converts input samples into output predictions. 
The core contributions of the FC layer are to handle input images, predict class probabilities, and determine the outcomes. In this 
experiment, we implemented 2 FC layers with two activation functions: one is ReLU [50] and the other is softmax (SM). The SM 
discerns the most pertinent DL information to classify the abnormal or normal class, produces result values ranging from 0 to 1, and 
activates the neurons accordingly. The formula for this SM function is defined in equation (1): 

Softmax
(
wp

)
=

ewp

∑n

m=1
ewm

(1)  

Where wp indicates the pth element of the input vector, ewp represents the standard exponential function for input vector wp, n is the 
number of classes, ewm represents the standard exponential function for output vector wm. 

Table 6 presents the summary of the proposed framework. This table is retrieved while simulating the FusionNet for classification 
tasks. So this architecture has two neurons inside the last FC layer. 

3.5. Explainable artificial intelligence 

In this research, the incorporation of eXplainable Artificial Intelligence (XAI) played a crucial role in elucidating the decision- 
making system of the FusionNet. The experiment employed three prominent XAI methods, namely SHAP, Grad-CAM, and LIME, 
each briefly outlined in the subsequent sub-sections, to facilitate visual analysis. 

3.5.1. SHaply additive exPlanations (SHAP) 
We have also employed another XAI technique, namely SHaply Additive exPlanations (SHAP) [22] (2017), to elucidate the de-

cisions made by the black box FusionNet. As a post-hoc XAI technique, SHAP offers an explanation based on DL feature relevance. This 
paper has employed gradient-based interpretations to describe the influence of the intermediate layers of the VGG16 classifier on the 
outcomes. The gradient interpreter in SHAP leverages the anticipated gradient approach to determine the overall gradients along one 
or more channels between two suitable dataset. SHAP produces the Shapley value of DL characteristics by setting the marginal 
contribution of DL characteristics ɸi. The formula for marginal contribution is given in equation (2): 

Marginal Contribution,φk
i = f̂

(
zk
+i

)
− f̂

(
zk
− i

)
(2)  

Here, ɸi represents the marginal contribution of ith feature, f̂ (zk
+i) is the contribution features with i and f̂ (zk

− i) is the contribution 
features without i. 

The formula for Shapley value which is the average total combinations (ɸi (z)) for a given sample z is provided in equation (3): 

ɸi(z)=
1
M
∑M

i=1
φk

i (3)  

Here ɸi (z) indicates average marginal contribution for sample z, ɸi represents the marginal contribution of ith feature and M is the 
number of input features. 

This experiment utilizes the SHAP library of [22] for elucidating the outcomes of the deep CNN classifier through a DL gradient 
explainer. This library serves as a powerful tool for interpreting in the context of DL models. Specifically, the gradient explainer within 
the SHAP was utilized to provide insights into the workings of the DL models under examination. 

3.5.2. Gradient-Weighted Class Activation Mapping (Grad-CAM) 
In DL, each CNN model includes a feature extraction branch and a classification branch. The classification branch holds an FC layer, 

and the retrieved DL information is transformed into a probability value for each label in the SM (softmax) layer. The final classified 
outcome of the system is the label with the maximum probability value. Grad-CAM [23], (2017) the last XAI algorithm employed in 
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this study, serves as a class-discriminative localization algorithm that can produce visual interpretations without necessitating 
structural retraining or modifications. It achieves this by localizing relevant sample regions and utilizing the gradient information of 
the DL activation map from the final convolutional layer to highlight portions of the sample with the most significant impact on the 
probability value for the outcome of the prediction. Regions with a larger gradient are indicative of areas exerting a substantial in-
fluence on the prediction outcomes. The Grad-CAM output manifests as a heatmap visualization corresponding to a specific class label. 
This heatmap is instrumental in visually confirming the areas of interest within the image, as elaborated in the experimental analysis 
section. 

