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Abstract: Severe air pollution has become a major risk to human health from a global environmental
perspective. It has been recognized that human mobility is an essential component in individual
exposure assessment. Activity structure reflects the characteristics of human mobility. Thus, a better
understanding of the relationship between human activity structure and individual exposure level is
of crucial relevance. This study examines this relationship using a large cell-phone GPS dataset in
Wuhan, China. The results indicate that there is a strong linear relationship between people’s activity
structures and exposures to PM2.5. Inter-group comparisons based on the four activity structure
groups obtained with K-means clustering found that groups with different activity structures do
experience different levels of PM2.5 exposure. Furthermore, differences in detailed characteristics of
activity structure were also found at different exposure levels at the intra-group level. These results
show that people’s activity structures do influence their exposure levels. The paper provides a new
perspective for understanding individual exposure through human activity structure, which helps
move the perspective of research on individual exposure from the semantic of physical location to
the semantic of human activity pattern.

Keywords: PM2.5 exposure; human mobility; cell phone GPS dataset; activity patterns; PM2.5

1. Introduction

Severe air pollution has become a global environmental problem and a major risk to
human health [1–4]. As the world’s largest developing country, China has experienced an
unprecedented urbanization process and rapid economic growth in the past 30 years, with
an average annual growth in GDP of about 9%. Meanwhile, the country’s air pollution
problem adversely affects the health of its population. Air pollution can lead to a variety
of health problems, such as respiratory and cardiovascular issues, lung cancer, and even
premature death [5,6]. It has become a major public health concern in China. As a result,
more and more studies in recent years focus on the assessment of people’s exposure to and
the health impact of air pollution [7–9].

Health geographers and public health researchers have conducted pollution expo-
sure assessments for decades. Traditionally, residence-based measurement, where the
residential neighborhood is used as the contextual area, has been largely used in exposure
assessment. However, this method ignores the impact of individuals’ mobility on their
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exposure to environmental risk factors and may lead to the neighborhood effect averag-
ing problem (NEAP) [10,11]. Most people undertake their daily activities outside their
residential neighborhoods at different places. Thus, ignoring people’s daily mobility and
exposures to nonresidential contexts may lead to erroneous results in studies of exposure
estimates [6,12–16]. For accurate assessment of the health effects of pollution exposure,
the changes in individual daily mobility and activity-travel microenvironments need to be
included to obtain individual-level exposure at fine spatiotemporal scales. For instance, dif-
ferences in personal exposures to fine particulates associated with different activity places
(e.g., homes, workplaces, shops and outdoor locations) have been examined [9,17,18] and
differences between real-time sensing and static monitoring station-based estimates have
also been revealed. In addition, the variation in exposure estimates for multiple travel
modes (such as cars, bicycles or motorcycles, public transport and walking) across vari-
ous environmental conditions and the variations on days with low, middle and high air
pollution levels have also been observed [3,19]. Related research findings indicate that air
pollution concentrations vary substantially across various environmental conditions. These
findings help to improve our understanding of individual exposure to air pollution from a
static residential-based point of view to a dynamic mobility-based perspective.

Human mobility is widely recognized as a necessary component in people’s exposure
assessment since people organize their lives in different places in the city [10]. Conceptually,
human mobility describes how individuals move within a network or system. Thus,
knowing when and where people undertake activities and how these activities are spatially
and temporally structured is important for capturing the characteristics of human mobility.
It can reveal the characteristics of the individuals conducting different activities over time
and reflect variations in individual daily activities (how they change over time). The daily
activities of groups of individuals in cities tend to have underlying structures (regular yet
rich dynamics in their social and physical lives). In addition, it has been demonstrated
that exposure levels are often different when people are exposed to different environments
or activity contexts. Indeed, human activities influence the timing, location, and degree
of pollutant exposure and play a key role in examining exposure variation [20]. Thus, in
the context of different daily activity structures, human trajectories can represent people’s
movements between places with different air exposure levels and can be used to examine
how individuals may experience different levels of exposure to air pollution. Because
the link between people’s daily activity structures and exposure levels is not self-evident,
our understanding of the associations between human activity structure and individual
exposure is still limited to date. Thus, a better understanding between them is of crucial
relevance. This study seeks to investigate the relationship between people’s daily activity
structure and their exposure levels and whether exposure levels can be interpreted in terms
of activity structure semantics.

During the last two decades, although the assessment of people’s exposure to envi-
ronmental risks has evolved from a static residential-based point of view to a dynamic
mobility-based perspective, past studies are still largely location-based. The research com-
munity mostly focuses on measuring the exposure in specific activity contexts or specific
microenvironments. Generally, human activity is interpreted as a description of a combina-
tion of sequences of activities that occur over a longer period of time. However, the implicit
semantics of this structure is essential to reflect the characteristics of human mobility. Fur-
ther, most existing studies are based on location-based observations. The measurement
and interpretation of exposure need to go beyond the meaning of the physical location to
the semantics of the human activity pattern. However, researches on the interpretation of
exposure from the perspective of daily activity structure are still limited.

From the perspective of the health impact of air pollution, health disparities across
socioeconomic groups have been widely studied from the perspective of socio-economic at-
tributes [2]. Sample survey data or longitudinal observation data have been used to explore
the health effects of various environmental factors on different social groups, such as low-
income people, African Americans, children, pregnant women and other disadvantaged



Int. J. Environ. Res. Public Health 2021, 18, 4583 3 of 27

groups [21–23]. These studies are usually based on the socio-economic attributes of the
sample population obtained through questionnaires to examine the exposure differences
between different social groups. Time-activity information is usually included to obtain
an accurate individual exposure assessment. However, few studies measure the linkage
between human activity structure and the associated exposure results in a quantitative
manner, and the impact of human activity structure on individual exposure to air pollution
has not been well investigated or understood.

