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1 	 | 	 INTRODUCTION

Muscle	 activations	 can	 be	 quantified	 with	 wearable	 and	
increasingly	 cheap	 devices	 by	 the	 measurement	 of	 elec-
tromyography	 (EMG).	 Superficial	 EMG	 (sEMG)	 signals	
are	the	sum	of	motor	unit	action	potentials	(MUAPs)	trav-
eling	along	the	sarcolemma	of	muscle	fibers	that	trigger	
muscle	contraction.	While	the	analysis	of	temporal	infor-
mation	of	sEMG	data	is	widely	spread	(De	Luca,	1997),	its	
evaluation	in	the	frequency	domain	is	 less	common	due	
to	different	scientific	discussions	regarding	the	origins	of	
sEMG	spectrum.	The	history	of	this	discussion	is	strongly	

connected	 with	 studies	 evaluating	 the	 role	 of	 slow	 and	
fast-	twitch	muscle	fibers	during	muscle	fatigue.

Muscle	fatigue	is	described	as	a	decline	in	muscle	per-
formance	after	intensive	muscle	use	(Enoka	&	Duchateau,	
2008).	 Although	 its	 origins	 are	 still	 debated	 (Allen	 &	
Westerblad,	2004),	in	general,	it	is	accepted	that	muscle	fa-
tigue	is	produced	by	the	accumulation	of	lactic	acid	within	
skeletal	muscle	fibers,	a	subproduct	of	the	anaerobic	pro-
cesses	that	generate	energy	in	the	form	of	ATP	for	muscle	
fiber	 contraction	 (Pedersen	 et	 al.,	 2003).	 Anaerobic	 pro-
cesses	are	the	main	source	of	energy	for	fast-	twitch	muscle	
fibers	as	they	contain	fewer	mitochondrion	and	myoglobin	
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Abstract
Superficial	Electromyography	(sEMG)	spectrum	contains	aggregated	information	
from	several	underlying	physiological	processes.	Due	to	technological	limitations,	
the	isolation	of	these	processes	is	challenging,	and	therefore,	the	interpretation	of	
changes	in	muscle	activity	frequency	is	still	controversial.	Recent	studies	showed	
that	the	spectrum	of	sEMG	signals	recorded	from	isotonic	and	short-	term	isomet-
ric	contractions	can	be	decomposed	into	independent	components	whose	spectral	
features	recall	those	of	motor	unit	action	potentials.	In	this	paper	sEMG	spectral	
decomposition	 is	 tested	 during	 muscle	 fatigue	 induced	 by	 long-	term	 isometric	
contraction	where	sEMG	spectral	changes	have	been	widely	studied.	The	main	
goals	of	this	work	are	to	validate	spectral	component	extraction	during	long-	term	
isometric	muscle	activation	and	the	quantification	of	energy	exchange	between	
the	low-		and	high-	frequency	bands	of	sEMG	signals	during	muscle	fatigue.
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proteins	than	slow-	twitch	fibers	whose	main	source	of	en-
ergy	comes	 from	cellular	respiration	(Allen	et	al.,	2008).	
Several	studies	showed	that	fast	fibers	fatigued	extremely	
quickly	compared	to	slow	fibers	(Eberstein,	1963;	Hill	&	
Kupalov,	 1929).	 Therefore,	 during	 sustained	 isometric	
contraction,	the	number	of	active	fast	fibers	reduces	at	a	
faster	rate	than	active	slow	fibers	(Schiaffino	&	Reggiani,	
2011).

In	 1912,	 Piper	 et	 al.	 firstly	 reported	 a	 shift	 of	 sEMG	
spectrum	toward	lower	frequencies	during	sustained	iso-
metric	 contraction	 (Piper,	 1912).	This	 phenomenon	 has	
been	 extensively	 reported	 in	 the	 literature	 as	 the	 tem-
poral	 reduction	 of	 sEMG	 median	 frequency	 (Dimitrova	
&	 Dimitrov,	 2003;	 Mannion	 &	 Dolan,	 1994;	Viitasalo	 &	
Komi,	 1977).	 Although	 the	 analysis	 of	 the	 median	 fre-
quency	 only	 provides	 an	 indirect	 measurement	 of	 the	
spectral	shift,	it	has	been	proposed	as	an	effective	method	
for	 the	 detection	 of	 muscle	 fatigue	 (Cifrek	 et	 al.,	 2009;	
Coorevits	et	al.,	2008).

It	was	first	hypothesized	that	 the	change	in	the	spec-
tral	properties	was	produced	by	changes	in	average	mus-
cle	fiber	conduction	velocity	(Arendt-	Nielsen	et	al.,	1989;	
Merletti	et	al.,	1990)	related	to	the	accumulation	of	lactic	
acid	 during	 continuous	 muscle	 contraction.	 Under	 this	
narrative,	 higher	 sEMG	 frequencies	 could	 be	 associated	
with	 a	 greater	 proportion	 of	 fast	 fibers	 (Pincivero	 et	 al.,	
2001;	Rainoldi	et	al.,	2008)	and	changes	in	the	sEMG	spec-
trum	could	be	used	to	infer	the	recruitment	of	slower	or	
faster	motor	units	(Houtman	et	al.,	2003;	Bernardi	et	al.,	
1999).