3.5.3. Local Interpretable Model-agnostic explanations (LIME) 
Ribeiro et al. [24] (2016) presented the LIME XAI algorithm, which aims to provide complete justifications for predictions pro-

duced by a black box system. The fundamental concept of LIME involves locally estimating the functionality of the black box system 
employing a clear, transparent glass box system, enhancing interpretability. The LIME algorithm produces perturbations by carefully 
deactivating and activating specific superpixels across a sample. This approach seeks to explain the results in a human-readable 
manner and to ascertain the relevance of the persistent superpixels in the predicted samples. LIME enhances model interpretability, 
promotes transparency, and instills confidence in DL systems by elucidating how the input characteristics of a black-box system in-
fluence its predictions. The initial phase of employing the LIME algorithm on an original sample is to break it down into superpixels. 
These superpixels determine the granularity of the region segmentation. A connected group of pixels that share the same location and 
color is called a superpixel. The segmentation produced by this process is more thorough and finer, making it possible to identify the 
regions that are crucial for accurately predicting the outcome. 

The XAI is employed to offer local justifications. The local justification is a tactic provided for every prediction separately. This 
includes two key points: 1) evaluating the effect of how each input affects the output, and 2) articulating this effect in a human- 
understandable manner. While all three XAI algorithms mentioned encompass these fundamental points, their approaches and 
ensuing results differ. For instance, because the SHAP algorithm measures shapely values across the whole region of the input image, 
the significance of the combination of DL characteristics between areas is unclear. In LIME, the approximation results of a basic 
classifier are not always accurate. Grad-CAM does not always offer proof of ulcer normality; it just indicates whether areas of the 
sample had an impact on the final prediction’s likelihood score. As a result, we believe it would be beneficial to provide prediction 
explanations that combine all three XAI algorithms. A brief comparison of these algorithms is presented in Table 7. 

4. Performance evaluation 

To show the success of FusionNet, we performed a comprehensive evaluation comparing the performance of all networks. The 
system configuration, evaluation metrics, outcomes analysis from qualitative and quantitative perspectives, and a conclusion will be 
covered next. 

4.1. System configuration 

In this study, instances in the same DFU data with the same train, test, and validation ratios serve as the basis for evaluating the 
proposed system and individual pre-trained classifiers. The proposed system was facilitated through the utilization of Keras [51], 
establishing the connection between Python [52] and the NN (neural network). The computational framework is shown in Table 8. 

We utilize the Adam [53] optimizer with a learning rate (0.0001) for simulating our proposed system. After we categorized ulcer 
skin and normal skin, we utilized the binary cross-entropy as a loss function, which made the categorization task quicker. Again, we 

Table 8 
Experimental settings of the FusionNet.  

Resources Details 

RAM 64 GB 
CPU Intel Core i5-12600K @ 3700 MHz 
GPU Tesla K80 
Platform Google Colab  

Table 9 
Training parameters with value for the proposed system.  

Parameter Value 

Optimizer adam 
Metrics accuracy 
Loss Function binary_crossentropy 
Learning Rate 0.0001 
Epochs 50 
Batch Size 32  
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leverage ReduceLROnPlateau (Reduce on Loss Plateau Decay) and ModelCheckpoint callbacks from the Keras library. Mod-
elCheckpoint observes the evaluation metrics and consistently updates the network to observe the criteria such as validation loss, 
validation accuracy, training loss, and training accuracy. ReduceLROnPlateau reduces the learning rate if there is no progress in 
validation loss over a certain period of epochs. A reduced learning rate in deep learning leads to a slower training pace for the CNN 
model, resulting in minimal adjustments to the classifier weights. To tackle these challenges, we set batch size = 32 and epochs = 50 
for exhibiting a successful model. Finally, we have evaluated the evaluation metrics—recall, AUC, accuracy, F1 score, error rate, and 
precision—on the test set. Table 9 shows the training parameters with values utilized for simulating the CNN classifier. 

4.2. Evaluation metrics 

A crucial step in building a strong DL system is system assessment. In this study, diverse evaluation parameters, like the AUC-ROC 
curve, and the CM (confusion matrix), are used to judge the quality of the system. Various performance measurement parameters—F1 
score, recall, precision, and accuracy—can be computed using the CM. These parameters were derived from four values: false-positive 
(FP), false-negative (FN), true-positive (TP), and true-negative (TN). In CM, the positive label indicates ulcer instances, while the 
negative label indicates healthy instances. The true label indicates the proper identification, while the false label indicates the wrong 
identification. TP signifies the accurate recognition of ulcer instances, whereas TN represents the precise identification of healthy 
instances. Conversely, FP denotes the erroneous classification of ulcer instances, while FN refers to the misclassification of healthy 
instances. These evaluation metrics contribute to a thorough evaluation of how effectively our framework processed the input data. 
The formula for these evaluation matrices is given in equations (4)–(8)). 