The investigation of the relationship between people’s daily activity structure and
their exposure levels has now become possible due to the well-developed methods of
identifying activity patterns and behaviors in the field of geographic information science
(GIScience) and computer science communities [24–28] and the availability of human
trajectory data. Therefore, the main objective of this study is to better understand the
relationship between the daily activity structure and the air pollution exposure level (taking
PM2.5 as an example) of city dwellers. Using the mobile phone GPS data of 15,120 users
on a weekday in Wuhan, China, this paper aims to examine two issues: (1) Whether
individuals’ activity structures influence their exposure level to PM2.5; (2) If it is the case,
how different daily activity structures potentially affect the PM2.5 exposure levels people
experienced at the group level? To address these questions, the study will first examine the
associations between individual activity structure and exposure to PM2.5 using coefficient
analysis and linear regression. Then, we group individuals according to their similar
activity structures and investigate the interactions between activity structure and exposure
level at the inter- and intra-group levels. The results will reveal whether activity structure
has a significant impact on the exposure level of our sample population. The findings will
enhance our understanding of how different activity structures affect individuals’ exposure
to air pollution.

2. Study Area and Data

The study area for this research is Wuhan, which is the capital and largest city of the
Chinese province of Hubei in central China. It includes seven central districts (Jiang’an,
Jianghan, Qiaokou, Hanyang, Wuchang, Qingshan, and Hongshan) and six outer districts
(Dongxihu, Hannan, Caidian, Jiangxia, Huangpi, and Xinzhou). Figure 1 shows the
administrative area of Wuhan, which has an area of 8569.15 square kilometers and a
population of about 11.21 million. The data of the administrative districts used in this paper
is from the Hubei Province Bureau of Surveying and Mapping Geographic Information
and the road network data is from OpenStreetMap (OSM), which is a free spatial data
source based on crowdsourced data.

The location dataset used in this study is from the phone GPS data of the largest
Chinese food delivery platform—Meituan (www.meituan.com, accessed on 11 March 2019).
Its daily active users have reached 69.85 million by December 2019. The data mainly
includes the location (i.e., user ID, longitude coordinate, latitude coordinate, and recording
time) of 1,141,446 users of the platform on 11 March 2019. The location data were recorded
only when the GPS location request was allowed. Therefore, the raw data have been
cleaned to make sure that the location records of each selected individual user have at least
one location record every 30 min from 6:00 a.m. to 24:00 p.m. Finally, 450,950 location
records were selected from 15,120 individuals as our location dataset.

In the study area, there are 10 national-level and 12 municipal-level air quality moni-
toring stations run by the Wuhan Ecology and Environment Bureau. The locations of these
22 monitoring stations are represented as red dots in Figure 1. The pollutants monitored
include sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO),
particulate matter PM2.5 (particle size smaller than or equal to 2.5 µm) and particulate
matter PM10 (particle size smaller than or equal to 10 µm). The air quality data of each
monitoring station is published every hour. Since PM2.5 is the main typical pollutant
and has great harm to the human respiratory system, we choose it as the representative
pollutant to evaluate personal exposure to air pollution. Therefore, the PM2.5 data were
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collected from a total of 22 observation points on the same day as the location dataset. The
PM2.5 concentrations on 11 March 2019, ranged from the minimum value of 51.93 µg/m3

to the maximum value of 83.41 µg/m3, with an average value of 67.67 µg/m3. The air
quality is placed in the light pollution category.

Figure 1. Administrative Districts of Wuhan city, China.

3. Methodology
3.1. Data Preparation

Since there are missing data in the original GPS trajectory data (e.g., the location
information is not recorded at certain moments for some users), the original dataset needs
to be filtered. 30 min is chosen as an interval and a total of 37 time points are set between
6:00 a.m. and 24:00 p.m. If the original trajectory data of a user has geographic location
information at all these time points, then the location coordinates at these time points
are orderly constructed to form the trajectory data of the user. A trajectory data set is
constructed after the filtering process. Each individual’s trajectory is defined as:

tr = {(long1, lat1t1), . . . . . . , (longi, lati, ti), . . . . . . , (longn, latn, tn)} (1)

where (longi, lati, ti) represents the individual’s longitude and latitude coordinates at time
point ti and n represents the total number of time points.

Then, among the six outer suburban districts in Wuhan, Huangpi, Xinzhou and
Jiangxia districts cover a relatively large area (Huangpi district with 2256.7 km2, Xinzhou
district with 1500.66 km2, and Jiangxia district with 2018.3 km2) and with only one or no
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monitoring station. Thus, the users whose trajectories passed these areas are removed to
mitigate the effect of the limited number of air quality monitoring stations in these districts.
Finally, 15,120 users are selected as the sample dataset.

3.2. Representation of Individual Activity Structure

To better understand the behavioral pattern of moving objects and create more accurate
models, Spaccapietra et al. [29] introduced the semantic trajectories where the human
semantic trajectory is defined generally as a sequence of semantical locations (e.g., “school”,
“restaurant”, and so on). In this study, the notion of activity structure captures individual
activity variations at different times of the day. It reveals when and where people undertake
activities and how these activities are spatially and temporally structured. An individual’s
activity structure is defined as follows:

tras = {( Actloc1, t1), . . . . . . , ( Actloci, ti), . . . . . . , ( Actlocn, tn)} (2)

where Actloci means the individual’s semantic location type at time point i, which reflects
what activity the individual performs. Semantic location type is represented by the type of
point-of-interest (POI). A point of interest (POI) is any point of geographic significance on
a map; it can be a hotel, building, bus stop, and so on. Each POI exhibits four basic features:
name, function type, address information, and longitude and latitude [30]. Actloci is deter-
mined by the POI-type where the user is at time point ti. According to the literature [31],
we divide the study area into 100 × 100 one-meter grids, and the main POI-type of each
basic geographical unit serves as the semantic location type of the unit. If the location
point at time point ti falls into the unit, then Actloci is set as the POI-type of this unit.
Referring to the POI classification by AutoNavi Map (AutoNavi Software Co., Ltd., Beijing,
China), 14 categories of POI-type are used in this study: industrial park, entertainment,
home, parking, bus station, company, hospital, hotel, organization, education, tourist place,
shopping, financial and restaurant. Each of the grid cells is assigned one of the 14 POI
as its dominant activity type. Two indices (frequency density Fi and ratio Ci) are used to
determine the POI-type of a grid unit, which is shown in Equations (3) and (4):