This	 idea	 is	 still	 strongly	 debated.	 According	 to	
Farina,	(2008),	 to	establish	a	significant	connection	be-
tween	 sEMG	 spectrum	 and	 the	 recruitment	 of	 motor	
unit	types,	two	assumptions	need	to	be	made.	The	first	
is	 that	 the	 conduction	 velocity	 of	 active	 motor	 units	 is	
related	to	 fiber-	type	proportions.	Although	there	might	
be	a	certain	 level	of	 connection,	conduction	velocity	 is	
also	affected	by	motor	unit	discharge	rates	(Barry	et	al.,	
2007;	Stalberg,	1966)	and	fiber	size	(Blijham	et	al.,	2006;	
Kossev	et	al.,	1992).	Moreover,	the	distribution	of	mus-
cle	fiber	type	within	motor	unit	pools	has	a	very	skewed	
distribution	(both	inter-	subject	and	inter-	muscle)	(Elder	
et	 al.,	 1982).	 The	 second	 assumption	 is	 that	 spectral	
changes	in	sEMG	signals	are	associated	with	variations	
in	the	average	conduction	velocity.	This	is	also	partially	
true,	 changes	 in	 the	 conduction	 velocity	 affect	 sEMG	
spectral	 features	 (Bigland-	Ritchie	 et	 al.,	 1981),	 how-
ever,	this	is	not	the	only	factor.	Distance	between	fibers	
(Lindstrom	 &	 Magnusson,	 1977),	 electrode	 location	
(Li	 &	 Sakamoto,	 1996),	 the	 thickness	 of	 subcutaneous	
layers	(Farina	et	al.,	2002),	 fiber	 length	and	inclination	
(Dimitrov	 &	 Dimitrova,	 1998),	 discharge	 rates	 of	 ac-
tive	 motor	 units,	 and	 their	 degree	 of	 synchronization		

(Yao	et	al.,	2000)	have	been	also	proven	as	factors	affect-
ing	EMG	spectral	properties.

In	2004,	Wakeling	et	al	applied	a	principal	component	
analysis	 to	 the	spectrum	of	raw	sEMG	signals	recorded	
over	 leg	 extensor	 muscles	 (Wakeling	 &	 Rozitis,	 2004).	
According	to	their	results,	sEMG	spectrum	can	be	largely	
described	by	two	principal	components	which	behavior	
corresponded	to	the	instances	in	which	faster	and	slower	
motor	units	could	be	assumed	active.	In	2006,	Tscharner	
et	al.	applied	a	similar	technique	to	estimate	the	interplay	
between	groups	of	fast	and	slow	muscle	fibers	of	the	tib-
ialis	 anterior	 and	 gastrocnemius	 muscle	 while	 running	
(Von	 Tscharner	 &	 Goepfert,	 2006)	 with	 similar	 results	
regarding	 the	 extraction	 of	 two	 spectral	 components.	
In	 the	 last	 work,	 the	 authors	 state	 that	 “the	 terms	 fast	
and	slow	do	not	only	refer	to	the	conduction	velocity	but	
also	to	the	shape	of	the	motor	unit	action	potential	and	
are	used	to	characterize	the	groups	in	a	broader	sense”.	
Therefore,	independent	spectral	components	were	iden-
tified	as	groups	or	families	of	MUAPs	whose	shapes	are	
significantly	separated	in	the	spectral	domain.	From	this	
viewpoint,	the	spectral	shift	toward	lower	frequencies	re-
ported	 during	 muscle	 fatigue	 can	 be	 understood	 as	 the	
relative	 distribution	 of	 sEMG	 power	 between	 groups	
of	 spectrally	 separated	 MUAPs.	 The	 quantification	 of	
sEMG	power	associated	with	independent	spectral	com-
ponents	could	provide	a	direct	measurement	of	this	spec-
tral	 shift	 and	 shed	 more	 light	 on	 the	 processes	 behind	
muscle	fatigue.

However,	 the	 spectral	 components	 extracted	 by	
Wakeling	and	Tscharner,	came	from	sEMG	data	recorded	
from	single	electrodes	during	isotonic	and	short-	term	iso-
metric	 contractions.	 These	 muscle	 activations	 excluded	
two	 important	 factors	 influencing	 the	 shape	 of	 sEMG	
spectrum	 which	 are:	 (a)	 changes	 in	 the	 conduction	 ve-
locity	 produced	 by	 longer-	term	 contractions	 and	 (b)	 sig-
nal	 propagation	 variabilities	 emerging	 from	 electrode	
location	 (thickness	 of	 subcutaneous	 layers,	 muscle	 fiber	
length,	size,	inclination,	…).	Therefore,	before	the	charac-
terization	of	muscle	fatigue	based	on	this	spectral	decom-
position,	it	is	necessary	to	evaluate	the	number	of	spectral	
components	 required	 to	 describe	 sEMG	 signals	 when	
these	extra	factors	are	included.