Accuracy (ACC) is the percentage of successfully identified instances. It is provided in equation (4): 

Accuracy=
TP + TN

TP + TN + FP + FN
(4) 

Recall (REC) refers to successfully identifying TP instances by evaluating the proportion of total positive instances. Recall is given 
by equation (5): 

Recall=
TP

TP + FN
(5) 

Precision (PRE) means how successfully our FusionNet predicts positive instances. Precision is computed with equation (6): 

Precision=
TP

TP + FP
(6) 

Fig. 5. Confusion matrix of the FusionNet.  

Table 10 
Evaluation of explainable deep learning models.  

Model Accuracy Recall Precision F1 score Error Rate AUC 

VGG16 0.981 0.964 1.00 0.981 0.019 0.982 
VGG19 0.867 0.745 1.00 0.854 0.133 0.873 
NASNetMobile 0.773 0.564 1.00 0.721 0.227 0.782 
DenseNet201 0.976 0.955 1.00 0.977 0.024 0.977 
MobileNet 0.867 0.845 0.894 0.869 0.133 0.868 
FusionNet 0.991 0.982 1.00 0.991 0.009 0.991  
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F1 score (FS) is the harmonic mean of PRE and REC scores. It is defined in equation (7): 

F1 score= 2 ∗
PRE ∗ REC
PRE + REC

(7) 

Error rate refers to the proportion of misclassified instances about the total number of samples. Error rate is calculated by equation 
(8): 

Error rate=
FP + FN

TP + TN + FP + FN
(8) 

Fig. 5 shows the CM (confusion matrix) of our proposed FusionNet. From CM, we show that the FusionNet correctly identifies 108 
healthy samples and 101 ulcer samples. A closer look at Fig. 5 shows that the network incorrectly identifies only two healthy samples. 
One noteworthy benefit of the network is that it performs flawlessly in misclassifying no ulcer cases in the dataset. FusionNet’s 
robustness is further improved by independent assessments of each model on the same DFU dataset. 

4.3. Results analysis 

Table 10 presents the simulation results of all experimental models. It is observed that through attaining superior accuracy (99.05 
%), AUC (99.09 %), F1 score (99.08 %), recall (98.18 %), and precision (100 %), the FusionNet consistently outperforms other 

Fig. 6. Accuracy (left side) and loss (right side) curves of the FusionNet.  

Fig. 7. ROC curve of the experimental models.  
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traditional CNN classifiers. It clearly shows how the FusionNet architecture is superior to other traditional CNN classifiers for cate-
gorizing DFU samples. The accuracy outcome suggests that, out of all the cases with any kind of diabetic symptom, the FusionNet can 
reliably classify ulcer cases with an accuracy of 99.05 %. Upon careful inspection of the comparison table, it is evident that among the 
five CNN classifiers, DenseNet201 and VGG16 exhibited high outcomes with accuracy scores of 0.976 and 0.981, respectively. 

We also track our proposed system’s learning curves. Fig. 6 demonstrates how our approach exhibits a moderate learning rate 
during training and a somewhat consistent decline in validation losses. The simulation results of our approach, extracted from the 
training phase, are shown in Fig. 6. A closer look at Fig. 6 shows that our suggested approach obtained 97.65 % validation accuracy, 
98.68 % training accuracy, 10.03 % validation loss, and 6.17 % training loss, respectively, after the 12th epoch. Furthermore, Fig. 6(a) 
also assures that the overfitting issue was not noticed throughout the training procedure. But Fig. 6(b) assures that the accuracy-loss 
curve demonstrated a quick reduction in the loss score. Conversely, minor oscillations were observed when employing a minimal batch 
size. 

To comprehend the class reparability of the suggested approach, we utilize the ROC (receiver operating characteristic) curve as 
illustrated in Fig. 7. In this curve, TPR (true positive rate) is juxtaposed against FPR (false positive rate) across diverse threshold values 
derived from the probability scores of DL algorithms. TPR signifies the likelihood of correctly identifying ulcer samples as ulcers; on the 
other hand, FPR signifies the probability of incorrectly identifying normal samples as normal. The ROC graph effectively demonstrates 
the strength of the FusionNet, with an AUC (as indicated by the red line in Fig. 7) of 0.991. The AUC scores of five pre-trained classifiers 
are 0.982, 0.873, 0.868, 0.782, and 0.977 for VGG16, VGG19, MobileNet, NASNetMobile, and, DenseNet201, respectively. Among 
these pre-trained classifiers, VGG16 exhibits the best discriminating power for diabetic complications. This proved that the ROC curve 
for VGG16 is somewhat higher compared to the other pre-trained classifiers. 