Fi =
ni
Ni

(i = 1, 2, . . . , 14) (3)

Ci =
Fi

∑14
i=1 Fi

× 100%(i = 1, 2, . . . , 14) (4)

where i represents the POI-type, ni is the number of type i POIs in a grid unit, Ni is the total
number of type i POIs in the study area, Fi is the frequency density of type i POIs in a grid
cell, and Ci is the proportion of the frequency density of type i POIs in a grid cell. The type
of this unit is the same as i of the maximum Ci [32]. The classification result of the study
area based on this method is shown in Figure 2.

An activity structure entails the information about individual activity variation at
different times of a day and tras is a sequence of semantic location types over time. The
representation of an activity structure needs to encode the meaning of an activity pattern. It
needs to be easy to calculate for examining the relationships between activity structure and
exposure level at the activity structure group level. The study used one-hot encoding to
encode the activity type feature and generate a 14-dimensional feature. One-hot encoding is
a representation of categorical variables as binary vectors. Specifically, it refers to splitting
the column which contains numerical categorical data into many columns depending
on the number of categories present in that column. Each column contains “0” or “1”
corresponding to which column it has been placed [33]. It is a form of word expression that
maps words from a symbolic form to a vector form, and it can handle discrete numerical
features and expand the features. Moreover, mapping discrete features to Euclidean
space through one-hot encoding will make the distance calculation between features more
reasonable. In the subsequent regression model and clustering algorithms, the calculation
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of the distance between features is very important. Based on this idea, an individual’s
activity structure could be analogized as a sentence, and each activity type could be
analogized as a word in the sentence. The one-hot strategy is utilized to represent the
meaning of activity structure and tras is transformed to a one-hot vector.

Figure 2. POI Classification of Wuhan in the unit of 100 × 100 one-meter grid.

For a total of 37 time periods, each time period needs to use 14 digits of 0 or 1 to
represent the activity an individual conducts. We define the vector space of a daily activity
structure for individual i as Si as:

Si =
{
(a1, a2, . . . , am) ∈

{
0, 1}m ∈ [∗]Rm, m = 518

}
(5)

The dimension of the vector is 518, which is the product of the total time periods and
the total number of activity types. The time period is represented as t ∈ {1, . . . ,37} and the
activity type is represented as l ∈ {1, . . . ,14}. For j = t + 37 × (l − 1), t ∈ {1, . . . ,37} and
l ∈ {1, . . . ,14}, ai = 0 or 1, depending on if the individual is conducting activity l in time
period t. (a1, a2, . . . am) satisfies Constraint (6).

14

∑
l=1

(at + 37 ∗ (l − 1)) = 1 (6)

Therefore, assuming that the set of activity structure of all users is S, then S = {S1, S2,
. . . , Sn} and n is the total number of the sample population.

3.3. Estimation of Individual’s PM2.5 Exposure

Since human activities are dynamic in time and space, taking the temporal and spatial
factors into account in the calculation of personal exposure value can obtain more accurate
results. An individual’s PM2.5 exposure is usually calculated based on the person’s space-
time trajectory. The PM2.5 value of each location point of the person’s trajectory needs to be
obtained. Thus, the interpolated PM2.5 concentration layers at different times in the study
area need to be generated first. Kriging interpolation is a geospatial estimation method,
which has been widely used in remote sensing data processing, geology, hydrology and
other fields [34]. Since the kriging interpolation algorithm is suitable for regionalized
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variables with spatial correlation, we perform Kriging based on hourly PM2.5 collected
from the 22 monitoring sites on 23 March 2019, so as to create an interpolated PM2.5 map
in the study area. In general terms, the method of Kriging interpolation is expressed
as follows:

Ẑ(s) =
n

∑
i=1

λiZ(si) (7)

where Ẑ(s) is the PM2.5 concentration estimated at an unknown location point s, n is
the number of all known location points, Z(si) is the PM2.5 observation value at point si
and λi is the weight corresponding to Z(si). At the same time, to meet the two adjustments
of unbiasedness and optimality, it is necessary to determine the corresponding weight
coefficients through Equation (8) where γ

(
si − sj

)
and γ

(
sj − s

)
are the variograms, µ is

the Lagrangian coefficient:{
∑n

i=1 λiγ
(
si − sj

)
+ µ = γ

(
sj − s

)
∑n

i=1 λi = 1
(8)

Figure 3 shows the PM2.5 average concentration distribution map of the entire Wuhan city.

Figure 3. PM2.5 concentration distribution map of the study area.

We extract each individual’s exposure to PM2.5 by identifying the intersection between
his or her daily movement trajectories and the PM2.5 concentration layers. Individual
exposure to PM2.5 is obtained as the average of these thirty-seven 30-min interval exposure
values, which captures the variations in a person’s PM2.5 exposure due to changes in his or
her location and pollution concentrations in the environment. Personal exposure of the
15,120 residents in Wuhan is estimated using Equation (9).