With	the	established	background,	current	work	pur-
sues	two	goals.	The	first	is	to	test	the	validity	of	the	de-
scribed	 spectral	 decomposition	 during	 muscle	 fatigue	
recorded	from	several	locations	of	the	same	muscle.	The	
second	is	the	temporal	characterization	of	the	extracted	
spectral	components	during	fatigue	conditions.	For	this	
purpose,	 sEMG	signals	 from	the	bicep	muscle	were	re-
corded	 from	 12	 different	 locations	 using	 a	 medium-	
density	sEMG	band	during	30 s	of	high	force	isometric	
contractions.	Spectral	components	were	extracted	using	
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a	Non-	Negative	Matrix	Factorization	(NMF)	from	a	time-	
spectral	analysis	based	on	Fast-	Fourier	Transform.	The	
number	 of	 spectral	 components	 was	 selected	 to	 assure	
a	reconstruction	rate	<80%	computed	from	the	Variance	
Accounted	 For	 (VAF).	 The	 separability	 of	 the	 spectral	
components	was	computed	to	further	assess	the	validity	
of	 the	 decomposition.	 After	 the	 validation	 process,	 the	
temporal	 evolution	 of	 the	 spectral	 components	 during	
sustained	 muscle	 contraction	 was	 represented.	 From	
current	literature,	it	 is	reasonable	to	expect	that	during	
sustained	 isometric	contraction,	 there	should	be	an	ex-
change	 of	 signal	 energy	 from	 high	 to	 low	 frequencies.	
The	application	of	the	proposed	spectral	analysis	should	
provide	a	direct	way	to	measure	this	exchange,	not	as	the	
relative	 spectral	 shifting	 provided	 by	 the	 evaluation	 of	
the	median	frequency,	but	by	the	actual	quantification	of	
the	amount	of	spectral	energy	associated	with	high-		and	
low-	frequency	bands.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 EMG band

An	 elastic	 medium-	density	 electrode	 band	 was	 used	 to	
record	sEMG	signals	around	the	forearm.	The	band	con-
tained	 25	 dry	 electrodes	 distributed	 in	 five	 arrays	 and	
grounded	 via	 a	 wristband.	 EMG	 signals	 were	 obtained	
as	 the	 differential	 signal	 between	 each	 pair	 of	 vertically	

consecutive	 electrodes,	 which	 provides	 a	 4  ×  5	 matrix	
of	 spatially	 distributed	 signals.	 Signals	 were	 digitized	
at	 2000  Hz	 and	 sent	 to	 a	 PC	 through	 a	 USB	 connector		
(Figure	1).	The	electronics	were	powered	through	a	small	
battery	and	did	not	include	hardware	filters.

2.2	 |	 Experimental protocol

The	surface	EMG	band	was	placed	over	a	subject’s	biceps	
brachii	muscle	(see	Appendix	1	for	detailed	information	on	
the	placement	protocol).	Channels	5–	16	were	used	to	re-
cord	sEMG	data,	spatially	shifted	as	shown	in	Figure	2(a).		
The	 subject	 stood	 against	 a	 wall	 while	 holding	 a	 dy-
namometer,	which	measures	the	generated	force	in	kilo-
grams	(resolution	0.1 kg).	The	dynamometer	was	fixed	to	
the	floor	via	a	rope,	whose	length	was	adjusted	to	keep	the	
subject’s	elbow	flexed	at	90 degrees.	Real-	time	information	
on	the	exerted	force	was	provided	to	the	subject	through	
a	 screen	 that	 projected	 the	 visual	 information	 obtained	
from	the	dynamometer	using	a	webcam	(Figure	2b).	The	
experimental	protocol	is	presented	in	Figure	2(c).	During	
the	first	part	of	the	experiment,	subjects	were	asked	to	per-
form	 three	 isometric	 contractions	 with	 maximum	 effort	
for	2 s	with	10 s	of	rest	between	contractions.	The	maxi-
mum	force	exerted	by	each	subject	was	computed	as	the	
average	 of	 the	 maximum	 force	 values	 recorded	 for	 each	
contraction.	In	the	second	part	of	the	experiment,	subjects	
were	asked	 to	perform	an	 isometric	contraction	 for	30 s	

F I G U R E  1  EMG	band.	Composed	
of	a	5 × 5 matrix	of	differential	electrodes	
that	simultaneously	records	a	matrix	
of	5 × 4	channels.	All	electrodes	are	
referenced	to	a	ground	located	on	the	
wrist	through	a	wristband.
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maintaining	 70%	 of	 their	 maximum	 force.	 This	 process	
was	 repeated	 four	 times	 with	 1  min	 of	 rest	 between	 tri-
als.	 Before	 each	 trial	 was	 started,	 subjective	 fatigue	 was	
measured	using	the	11-	point	scale	proposed	by	Kim	et	al.	
(2010),	where	0	represents	no	fatigue	at	all	and	10	repre-
sents	the	worst	possible	fatigue.

2.3	 |	 Participants

Nine	healthy	individuals	participated	in	the	experiment:	
Four	women	and	five	men	aged	27–	45 years	(34.88 ± 6.71).

2.4	 |	 Methodology workflow

Figure	 3	 summarizes	 the	 methodology	 used	 to	 extract	
the	spectral	components	from	the	sEMG	signals	recorded	

during	an	experimental	trial.	All	channels	were	bandpass	
filter	between	8	and	200 Hz.	After	filtering,	the	data	were	
divided	into	1-	s	segments	with	0.5 s	of	overlap	between	
segments,	 and	 the	 spectrum	 of	 each	 segment	 was	 com-
puted	 using	 a	 Fast	 Fourier	 Transform	 (FFT).	 Finally,	
spectral	 components	 were	 extracted	 using	 the	 NMF	 al-
gorithm.	Each	stage	is	described	in	detail	in	the	following	
sections.