The performance of the suggested FusionNet is benchmarked against existing work in Table 11. We evaluate the proposed method 
on a large dataset (6963 sample images) to make the evaluation stronger. The outcomes from Table 11 reveal that the suggested system 

Table 11 
Comparison table with existing works.  

References Models Complexity Dataset size Accuracy (%) Recall (%) 

Thotad et al. [38] EfficientNet 237-layer CNN 844 98.97 98 
K. Das et al. [34] DFU_SPNet 42-layer CNN 1679 96.4 98.4 
Goyal et al. [28] DFUNet 14-layer CNN 1679 92.5 – 
Wang et al. [29] SVM SVM 100 – 73.3 
Biswas et al. [37] DFU_MultiNet VGG19 + Densenet201 + NasNetMobile + 6-layer CNN 1055 99.1 98.2 
Alzubaidi et al. [30] DFU_QUTNet SVM, 58-layer CNN 1609 – 93.6 
Juan et al. [33] DFU_VIRnet Xception (71 layers) + 29-layer CNN 2400 97.8 98.2 
Das et al. [39] AESPNet 35-layer CNN + 2 Bottleneck Attention Modules 1679 97.02 98.44 
Alzubaidi et al. [32] Hybrid CNN 100-layer CNN 1609 – 94.5 
Biswas et al. [40] DFU_XAINet ResNet50 (50 layers) + 6-layer CNN 3200 98.75 97.6 
Proposed Work FusionNet DenseNet201 + VGG19 + NASNetMobile + 6-layer CNN 6963 99.1 98.2  

Fig. 8. Some predicted samples using the proposed method.  

S. Biswas et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e31228

17

proved superior regarding all assessment metrics, except recall score. The reason behind this lower score is the somewhat higher false 
negative (FN) value. Upon careful inspection of the comparison table, it can be seen that FusionNet has extremely high accuracy (99.1 
%) and precision (100 %) values, which makes it a substantially more potent prediction classifier for DFU ulcer cases. A classifier that 
obtains a high degree of precision and accuracy is typically regarded as a powerful DFU classifier. 

However, the suggested system has two pitfalls: first, using this system, it is possible to assess if the sample is healthy skin or ulcer 
skin only. However, the system cannot allow real-time observation of pain intensity and complexity levels. Second, even if the sug-
gested system performs well on this experimental dataset, it may yield reliable outcomes on a larger dataset through learning unique 
DL features from diverse samples. 

Though the proposed method can distinguish the DFU from the healthy foot, this system cannot distinguish other ulcers (i.e., 
venous foot ulcer (VFU), arterial foot ulcer (AFU), and neurotic foot ulcer (NFU)) from the healthy foot. Fig. 8 shows some predicted 
samples using the proposed method. From Fig. 8, we can see that the proposed method accurately classifies healthy and DFU cases but 
fails to distinguish other ulcers. So the proposed method is applicable only for binary classification. Fig. 8 (a)–(e) shows correctly 
classified cases of healthy and DFU samples. Fig. 8 (f)–(j) shows wrongly classified cases of AFU and VFU samples. 

4.4. Computational complexity analysis 

In [37], a CNN-based MultiNet model was used. This model consists of three pre-trained CNN models (VGG19, Densenet201, and 
NASNetMobile) and a 6-layer CNN at the end of the MultiNet. In the study conducted in Ref. [38], a pre-trained CNN model named 
EfficientNet was used, consisting of 237 CNN layers. No additional layers were used at the end of the EfficientNet. In the study 
conducted in Ref. [33], a pre-trained CNN model named Xception (71 layers) and more than 29 CNN layers were used. An SVM 
classifier was used after the CNN model. In Ref. [34], a total of 42-layer CNN model was created, consisting of 1 input layer, 4 
convolution layers (each with 1 ReLU activation layer), 3 stacked parallel units (each consisting of convolution and a ReLU activation 
layer), 4 transition layers (each consisting of a BatchNormalization and a LeakyReLU activation layer), 4 concatenation layers, 4 
MaxPooling layers, 1 dropout layer, and 3 fully connected layers. In Ref. [32], a total of 100-layer CNN model was created, consisting 
of 1 input layer, 3 feature extraction parts, and 1 output classifier. In feature extraction parts, part 1 contained 3 convolution layers, 
each followed by one BatchNormalization layer and one ReLU layer; part 2 contained six parallel convolution blocks; and part 3 
contained 1 average-pooling layer, 1 dropout layer, and 2 FC layers. In Ref. [30], a total of 58-layer CNN model was created, consisting 
of 1 input layer, 17 convolution layers, each followed by one batch normalization layer and one ReLU layer, 4 concatenation layers, 1 
average-pooling layer, 1 dropout layer, and 2 fully connected layers. In Ref. [39], a CNN-based AESPNet architecture was designed, 
consisting of 35 CNN layers and 2 Bottleneck Attention Modules. In Ref. [28], a 14-layer CNN model was created, consisting of 1 input 