PE = ∑37
t=1 Ct/37 (9)

where, Ct represents the PM2.5 concentration of the location at time point t, and PE repre-
sents the personal exposure of an individual in µg/m3.

3.4. Exploring the Relationships between Individual Activity Structure and Exposure Level

To investigate whether human activity structure and PM2.5 exposure level are corre-
lated at both the individual and group levels, we design two distance matrices: the activity
structure distance matrix and the PM2.5 exposure distance matrix between individuals.
Then, the correlation between the distance of activity structure and the distance of PM2.5
exposure between two individuals is evaluated. The assumption is the shorter the distance
of the activity structures between two individuals, the closer are the PM2.5 exposure levels
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between them, and vice versa. Further, the sample individuals can be clustered into several
groups with similar activity structures. Then, based on this assumption, we further hypoth-
esize that people with similar activity structures (shorter activity structure distance) are
more likely to form an activity structure cluster and experience similar exposure to PM2.5
pollution, while people having greatly different activity structures are more likely to fall
into different activity structure clusters and have considerable differences in their PM2.5
exposure at the group level. If the assumption is supported, human activity structure does
impact people’s PM2.5 exposure level to a greater extent and further examinations on how
different activity structures influence people’s exposure should be conducted.

Figure 4 shows the detailed workflow of measuring the relationship between activity
structure and PM2.5 exposure. Based on the method described in Sections 3.2 and 3.3, the
vector representation of individual i’s activity structure Si and the PM2.5 exposure PEi
could be prepared for each individual as the input.

Figure 4. The workflow of measuring the relationship between activity structure and PM2.5 exposure.

First, the activity structure distance matrix Ma is constructed by calculating the activity
structure distance between any pair of individuals. The dimension of Ma is m (15,120),
which is equal to the number of the sample population. Thus the size of Ma is m × m.
The distance between the activity structures of two individuals is measured by cosine
similarity. Due to the long and sparse features of the activity structure vector, cosine
similarity distinguishes the difference in the vector direction and is often used to measure
document similarity in text analysis, which could fully consider the temporal dimension
feature of human activity structure. The similarity degree is measured by the cosine of the
angle between two vectors which determines whether two vectors are pointing in roughly
the same direction. Hence, cosine similarity is used to calculate the degree of similarity
in the activity sequences between two individuals. The closer the cosine value is to 1,
the closer the angle is to 0 degrees, indicating more similarity in the activity structures of
the two individuals. The distance between the activity structures of two individuals is
expressed in Equation (10) as follows:

Dij = 1−
(
Si · Sj

)
‖ Si ‖‖ Sj ‖

(10)

where Si represents the activity structure vector of individual i and Sj represents the activity
structure vector of individual j. The expression after the minus sign indicates the cosine
similarity between the Si and Sj. ADij represents the activity structure distance between
individual i and individual j.

Then, the personal exposure distance matrix Me is constructed by calculating the
exposure distance between any pair of individuals. The dimension and size of Me are the
same as Me. The distance between the personal exposure of two individuals is expressed as
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EDij in µg/m3 in Equation (11). PEi represents the personal exposure value of individual i
and PEj represents the personal exposure value of individual j:

EDij =
∣∣PEi − PEj

∣∣ (11)

Finally, the quantitative analysis is conducted between Ma and Me and (ADij, EDij)
is the basic unit consisted of the corresponding elements from Ma and Me. Using these
two matrices, we employ the Pearson correlation analysis to measure the strength of the
association between the two variables of activity structure distance and PM2.5 exposure
distance and linear regression to examine whether the statistical relationship between them
is linear.

4. Results

To explore the relationship between human activity structure and PM2.5 exposure, in
this section we cluster the individuals in our sample into different activity structure groups
and discuss the relationships between the two at the inter- and intra-group levels.

4.1. Identification of Groups with Different Activity Structures

In this subsection, we generate the clusters of similar individual activity structures
by applying the K-means algorithm [35] (the algorithm is provided in Appendix A). One
problem that needs to be taken into account in the clustering process is how to determine
the most suitable number of clusters. The Dunn index [36] and the Silhouette index [37]
are utilized in this paper to evaluate the clustering results [38]. The Dunn index mainly
reflects the compactness and separation of clusters, and the silhouette index reflects the
rationality of clustering. The higher the values of the two indices, the better the clustering
result. Figure 5 shows the changing trend of the Dunn index and the Silhouette index
when choosing different cluster numbers. Note that both indices indicate that a relatively
stable clustering effect can be achieved when the number of clusters is five. In addition,
RMSD [39] which is defined as the sum of the root mean square deviations of cluster
elements from the corresponding cluster center over clusters are utilized to characterize the
homogeneity within clusters. It can be seen that the RMSD value decreases as the number
of clusters increases and reaches the lowest value when the number of clusters is five and
then increases again. It also shows that five clusters are suitable and produce the largest
improvement in cluster performance. Therefore, the sample is clustered into five groups.

Figure 5. (a) the Dunn index (b) the Silhouette index and (c) the RMSD for different number
of clusters.

The activity structure is organized through a set of hierarchically ordered places that
have a particular meaning for an individual [40]. Excluding home, the major place is work
or school or a place where a major regular activity occurs. The places where people spend
their leisure time and socialize with others are called the secondary places (i.e., shops, cafes,
bars, restaurants, parks, etc.) [41]. In this paper, we mainly identify the major place and
the secondary place to compose and analyze the activity structure. For the convenience of
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discussion, the main characteristic of the activity structure of each group is portrayed. The
major place is utilized to identify the social character for each cluster.

Therefore, for each activity structure group, the ratio of the visited number of each
POI-type to the total number of all visited POI-types at each time period is calculated and
the POI-type with a percentage larger than 70% is defined as the major type that the major
activity takes place. The corresponding relationship between the social character of each
activity structure group and POI category is defined in Table 1.