2.5	 |	 Data segmentation

For	 each	 experimental	 session,	 the	 recorded	 sEMG	
was	divided	into	four	trials	of	30 s	of	isometric	contrac-
tion	in	which	the	subjects	were	generating	70%	of	their	
maximum	 force	 (Figure	 4—	Session	 Data).	 Each	 trial	
contained	information	on	the	muscle	activity	produced	
by	the	biceps	muscle	recorded	from	12 spatially	shifted	

F I G U R E  2  Experimental	setup	and	
protocol.	(a)	Graphical	representation	of	
sEMG	acquisition	points	from	the	biceps	
muscle.	(b)	Experimental	environment	
and	setup.	A	subject	stood	with	their	back	
against	a	wall	and	performed	isometric	
biceps	contraction	by	pulling	a	rope	
attached	to	a	dynamometer.	The	subject	
received	feedback	on	the	force	exerted	
via	a	visual	interface	that	obtained	the	
data	from	a	webcam	monitoring	the	
dynamometer.
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channels	(see	Appendix	1	for	details).	To	obtain	tempo-
rally	shifted	information,	each	trial	was	divided	into	60	
segments	of	1 s	each	(2000	samples)	with	a	shift	of	0.5 s	
between	 segments,	 as	 illustrated	 in	 Figure	 4	 (data	 seg-
mentation).	The	segment	length	was	selected	to	ensure	
that	the	frequency	range	of	interest	will	not	be	affected	
by	signal	aliasing.

2.6	 |	 sEMG preprocessing

Prior	to	signal	segmentation,	a	Butterworth	1-	Hz	high-	
pass	 filter	 was	 applied	 in	 each	 trial	 to	 remove	 the	
DC	 component	 of	 the	 signal.	 For	 signals	 recorded	 at	
a	 sampling	 frequency	 of	 2000  Hz,	 frequencies	 lower	
than	1000 Hz	are	considered	free	from	aliasing	effects.	
However,	 if	 the	 sampling	 frequency	 is	 much	 higher	

than	the	natural	frequencies	of	the	signal	under	analy-
sis,	 the	 evaluation	 of	 very	 high	 frequencies	 might	 be	
unnecessary.	 Instead	 of	 using	 the	 typical	 frequency	
ranges	accepted	for	sEMG	data	by	the	literature,	in	the	
present	 work,	 the	 spectral	 properties	 of	 the	 recorded	
data	set	were	pre-	analyzed	 to	select	 the	spectral	band	
of	interest.

From	each	experimental	session	(4	trials),	a	total	of	240	
temporally	shifted	sEMG	segments	were	extracted.	Each	
of	 these	 segments	 contained	 12	 channels	 with	 spatially	
shifted	information,	giving	240 × 5 = 2080	sEMG	epochs	
per	session.	Moreover,	the	experiment	was	undertaken	by	
nine	subjects,	giving	a	total	of	18,570 sEMG	epochs.	The	
spectrum	of	each	of	 these	epochs	was	computed	by	 fast	
Fourier	transform	(FFT)	and	the	set	of	values	obtained	for	
each	frequency	is	presented	in	Figure	5(a)	in	the	form	of	
a	boxplot.

F I G U R E  3  Overall	sEMG	signal	processing.	Raw	sEMG	signals	were	notch-	filtered	at	60 Hz	and	bandpass-	filtered	between	8	and	
200 Hz.	Filtered	data	were	segmented	in	1-	s	epochs	with	0.5 s	of	overlap.	The	spectrum	of	each	channel	and	epoch	was	computed.	The	non-	
negative	matrix	factorization	algorithm	was	used	to	extract	common	sources	from	the	set	of	spectra.

F I G U R E  4  Data	segmentation.	Protocol	used	to	segment	the	data.	Each	trial	containing	30 s	of	isometric	biceps	contraction	at	70%	of	
the	maximum	force	was	divided	into	1-	s	epochs	with	an	overlap	of	0.5 s.	In	total,	60	epochs	were	extracted	from	a	single	trial.



6 of 14 |   COSTA-GARCÍAetal.

To	 determine	 which	 frequency	 range	 contained	 rele-
vant	information	for	analysis,	two	factors	were	evaluated.	
The	first	was	the	standard	deviation	of	the	data	for	each	
frequency.	 The	 biological	 processes	 under	 evaluation	
generate	widely	reported	frequency	shifts	that	will	cause	
higher	variations	in	relevant	frequencies	(Figure	5b).	The	
second	parameter	was	the	power	generated.	To	ensure	that	
the	data	under	analysis	properly	represent	the	generated	

muscle	activity,	 the	range	of	 frequencies	selected	should	
contain	a	significant	percentage	of	the	total	power	of	the	
sEMG	signal	(Figure	5c).	Both	power	and	standard	devia-
tion	values	showed	relevant	growth	after	8 Hz.	The	values	
of	 these	parameters	at	8 Hz	were	used	as	a	 threshold	 to	
select	 the	range	of	 frequencies,	as	shown	in	Figure	5(c).	
Based	 on	 this	 evaluation,	 sEMG	 data	 were	 bandpass	 fil-
tered	 between	 8	 and	 200  Hz	 using	 a	 Butterworth	 filter.	

F I G U R E  5  Data	set	spectral	evaluation.	(a)	Graph	containing	the	spectral	information	extracted	from	18,570 signals	(9 subjects × 4	
trials × 60	epochs ×12	channels).	(b)	The	standard	deviation	is	computed	for	each	frequency.	(c)	The	energy	per	unit	of	time	contained	in	
each	frequency	is	computed	as	the	root	mean	square.

F I G U R E  6  Source	separation	algorithm.	The	spectrum	of	each	epoch	and	channel	was	computed	by	using	a	Fast	Fourier	transform	
and	a	moving	average	filter	was	applied	to	highlight	its	envelope.	The	non-	negative	matrix	factorization	algorithm	was	used	to	describe	all	
epochs	(from	all	channels)	contained	in	a	single	trial	with	n	spectral	components.
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The	power	contained	in	this	frequency	band	represented	
98.24%	of	the	total	power	of	the	signals	evaluated.