Table 12 
ANOVA test reports for proposed method.  

Types Sum of Squares Degrees of Freedom F_statistic p_value 

treatments 74.317519 1 2.641986 0.104389 
Residual 28073.153481 998 - -  

Table 13 
Report of Friedman test results.  

Test Value 

Friedman Test Statistic 9 
p_value 0.02929 
Null Hypothesis (NH) Reject  

Fig. 9. An example shown how XAI algorithms explain the results of classification.  
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layer, 3 convolution layers, 4 parallel convolutions with varying-sized filters, 5 max-pooling layers, and 2 fully connected layers. In 
Ref. [29], an SVM-based ML classifier was used for the detection and segmentation of DFU. 

However, the time complexity of DL models depends on several factors, such as the number of samples, the number of extracted 
features, and the number of layers. In this work, assume that the number of samples is n, the number of layers of the proposed ar-
chitecture is L, and the number of features extracted by the FusionNet is f. Therefore, the least time complexity of FusionNet to perform 
DFU detection is O(nfL). Table 11 provides a summary of the computational complexity of the above articles. This article analyzes the 
computational complexity of the CNN architecture by considering architectural components like convolution, LeakyReLU, ReLU, 
average pooling, max pooling, dropout, and dense layers in DL networks as one-layer unit. However, from the above discussion, we can 

Fig. 10. Some examples of SHAP analysis for both ulcer and healthy classes.  

S. Biswas et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e31228

19

see that the proposed architecture is more complex than the other articles except [37]. Although the proposed architecture is a bit 
complex, the performance metrics of the proposed architecture are much higher than those of other existing works. 

4.5. Statistical analysis 

We conducted two statistical test approaches - Friedman and ANOVA (analysis of variance), in this article to find out the 
remarkable statistical differences between the proposed method and other sub-models [54]. These tests were simulated by importing 
the SciPy stats packages [55] developed in Python. The ANOVA test results, which highlight the remarkable statistical differences 
between the simulated models according to their performance metrics, are shown in Table 12. A F_statistic of 2.642 and a p_value of 
0.1044 are obtained by the test reports, ensuring that there is no remarkable difference between the simulated models. From Table 13, 
we noted that the Friedman test is more appropriate for statistically analyzing the performance of the simulated models, although the 
ANOVA test showed statistically remarkable differences. The Friedman test showed statistically remarkable performance differences 
among the proposed methods, VGG19, NASNetMobile, and DenseNet201, with p < 0.05 for accuracy. The p_value of 0.02929 was 
obtained from the Friedman test, ensuring that the data reject the NH (null hypothesis). This result indicates that there are remarkable 
differences in the performance of the models used in this research. 

4.6. XAI algorithms result analysis 

To understand clearly which regions of the DFU image was focused by the FusionNet to explain the predicted result, we exhibit an 
example of Grad-CAM XAI method in Fig. 9. Here, we show the predicted DFU image utilized to input the XAI algorithm, and the 
heatmaps for explaining the results of classification produced by the this algorithm. 

Fig. 10 displays some samples with SHAP values for the FusionNet classifier. In Fig. 10, red points indicate the positive SHAP values 
that contribute to increasing the output score for ulcer samples; similarly, blue points indicate the negative SHAP values that 
contribute to decreasing the output score. For a specific label, the prominence of the area of interest (AOI) is indicated by the overall 
strength of SHAP values. Thus, the SHAP approach interprets the flexibility of our suggested approach for the automatic diagnosis of 
DFU. 