Table 1. The corresponding relationship between the definition of social character for each activity
structure group and POI category.

# Main POI Category Activity Structure Characteristic Social Character of Group

1 Industrial park Factory-centered Factory workers
2 Company Office-centered Office workers
3 Home Home-centered Stay-at-home
4 Tourist Place Outgoing-centered Adventurers
5 Education Education-centered Education-related

The POI-types of “industrial park”, “home”, “education”, “company” and “tourist
place” listed in Table 1 for groups 3–5 are consistent with the POI category used by Au-
toNavi Map (AutoNavi Software Co., Ltd., Beijing, China). Considering that “company”
defined by AutoNavi Map is relatively broad, this paper defines “industrial park” as the
enterprises that have a serious effect on the surrounding environment, such as metallurgy
and chemical industries, minerals, and construction, while other companies such as net-
work technology, advertising and decoration, commercial trade, high-tech enterprises, and
so on are defined as “company”. In this way, it is possible to distinguish between factory
workers and office workers.

Five distinctive activity structure clusters are identified and defined as “factory-
centered activity structure”, “office-centered activity structure”, “home-centered activity
structure”, “outgoing-centered activity structure” and “education-centered activity struc-
ture” which represents the group of “factory workers”, “office workers”, “stay-at-home”,
“adventurers” and “education-related” respectively. People in the group with a much
higher proportion of factories than that of other POIs spend most of their time at a factory,
and thus the group is defined as a “factory-centered activity structure”. Similarly, the
groups with much higher proportions of enterprises, home, and education (i.e., schools,
museums, art galleries and exhibition) are defined as “office-centered activity structure”,
“home-centered activity structure” and “education-centered activity structure”, respec-
tively. Lastly, the group of “outgoing-centered activity structure” is defined when the total
proportion of “shopping”, “leisure entertainment”, and “green space and parks” is domi-
nant. For the simplicity of expression, “factory workers”, “office workers”, “stay-at-home”,
“adventurers” and “education-related” will be used in the later sections to represent each
activity structure group.

It is noteworthy that the average time proportion of staying at home for the “stay-at-
home” group reaches 90%, which means this group of people mainly stay at home and
rarely perform out-of-home activities. Since the activities of staying at home account for
a very high percentage and thus the residential location (instead of the activity structure)
may play a decisive role in the individual exposure level of people in this group. Therefore,
the “stay-at-home” group will be excluded in later discussion. In other words, only
four activity structure groups—“factory workers”, “office workers”, “adventurers” and
“education-related” will be taken as the whole sample and analyzed.

4.2. Correlation Analysis of Activity Structure and PM2.5 Exposure Level

The Pearson correlation coefficient between the distance of activity structure and
the distance of PM2.5 exposure is 0.78 (p < 0.01). With a p-value < 0.01, the correlation
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coefficient is statistically significant. The results indicate that there is a strong correlation
between individual activity structure and individual PM2.5 exposure.

Then, a linear regression model is estimated and the results show a positive relation-
ship between the distance of PM2.5 exposure and distance of activity structure vector (with
a slope of 7.34), which is shown in Figure 6. The residual distribution is illustrated in
Figure 7, which indicates that 78.7% of the absolute residuals are less than 0.5, and 98.2% of
the absolute residual is less than 1. This indicates that in most cases, the estimated distance
of PM2.5 exposure value is close to the actual distance of PM2.5 exposure value.

Figure 6. Relationship between PM2.5 exposure and activity structure.

Figure 7. Distribution of residuals.

The above results also indicate that the shorter the distance of activity structure
between two individuals, the shorter is the distance of PM2.5 exposure between them. On
the contrary, the longer the distance of activity structure between two individuals, the
longer the distance of PM2.5 exposure between them. Based on the properties of clustering,
people with similar activity structures are more likely to form a similar activity pattern and
may have similar exposure to PM2.5 pollution, and vice versa. From this perspective, the
structure of human activities influences the level of individual exposure to a certain extent.

We further examined the Pearson’s correlation coefficient for each activity structure
group, the results are shown in Table 2. All the value of the Pearson’s r for each group is
larger than 0.70. The value of Pearson’s r for the factory workers and the education-related
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group is 0.85 and 0.81, which shows that for the two activity structure groups, there is a
very strong correlation between activity structure and exposure level. For the adventurers
and office workers, the correlation between activity structure and exposure level is a little
lower compared with the former two groups, with the value of r still higher than 0.73. In
Table 3, the value of R2 on the entire sample is 0.60, which means the activity structure
distance could interpret 60% of the variance in the exposure level distance. Similarly, the
values of R2 for the factory workers and education-related group are higher than the office
workers and adventurers group.

Table 2. Pearson’s correlation coefficient for the whole sample and each activity structure group.

Group Pearson’s Correlation Coefficient r N

Gs 0.77 ** 12,362
Gf 0.85 ** 3175
Go 0.73 ** 2931
Ga 0.76 ** 2184
Ge 0.81 ** 4072

** p < 0.01. Gs represents the whole sample excluding the group of stay-at-home, Gf represents the group of factory
workers, Go represents the group of office workers, Ga represents the group of adventurers, Ge represents the
group of education-related. N represents the number of samples for each group.

Table 3. The results of the linear regression model for the whole sample and each activity struc-
ture group.

Group R R Square Std. Deviation

Gs 0.77 0.60 0.64
Gf 0.85 0.72 0.54
Go 0.73 0.53 0.61
Ga 0.76 0.58 0.68
Ge 0.81 0.64 0.59

Independent variable: activity structure distance, dependent variable: PM2.5 exposure distance, Std. deviation:
Std. Error of the estimates.