2.7	 |	 Source separation

Figure	6 shows	the	steps	followed	to	decompose	a	set	of	
signal	 spectrums.	 This	 process	 was	 applied	 over	 all	 seg-
ments	 of	 one	 trial	 (60  segments	 of	 1  s	 containing	 infor-
mation	 from	 12	 channels).	 Prior	 to	 source	 separation,	 a	
moving	average	filter	was	applied	to	the	spectrum	to	em-
phasize	its	envelope.	Subsequently,	the	spectrum	of	sEMG	
signals	was	described	as:

where	M	is	an	m × f	matrix	of	sEMG	spectral	data	(with	m	
the	number	of	epochs	and	f	the	frequencies	under	analysis),	
W	is	an	m × n	matrix	containing	the	weights	associated	with	
each	 spectral	 component	 used	 to	 reduce	 the	 m	 segments	
to	an	n-	dimensional	space,	and	H	 is	an	n ×  f	matrix	con-
taining	the	shape	of	 the	spectral	components.	Matrices	W	
and	H	can	be	calculated	from	M	through	the	Non-	negative	
Matrix	 Factorization	 (NMF)	 algorithm	 by	 fixing	 the		
n-	dimensionality.	 The	 NMF	 algorithm	 extracts	 H	 compo-
nents	by	minimizing	the	correlation	between	them	(Zhang	
&	Fang,	2007).	Using	the	matrices	W	and	H,	 it	 is	possible	
to	obtain	the	envelope	contribution	from	the	extracted	spec-
tral	 components	 to	 each	 segment	 evaluated,	 as	 shown	 in		

Figure	7.	These	envelopes	were	used	to	compute	frequency	
contributions	filters	(FFx)	as	follows:

where	FCx	is	the	envelope	contribution	of	the	spectral	com-
ponent	x	and	n	is	the	total	number	of	spectral	components.	
Finally,	Figure	8	shows	how	the	computed	filters	were	used	
to	 extract	 the	 different	 frequency	 contributions	 from	 the	
original	spectrum	of	each	segment	and	channel.

2.8	 |	 Spectral component assessment

The	 number	 n	 of	 spectral	 components	 was	 selected	 as	
the	 lowest	 value	 that	 allows	 the	 recovery	 of	 the	 origi-
nal	 data	 with	 a	 reconstruction	 rate	 >80%	 according	 to	
the	 Variance	 Accounted	 For	 (VAF).	 The	 separability	
between	 spectral	 components	 was	 quantified	 by	 their	
Bhattacharyya	 distance	 (Bdist)	 firstly	 introduced	 by	
Bhattacharyya,	(1946).	This	parameter	is	closely	related	
to	 the	 Bhattacharyya	 coefficient	 which	 measures	 the	
amount	 of	 overlap	 between	 two	 statistical	 samples	 or	
populations.	Since	the	Bdist	can	provide	any	value	in	the	
range	0 < Bdist < ∞,	a	selection	criterion	is	necessary.	
In	Choi	and	Lee	(2003),	Choi	and	Lee	studied	the	Bayes	
error	(Antos	et	al.,	1999)	of	2	tasks	classification	against	
the	 Bhattacharyya	 distance	 between	 both	 classes.	 As	
a	 result,	 they	 obtain	 a	 logarithmic	 behavior	 being	 the	
Bayes	 error	 between	 ~0%	 and	 2%	 for	 Bdist  >  3.5.	 This	

(1)M =W ⋅H ,

(2)M�Rm×f ,W�Rm×n,H�Rn×f ,

(3)FFx =

�

FCx
�

∑n
x=1

�

FCx
� ,

F I G U R E  7  Filters	for	spectrum	reconstruction.	The	envelope	contribution	of	each	component	to	each	epoch	was	used	to	define	filters	
allowing	the	extraction	of	each	component	from	the	raw	signal	spectrum.
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value	will	be	used	as	a	threshold	to	define	each	pair	of	
groups	of	the	spectral	component	as	highly	separable.	In	
addition,	the	significance	between	spectral	components’	
median	 frequencies	 was	 assessed	 by	 a	 Wilcoxon	 sum-	
rank	test	with	a	confidence	interval	of	95	(Steel,	1959).	
A	 different	 Wilcoxon	 sum-	rank	 test	 was	 run	 over	 the	
spectral	 component	 median	 frequencies	 grouped	 both	
by	subjects	(to	show	inter-	subject	variabilities)	and	tri-
als	(to	show	fatigue-	related	variabilities).	A	Bonferroni-	
Holms	correction	for	multiple	comparisons	(Abdi,	2010)	
was	 applied	 to	 remove	 multiple	 comparison-	related	
biases.