Fig. 11 exhibits the interpretability system applying LIME to the DFU dataset to prove the prediction of the FusionNet classifier. The 
key DL characteristics were retrieved by the XAI algorithm from the classifier’s predictions; these retrieved characteristics might help 

Fig. 11. Some examples of LIME analysis.  
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general practitioners distinguish between normal skin patches and ulcers. Upon closer inspection, Fig. 11 demonstrates how the input 
sample is segmented into smaller, linked areas that have a common color and position. The skin region with an ulcer is indicated by a 
red color, whereas the skin area with normal skin is indicated by a green color. Therefore, the resilience of our suggested approach for 
automated DFU diagnosis may be explained by the LIME XAI algorithm. 

To comprehend which regions of the sample of the DFU dataset were highlighted using the FusionNet classifier for ulcer detection, 
we exhibit some samples produced by the Grad-CAM algorithm in Fig. 12. We also show the sample of the DFU dataset utilized to input 
the classifier, the attention maps produced by the Grad-CAM, and the overlapping of the DFU dataset and the attention maps. Fig. 12 
(a)–(c) shows the ulcer samples and their Grad-CAM explanantions; Fig. 12 (d)–(f) shows the healthy samples and their Grad-CAM 
explanantions. From this experiment, we believe that this final visual representation can be valuable for pathologists and radiolo-
gists to pinpoint the ulcer regions to investigate. The regions scanned by the classifier for predicting ulcer presence are highlighted in 
yellow, with a more intense yellow indicating a higher likelihood of the projected label. 

5. Conclusion 

This study suggested an XAI-based multi-scale feature fusion framework (FusionNet) utilizing the TL (transfer learning) idea for 
automatically aiding the explanation of DL networks through visualization activation maps. To construct the FusionNet, we combined 
three CNN classifiers—DenseNet201, NASNetMobile, and VGG19—among five based on their performance. A global average pooling 
(GAP) layer is strategically attached after each classifier to preserve task-relevant information in the sample. Then, the preserved 
information from each GAP layer is concatenated using a concatenation CNN layer and then fed into a meta-tuner module for refining 
the entire network. Finally, a fully connected layer is used to classify the DFU samples. Our proposed system achieved high accuracy 
(99.05 %), AUC (99.09 %), precision (100.00 %), F1 score (99.08 %), and recall (98.18 %) on the test set. While the proposed classifier 
demonstrated a high level of performance, it is essential to note that the FusionNet is built up as a locally explained classifier with a 
classifier-agnostic interpretation, tailored to be shapely interpreted for a more qualitative understanding by the general public. It is 
essential to illustrate how a medical system functions within. To further enhance the transparency and explainability of this network, 
we incorporated three well-established XAI algorithms—Grad-CAM, SHAP, and LIME—to elucidate the uncertainties associated with 

Fig. 12. Some examples of Grad-CAM analysis.  
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the classification outcomes obtained from the trained classifiers. Leveraging SHAP, with its ability to meet diverse explainability 
criteria such as messiness, locality, and consistency, reinforces its popularity as a robust option for model explainability. Furthermore, 
LIME is employed to scrutinize the top features that distinguish between ulcer and normal skin samples. In conclusion, Grad-CAM 
enriches interpretability by providing a detailed localization of crucial areas within a sample, enabling users to discern which as-
pects of the input substantially influenced the classifier’s prediction for a particular level. The proposed XAI-based method could be 
applied in various areas related to DFU management and treatment. These application areas may include the following: 1) This method 
can be applied to computer-aided diagnosis (CAD) systems to reduce the diagnosis time and rapidly execute complex medical treat-
ments; 2) trainee doctors can use this XAI-based framework to improve their diagnostic skills and treatment decision-making abilities; 
and 3) the proposed XAI-based method can be applied in the healthcare sector to comprehend the interpretability and transparency of 
the model’s predictions that help DFU specialists make decisions about patient conditions. 

In future research, this FusionNet paradigm may be extended to identify and categorize DFU as Charcot arthropathy, osteomyelitis, 
neuropathy, or ischemia. However, this approach may also be used to accurately quantify many metrics seen in DFU samples, including 
ulcer growth rate, volume, tissue density, and size. This quantifiable information will monitor the ongoing patient and improve their 
treatment planning. Additionally, in the future, we will improve our prediction outcomes by applying a novel segmentation approach 
to the segmented DFU dataset as well as a large-scale dataset. 
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