The above results also cogently answer the question we posed at the beginning
of this paper: whether individuals’ activity structure influences their PM2.5 exposure?
The connection between people’s activity structure and their PM2.5 exposure has been
established quantitatively hereto, which provides the basis to further analyze how different
activity structures impact people’s exposure levels at the inter- and intra-group levels.

4.3. Inter-Group Relationships between Activity Structure and Exposure Effects

This subsection examines whether groups with different activity structures have
different exposure levels and whether the relationship between the distance of activity
structure and the distance of PM2.5 exposure also applies to these groups.

First, Figure 8 shows the activity structure of the four distinctive groups. The hori-
zontal axis represents time (hour) and the vertical axis represents the percentage of the
number of users appearing at a specific POI-type among the total number of users. Each
line represents the percentage of a specified POI-type. Thus the top line represents the
main activity and the other lines represent the secondary activities of a specific group. Note
that the four groups have distinctive activity patterns. Figure 9 represents a radar graph
that shows the activity structures of the secondary activities of the four groups.
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Figure 8. Activity structure of the four groups. (a) Factory workers (b) Office workers (c) Adventurers (d) Education-related.

Figure 9. Secondary activity structure of the four groups using radar graph. (a) Factory workers (b) Office workers (c)
Adventurers (d) Education-related.
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Factory workers refer to people who spend most of their time at a factory. The
proportion of factory as the primary activity places starts to rise around 6:00 a.m. which is
the earliest among the four groups and declines at 4:00 p.m. They undertake secondary
activities actively at noon and evening, but less than those of office workers and adventurers.
Figure 9a indicates that the main secondary activity places of factory workers consist of
restaurants, shopping and entertainment-related places. Among these activity places, the
restaurant has the highest proportion (9%). It means that the structure of factory workers’
activities is relatively simple and monotonous. In addition to working in a factory, eating
out is the most important activity for this group. It is also noteworthy that this group rarely
visits green spaces and parks (1%) or education-related places (2%) which would reduce
their PM2.5 exposure and benefit their health.

Office workers mainly refer to the people whose workplaces are the enterprises such
as high-tech companies, financial institutions, advertising and decoration, commercial
trade, and so on. Figure 8b shows the activity structure of this group. Most of them leave
home during 7:00–8:00 a.m. and return home from work at 5:00–8:00 p.m. Their secondary
activities after work are vibrant and plentiful. Office workers are usually white-collar
workers with a mid-to-high income level, and hence they are more willing to go out for
social, recreational and leisure activities after work. The main secondary activity places of
this group consist of entertainment avenues, shopping centers, restaurants, bus stations,
parking places and industrial parks. The proportion of shopping and leisure activities
for office workers is surpassed only by that of the adventurer group and is much higher
than factory workers and education-related workers. These two kinds of activities are
characterized by two obvious peaks. The first peak appears around 12:00 a.m., which is
associated with the noon break. The second peak appears around 8:00 p.m. The proportion
of dining-out activities is a little lower when compared with entertainment activities. The
first peak appears near 1:00 pm and the second peak appears around 5:00 p.m. It is
noteworthy that this group rarely visits education-related places (less than 2%) and green
spaces and parks (less than 1%), which means that the use of green spaces is very low in
this group.

Adventurers mainly refer to people who visit public places for relaxation and recre-
ation (i.e., tourist places, green spaces, parks, and so on) as their main activities. Figure 8c
shows the activity structure of this group which mainly includes tourists and local residents
who like to undertake outing activities. According to the places where they leave in the
morning, about 65% of this group belong to the local residents and approximately 15% of
this group belong to the tourists. The home ratio (proportion of staying at home) in the
morning reaches a trough around 11:00 a.m., which shows that compared with ordinary
workers, the travel time of people who like to go out is relatively flexible. They usually
avoid the morning rush hour and undertake outing activities when traffic is smooth. The
home ratio in the evening usually starts to rise at 6:00 p.m, which is one hour later than
that of the ordinary workers. And the upward trend is relatively gentle, especially between
6:00–8:00 pm, which means that the outing activities of adventurers usually last until
the late evening. The main activity structure of adventurers consists of green spaces and
parks (15%), entertainment avenues (9%), bus stations (10%), shopping centers (10%) and
restaurants (8%). This group rarely visits industrial parks and companies.

The education-related group mainly includes education practitioners and students.
They start education-related work during 7:00–8:00 a.m. and finish working around 6:00 pm.
There is a small peak around 8:00–10:00 pm, which means some people still have to do
education-related work at night (i.e., teaching or attending evening classes). The peak value
of the proportion of education and cultural places for this group is close to 80%, which is
the highest for the main activity among the four groups. It also means that members of
this group perform the fewest secondary activities. The time secondary activities occur is
at noon and in the evening. Figure 9d represents the activity structure of the secondary
activities of this group. The main places this group visit are entertainment avenues (3%),
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greens and parks (3%), restaurants (2%), shopping-related places (5%) and bus stations
(3.5%). This group rarely visit industrial parks, companies and hotels.

The above results indicate that the characteristics of the activity structure for each
group are distinctive. Second, we examine whether the PM2.5 exposure levels of the
four activity structure groups are different. Individual exposure level was calculated
according to the average PM2.5 concentration at each time interval. The mean personal
PM2.5 exposure level of the sample residents is 67.67 µg/m3 (range: min 51.93–max 83.41).
The personal exposure levels of the 15,120 residents are shown in Figure 10. The box plot in
Figure 11 represents three quartiles of PM2.5 exposure of the four activity structure groups.
PM2.5 exposures of the four activity structure groups show a clear sequence from high
values to low. They are factory workers, office workers, education-related, and adventurers.
Specifically, the minimum value, maximum value and mean value of PM2.5 exposure for
the factory workers are 62.7, 81.3 and 69.0 µg/m3. All these three values are the highest
among the four groups. It indicates that, on the whole, factory workers tend to be exposed
to the highest level of PM2.5 pollution among the four activity structure groups and the
overall exposure risk of this group is the highest among them. This is in line with our
expectations. According to the activity structure of this group, factory workers have long
working hours and suffer from the high pollution of their work environments. They often
have difficulty in accessing high-end facilities and rarely have the opportunity to reduce
their daily exposure level [9].