3 	 | 	 RESULTS

3.1	 |	 Spectral components

Two	spectral	components	were	extracted	from	the	set	of	
signals	 recorded	 during	 each	 trial.	 After	 data	 segmenta-
tion,	 the	 total	 number	 of	 signals	 evaluated	 in	 each	 trial	
was	60	segments × 12	channels =720	signals	of	1-	s	duration	
each.	 The	 features	 of	 the	 spectral	 components	 extracted	
are	 represented	 in	 Figure	 9.	 The	 first	 graph	 on	 the	 left	
shows	the	Value	Account	For	(VAF)	representing	the	ro-
bustness	of	using	two	components	to	reconstruct	the	orig-
inal	 signals.	 The	 graph	 shows	 that	 the	 signals	 extracted	
from	each	 trial	 (60	segments × 12	channels =720	signals	
of	1-	s	duration	each)	can	be	reconstructed	with	a	VAF	of	
83.84 ± 1.36%.	The	two	middle	graphs	show	the	average	
of	the	two	normalized	spectral	components	together	with	

their	median	frequencies.	In	addition,	the	median	frequen-
cies	recorded	from	each	subject	are	represented	in	the	two	
graphs	 on	 the	 right.	 Inter-	subject	 statistical	 significance	
represented	by	an	asterisk	shows	relevant	differences	for	
subjects	7	and	9.	The	last	boxplot	on	the	right	represents	
the	 total	distributions	of	 the	median	 frequencies,	with	a	
value	of	47.55 ± 8.91 Hz	for	the	low-	frequency	component	
and	86.47 ±  8.15 Hz	 for	 the	high-	frequency	component.	
The	separability	analysis	provided	a	Bdist = 21.16	between	
both	sets	of	spectral	components	which	largely	exceed	the	
threshold	criteria	(Bdist > 3.5)	for	highly	separable	classes.	
Moreover,	the	statistical	Wilcoxon	sum-	rank	test	showed	
significant	 differences	 between	 the	 median	 frequencies	
recorded	from	each	spectral	component	group.

3.2	 |	 Components’ contribution to the 
signal energy

After	the	spectral	decomposition	shown	in	Figure	8(a),	the	
energy	 of	 the	 low-		 and	 high-	frequency	 components	 was	
computed	as	the	area	under	the	curve	for	each	segment.	
These	values	are	aligned	in	time	and	represented	in	Figure	
10	to	show	the	temporal	evolution	in	both	frequency	com-
ponents	during	the	maintained	isometric	contraction.	The	
black	line	in	the	left	graph	represents	the	evolution	of	the	
energy	of	the	sEMG	data	during	the	30 s	in	which	subjects	
were	 maintaining	 70%	 of	 the	 maximum	 generated	 force	
through	isometric	contraction	of	the	biceps.	In	addition,	
the	graph	shows	how	low-	frequency	(red	line)	and	high-	
frequency	(blue	line)	spectral	components	contributed	to	

F I G U R E  8  Extraction	of	spectral	contributions.	Filters	computed	in	Figure	7	were	applied	to	individual	spectra	to	extract	the	non-	
enveloped	contribution	associated	with	each	spectral	component.
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the	total	energy	during	the	motion.	This	graph	was	com-
puted	as	the	average	of	all	subjects,	trials,	and	electrodes.	
Results	show	a	progressive	increase	in	the	signal’s	total	en-
ergy	during	sustained	isometric	contraction	which	is	also	
a	widely	reported	phenomenon	(Cobb	&	Forbes,	1923).	At	
the	beginning	of	the	contraction,	most	of	the	signal’s	en-
ergy	comes	from	the	high-	frequency	component,	and	both	

components	present	energy	increase	during	5–	10 s.	After	
that	point,	low-	frequency	energy	keeps	increasing	linearly	
while	high-	frequency	components	start	decreasing.	After	
20–	25 s	of	contraction	low-	frequency,	energy	contribution	
surpasses	high-	frequency	contribution.	Figure	8(b)	shows	
the	energy	distribution	for	each	electrode	across	subjects	
and	trials.	Although	each	channel	shows	slightly	different	

F I G U R E  9  Spectral	component	features.	The	graph	on	the	left	shows	a	boxplot	representation	of	the	VAF	values	obtained	from	all	
trials.	Middle	graphs	show	the	shape	of	the	spectral	components	extracted	from	single	trials	and	their	average	value.	Components	were	
normalized	by	a	single	maximum	computed	from	each	pair.	Graphs	on	the	right	show	boxplot	representations	of	the	components’	median	
frequencies	for	the	whole	set	of	data	and	for	each	subject.

F I G U R E  1 0  Signal’s	energy	
distribution	during	contraction.	Evolution	
of	sEMG	energy	carried	by	each	spectral	
component	during	the	30 s	of	isometric	
contraction.	The	graph	on	the	left	shows	
the	average	of	all	channels,	subjects,	and	
trials	while	the	graphs	on	the	right	show	
the	average	of	all	subjects	and	trials	for	
each	channel.
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amplitude	 and	 component’s	 crossing	 points,	 all	 of	 them	
show	the	same	trend	described	in	Figure	8(a).

3.3	 |	 Components’ energy distribution 
with fatigue

Figure	 11  summarizes	 the	 effects	 of	 initial	 fatigue	 level	
on	 the	 energy	 distribution	 between	 both	 spectral	 com-
ponents.	The	upper	graphs	show	the	total	energies	of	the	
signals	(black	line)	and	the	contributions	of	the	low-		(blue	

line)	and	high-		(red	line)-	frequency	components	for	each	
trial	(across	all	subjects	and	channels).	Subjects	reported	
an	increased	level	of	fatigue	with	trials	(from	1.44 ± 1.51	
in	the	first	trial	to	4.22 ± 2.22	in	the	last	trial)	which	are	
represented	 in	 the	 title	 of	 each	 graph.	 The	 center	 row	
of	 the	 figure	 shows	 three	 graphs	 with	 the	 energy	 of	 the	
total	signal	(left	graph),	low-	frequency	component	(mid-
dle	graph),	and	high-	frequency	component	(right	graph)	
for	 each	 trial	 after	 fitting	 each	 plot	 with	 a	 second-	order	
polynomial	curve	to	facilitate	comparison	among	fatigue	
levels.	Although	the	total	energy	always	increases	during	