Figure 10. The daily personal PM2.5 exposure level of 15,120 residents in Wuhan.

Next to the factory workers, the minimum value, maximum value and mean value
of PM2.5 exposure for office workers are 60.1, 74.9 and 66.2 µg/m3. Thus, it indicates that
the group of office workers as a whole still tends to have a relatively high exposure risk
due to their high mobility and diversified activities. Then, the minimum value, maximum
value and mean value of PM2.5 exposure for the education-related group are 53.6, 71.7 and
61.7 µg/m3. This group tends to have relatively low exposure risks. This is mainly because
the workplaces of this group are educational and cultural places, where the vegetation
coverage rate and the overall greening level are relatively high. Lastly, the minimum value,
maximum value and mean value of PM2.5 exposure for adventurers are 53.0, 72.9 and
60.7 µg/m3. On the whole, this group tends to have the lowest exposure risk because
of its highest levels of green space usage among the four groups. In general, the PM2.5
exposures of factory workers and office workers are higher, while the PM2.5 exposures of
the education-related group and adventurers are lower.
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Figure 11. The box plot represents three quartiles of PM2.5 exposure of the four activity struc-
ture groups.

To further verify whether the mean PM2.5 exposure levels of the four activity structure
groups differ significantly from each other, an ANOVA test [42] which compares the means
of a continuous variable in two or more independent comparison groups was performed.
The results are shown in Table 4. It can be seen that the between-group and within-group
mean square deviations are 45,614 and 9.20 respectively. The F-value (4596.97) is much
larger than the critical value of F (2.6056) when the level of significance is 0.05. This huge
F-value is strong evidence that the null hypothesis (the four activity structure groups
having equal mean PM2.5 levels) should be rejected. Meanwhile, p = 0.004 (<0.05) means
the result is statistically significant and the mean PM2.5 exposure levels of the four activity
structure groups differ significantly from each other.

Table 4. The results of the ANOVA test among the four activity groups.

Sum of Squares df Mean Square F Sig.

Between Groups 136,842.25 3 45,614 4956.966 2.6056
Within Groups 113,721.92 12,358 9.20

Total 250,561.17 12,362
Sum of squares represents the total amount of dispersion, df is the degrees of freedom, and mean square represents
the variance among sample means.

Then, the post-hoc procedure of the Scheffé test [43] was conducted to further examine
which group pairs’ PM2.5 exposure differ significantly from each other. The result is
shown in Table 5, which indicates that the F-value between the adventures and education-
related groups is less than F-Critical (7.8168), and the F-value between any other pairs of
activity structure groups is all greater than F-Critical. This indicates that no significant
difference exists between the mean PM2.5 of adventures and education-related groups,
while a significant difference exists between the mean PM2.5 of the rest of the activity
structure group pairs.
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Table 5. The results of the Scheffé test among the four activity groups.

Activity Structure Group Pair F Value F-Critical

(factory workers, office workers) 7.9751 7.8168
(factory workers, adventures) 12.3479 7.8168

(factory workers, education-related) 11.4524 7.8168
(office workers, adventures) 9.7514 7.8168

(office workers, education-related) 8.5893 7.8168
(adventures, education-related) 4.6166 7.8168

These results indicate that different activity structure groups do experience differ-
ent levels of PM2.5 exposure. In other words, at the inter-group level, different activity
structures affect people’s exposure level and daily activity structure does have a certain
influence on people’s exposure.

Finally, we examine the activity structure distance and PM2.5 exposure distance
among the four groups. Figure 12 represents the activity structure distance matrix and
PM2.5 exposure distance matrix among the four activity structure groups. The activity
structure distance between the two groups is calculated using the average distance between
them, and the PM2.5 exposure distance uses the F-value of the Scheffé test. As shown
in Figure 12a, for factory workers, the distance of activity structure between this group
and office workers is the shortest, followed by the education-related group and finally the
adventurer group. The distance of PM2.5 exposure between factory workers and the other
three groups also follows this order. Specifically, the activity structure for factory workers
and office workers are the most similar (0.83), and the distance of PM2.5 exposure between
these two groups is the shortest (7.97). On the contrary, the activity structure for the factory
workers and the adventures are the most dissimilar (0.89). Therefore, the distance of PM2.5
exposure between these two groups is the longest (12.34). For adventures, this group is
most similar to the education-related group, followed by office workers and finally factory
workers in terms of activity structure. The distance of PM2.5 exposure among them also
follows the same order. In general, the distance sequence of PM2.5 exposure corresponds
with that of the activity structure among the four activity structure groups. This indicates
that the relationship between the activity structure and PM2.5 exposure is also true at the
level of activity structure group. That is to say, the smaller the distance of activity structure
between two activity structure groups, the closer is the distance of PM2.5 exposure between
them. On the contrary, the longer the distance of activity structure between two activity
structure groups, the longer is the distance of PM2.5 exposure between them.

Figure 12. Activity structure distance matrix (a) and PM2.5 exposure distance matrix (b) among the
four activity structure groups.
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4.4. Intra-Group Relationship between Activity Structure and Exposure Effects

This subsection further observes the interaction relationship between activity struc-
ture and exposure level inside each activity structure group in the reverse direction. We
first divide the PM2.5 exposure level into three categories: high (ranges from 70.20 to
81.3 µg/m3), medium (63.54 to 70.19 µg/m3) and low (53 to 63.54 µg/m3) by clustering
the PM2.5 exposure value. Then, the activity structures at different exposure levels for each
group are examined whether people at different exposure levels have different detailed
characteristics within each group.