F I G U R E  1 1  Signal’s	energy	distribution	depending	on	initial	fatigue.	The	four	graphs	at	the	top	show	the	temporal	evolution	in	the	
energy	of	both	spectral	components	averaged	by	trial	together	with	their	respective	standard	deviation.	In	each	graph,	the	title	shows	
the	average	and	standard	deviation	of	the	subjective	fatigue	reported	by	all	subjects	at	the	beginning	of	the	trial.	The	graphs	in	the	center	
row	separately	show	the	total	energy	(left),	the	energy	of	the	low-	frequency	component	(middle),	and	the	energy	of	the	high-	frequency	
component	(right)	for	each	trial.	The	graphs	at	the	bottom	show	the	median	frequencies	of	the	total	signal	spectrum	and	the	median	
frequencies	of	each	spectral	component	arranged	by	trial.
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the	contraction	 time,	 the	energy	at	 the	beginning	of	 the	
contraction	increases	in	correlation	with	fatigue	while	the	
energy	at	the	end	of	the	contraction	decreases.	This	effect	
leads	to	a	decrease	in	the	relative	energy	increment	dur-
ing	the	isometric	contraction	correlated	to	an	increasing	
fatigue	 condition.	 This	 phenomenon	 is	 even	 more	 pro-
nounced	in	the	energy	contribution	of	the	high-	frequency	
component	 whose	 behavior	 presents	 larger	 inter-	trial	
variabilities.	 Low-	frequency	 component’s	 energy	 contri-
bution,	on	the	other	hand,	shows	very	similar	 inter-	trial	
behavior	 in	 the	 form	 of	 a	 constant	 linear	 increase.	 The	
bottom	row	in	Figure	11 shows	the	evolution	of	the	me-
dian	frequency	of	the	total	signal	and	the	low-		and	high-	
frequency	components	for	each	trial.	Inter-	trial	statistical	
analysis	 shows	 no	 significant	 differences	 between	 trials’	
median	frequencies.	However,	mean	values	of	the	median	
frequencies	 for	 both	 the	 total	 signal	 spectrum	 and	 each	
spectral	component	presented	a	shift	to	lower	frequencies	
correlated	with	the	initial	fatigue	level.

4 	 | 	 DISCUSSION

The	 application	 of	 a	 source	 separation	 technique	 al-
lowed	 the	 extraction	 of	 two	 components	 describing	 the	
spectrum	 of	 sEMG	 signals	 recorded	 from	 12	 different	
locations	around	 the	bicep	muscle	during	sustained	 iso-
metric	contraction	(Figure	9).	The	Bhattacharyya	distance	
between	 the	 subspaces	 formed	 by	 each	 component	 and	
the	significant	difference	between	their	median	frequen-
cies	evidence	high	separability	between	them.	Our	results	
also	proved	that	the	two	components	can	be	used	to	de-
scribe	the	sEMG	spectrum	(720 segments	per	 trial)	with	
an	 average	 reconstruction	 rate	 of	 84%.	 Spectral	 compo-
nents’	 shape	 and	 reconstruction	 rate	 agree	 with	 the	 re-
sults	 presented	 in	 Wakeling	 &	 Rozitis,	 (2004).	 The	 fact	
that	 similar	 low-		 and	 high-		 spectral	 components	 appear	
even	 during	 long-	term	 isometric	 contraction	 recorded	
on	different	muscle	locations	shows	that	their	extraction	
presents	robustness	during	fatiguing	contractions	and	to	
variations	in	the	volume	conduction	related	to	muscle	lo-
cation.	Spectral	components	also	present	low	inter-	subject	
variability.	The	 2	 subjects	 that	 showed	 some	 differences		
(Figure	 9),	 presented	 similar	 changes	 in	 both	 spectral	
components	 which	 suggest	 that	 the	 observed	 deviation	
may	be	related	to	the	subject’s	anatomical	differences.

Figure	10	shows	how	the	spectral	decomposition	allows	
the	quantification	of	the	signal	energy	shifting	from	high	
to	 low	 frequencies	 during	 the	 contraction	 period.	 This	
phenomenon,	until	now	measured	indirectly	from	the	re-
duction	of	the	signal’s	median	frequency,	occurs	similarly	
on	all	 the	electrodes.	This	 further	supports	 the	 idea	that	
the	 spectral	 components	 represent	 common	 underlying	

processes	 not	 strongly	 influenced	 by	 recording	 location.	
In	 addition,	 our	 results	 show	 that	 high-	frequency	 com-
ponent	evolution	is	strongly	affected	by	the	initial	fatigue	
level	 while	 low-	frequency	 component	 presents	 always	
similar	 temporal	 behavior	 (Figure	 11).	 Even	 the	 average	
values	 of	 the	 median	 frequencies	 associated	 with	 each	
spectral	 component	 present	 a	 reduction	 correlated	 with	
increasing	 initial	 fatigue,	 the	 statistical	 analysis	 shows	
no	significant	differences.	This	result	implies	that	fatigue	
level	has	 little	 to	no	effect	on	component	extraction	and	
the	 shift	 from	 high	 to	 low	 frequencies	 is	 probably	 pro-
duced	by	changes	in	component	modulation	rather	than	
component	shifting.

The	 temporal	 behavior	 of	 the	 components	 extracted	
in	 this	 work	 can	 be	 summarized	 as	 follows.	 At	 the	 begin-
ning	 of	 the	 contraction,	 subjects	 were	 asked	 to	 reach	 70%	
of	 their	 maximum	 force	 as	 fast	 as	 possible.	 According	 to	
our	 results,	 sEMG	 signals	 produced	 to	 maintain	 the	 ini-
tial	 force	 were	 mainly	 modulated	 by	 high	 frequencies		
(Figure	10).	During	the	contraction	period	there	was	a	pro-
gressive	 shift	 in	 the	 frequency	 dominance,	 in	 a	 way	 that,	
after	 30  s,	 the	 sEMG	 signals	 maintaining	 the	 contraction	
were	 modulated	 by	 significantly	 lower	 frequencies.	 The	
same	overall	behavior	was	observed	regardless	of	the	initial	
fatigue	level,	however,	Figure	11	shows	the	effect	of	initial	
fatigue	on	the	temporal	evolution	of	each	component.	While	
the	behavior	of	 low	frequencies	was	not	affected	by	 initial	
fatigue	(progressing	increment	during	the	30 s	of	sustained	
contraction),	 high	 frequencies	 presented	 two	 clear	 differ-
ences	for	increased	initial	fatigue.	First,	the	energy	allocated	
on	 higher	 frequencies	 at	 the	 start	 of	 the	 contraction	 was	
higher.	Second,	the	decay	in	the	high-	frequency	dominance	
was	also	faster	for	increased	initial	fatigue.

Given	 the	number	of	 factors	 involved	 in	 sEMG	spec-
tral	changes,	trying	to	guess	the	origin	of	the	components	
described	 in	 this	 work	 without	 any	 additional	 assess-
ment	could	be	highly	speculative.	Components	extracted		
(Figure	 9)	 fit	 the	 spectral	 distributions	 associated	 with	
motor	 unit	 action	 potentials	 in	 literature	 (Boonstra	 &	
Breakspear,	 2012;	 Dobrowolski	 et	 al.,	 2007;	 Negro	 et	 al.,	
2015),	 which	 will	 support	 the	 opening	 statements	 intro-
duced	by	Von	Tscharner	&	Goepfert,	(2006)	and	Wakeling	
&	Rozitis,	(2004).	However,	even	if	each	component	rep-
resented	 a	 group	 of	 spectrally	 separated	 MUAPs,	 with	
current	results	it	is	not	possible	to	tell	which	underlying	
processes	 nor	 with	 which	 intensity	 was	 contributing	 to	
the	emergence	of	both	groups.	For	the	moment	this	will	
remain	an	open	question	that	we	hope	helps	stimulate	dis-
cussion	within	the	scientific	community.

Despite	possible	interpretations,	a	two-	component	spec-
tral	decomposition	proved	to	be	a	promising	method	for	the	
detailed	 quantification	 of	 sEMG	 energy	 distribution.	This	
methodology	can	be	used	to	isolate	single	factors	involved	
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in	sEMG	spectrum	modulation	by	quantifying	their	effects	
on	high	and	 low	 frequencies	under	proper	control	 condi-
tions.	 For	 example,	 the	 comparison	 between	 the	 current	
multi-	channel	 approach	 versus	 a	 single-	channel	 compo-
nent	decomposition	could	be	used	to	quantify	the	spectral	
deviations	produced	by	the	recording	location.	Moreover,	if	
the	origins	of	the	spectral	components	are	clarified	in	the	
future,	they	will	be	a	very	useful	tool	for	the	study	of	physio-
logical	processes	with	the	use	of	non-	invasive	technologies.
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APPENDIX I

PROTOCOL FOR EMG BAND PLACEMENT
Figure	12(a)	shows	the	reference	points	used	to	select	the	electrode	location.	Point	1	corresponds	to	the	apex	of	the	cora-
coid	process	and	Point	2	corresponds	to	the	fossa	cubit,	according	to	the	guidelines	of	the	Surface	Electromyography	for	
the	Non-	Invasive	Assessment	of	Muscles	(SENIAM)	project	(Stegeman	&	Hermens,	2007).	The	line	connecting	these	two	
points	marks	the	position	of	the	short	head	of	the	biceps	brachii.	This	line	was	divided	into	two	halves	to	avoid	simulta-
neous	measurement	on	both	sides	of	the	innervated	area	associated	with	the	biceps	muscle	(Beretta	Piccoli	et	al.,	2014).	
The	third	array	of	the	EMG	band	(Channels	9–	12)	was	aligned	with	the	lower	half	of	the	reference	line	as	shown	in	the	
graphical	 representation	 in	Figure	12(a).	Figure	12(b)	shows	 the	arm	of	a	subject	 immediately	after	an	experimental	
session	for	a	realistic	example	of	the	final	electrode	location.	The	cross-	section	of	the	arm	shown	in	Figure	13	indicates	
the	expected	recording	points	of	each	array.	As	can	be	seen,	arrays	2–	4	are	likely	to	contain	more	information	on	biceps	
activation.

F I G U R E  1 2  Electrode	location.	
(a)	A	visual	representation	of	the	
protocol	followed	to	set	the	three	arrays	
of	electrodes	used	to	measure	biceps	
activation	during	isometric	contraction.	
(b)	An	example	of	the	arm	of	subject	7	
after	an	experiment,	with	the	electrode	
position	visible	from	the	marks	left	on	the	
skin.

F I G U R E  1 3  Electrode	location:	
Cross-	section.	Visual	representation	of	
a	cross-	section	of	the	arm	showing	the	
location	of	each	array	used.
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