4.4.1. Factory Workers

Figure 13a–c show the activity structure at high-, medium- and low exposure levels.
The three charts in the upper row describe the overall activity structure of the group and the
three charts in the lower row depict the details of the curves that represent the secondary
activities in the first row. Figure 14 is a radar graph that shows the activity structure of the
secondary activities of factory workers at different exposure levels.

Figure 13. Factory workers’ daily activity structures at different exposure levels.

Figure 14. The activity structures of the secondary activities of factory workers at different expo-
sure levels.
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There are differences in the working hours at different exposure levels. The proportion
of factory starts to rise around 6:00 a.m. At high exposure levels, the factory curve falls to
28% at the bottom during 6:00–8:00 p.m. After 8:00 p.m., the curve shows an upward trend
and rises to 40%. It can be explained that 40% of the factory workers still have to return to
the factory to work. They may be overtime workers or night-time workers. At medium
exposure level, after 4:00 p.m., the curve shows a downward trend and there is no trend of
recovery, reaching a trough (25%) at 10:00 p.m. At low exposure level, it also shows a rising
trend starting from 4:00 p.m., and the downward trend continues until 10:00 p.m. The
results indicate that the working hours of this group at low- and medium exposure levels
are significantly shorter than those at high exposure levels. In other words, by reducing
the working hours or the time spent in factory, the individual exposure of factory workers
is reduced to a great extent.

The proportion of home also differs at different exposure levels. At high exposure
levels, the proportion of home shows an upward trend after 7:00 p.m., reaching a peak
(37%) at 9:00 p.m. and then slightly decreases. At medium exposure level, it shows a sharp
increase since 6:00 p.m., reaching 43% at 10:00 p.m., and there is no trend of falling back. At
low exposure level, the curve increases sharply since 6:00 p.m., reaching 78% at 10:00 pm.
This indicates that the proportion of returning home after work increases significantly
with the decrease of exposure level and the choice of going home earlier helps reduce the
personal exposure level of factory workers to a great extent.

There are also differences in recreational activities for factory workers at different
exposure levels. At high exposure levels, there are no obvious recreational activities except
for dining activity which shows two obvious peaks during lunch and dinner time. The
shopping and entertainment activities account for a very low percentage, which means the
recreational activities are monotonous. This may be due to the limitation of working hours
and they have very little time to take non-working activities out. At low- and medium
exposure levels, on the one hand, the proportion of factory decreases. The peak proportion
of factory at high-, medium- and low-exposure level during 9:00 a.m.–5:00 p.m. are 60%,
51% and 41%. On the other hand, the recreational activities of the factory workers at low-
and medium exposure levels start showing a diversified trend. The non-working activities
are more abundant than those at high exposure levels.

Among the factory workers, the activity structures at different exposure levels have
differentiation in detail. The results show that the higher the exposure level, the longer
the working hours and the more monotonous the types of recreational activities; while the
lower the exposure level, the shorter the working hours and the more diverse the types of
recreational activities.

4.4.2. Office Workers

Figure 15 shows the secondary activity structure of office workers. Figure 16 shows
the activity structure of the secondary activities of office workers at different exposure
levels.The activity structures of this group at different exposure levels are similar on the
whole. Differences in the choice of commuting modes for this group at the three exposure
levels are observed. At high exposure levels, the parking curve shows three peaks in the
time periods of 7:00–10:00 a.m., 12:00–2:00 p.m., and 5:00–8:00 p.m. This is consistent with
the commuting hours in the morning peak, the noon break and the evening peak. The
proportion of parking at high exposure level is the highest with three peaks (8%, 10% and
9%). The three peak values are 7%, 5% and 5% at medium exposure level, and are 1%,
3% and 4% at low exposure level. It indicates that with the decrease in the proportion of
the use of parking, the exposure level also shows a downward trend. Interestingly, the
use of bus stops also shows three obvious peaks in the three corresponding time periods.
The three peak values are 6%, 4% and 8% at high exposure level, are 6%, 7% and 12%
at medium exposure level, and are 13%, 8% and 14% at low exposure level. It indicates
that people with lower exposure levels tend to use bus stops higher, while people with
higher exposure levels tend to use parking lots more. In other words, the travel mode of
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office workers with high exposure levels is mostly private cars while the office workers
with low exposure levels often choose public transportation as their commuting mode. In
addition, the shopping and leisure activities for office workers are colorful, but the obvious
differences in recreational activities among this group at different levels of exposure are
not observed.

Figure 15. Office workers’ daily activity structures at different exposure levels.

Figure 16. The activity structures of the secondary activities of office workers at different expo-
sure levels.

4.4.3. Adventurers

Figure 17 shows the structure of the secondary activities of adventurers at different
exposure levels. Figure 18 shows the activity structure of the secondary activities of
adventures at different exposure levels. From the activity structure point of view, there
are obvious differences at the three different exposure levels. For shopping activities, the
peak value of the percentage is 20% at high exposure level, 15% at medium exposure level,
and 12% at low exposure level. The higher the exposure level, the higher the proportion
of shopping activities and vice versa. From the perspective of time, shopping activities
fluctuate less at different times during the day and are evenly distributed, which means
adventurers would take shopping activities at any time of the day.
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Figure 17. Adventurers’ daily activity structures at different exposure levels.

Figure 18. The activity structures of the secondary activities of adventurers at different exposure levels.

The trends of recreational activities during 8:00 a.m.–6:00 p.m. at different exposure
levels are similar, but there are differences during 7:00 p.m.–9:00 p.m. at night (the time
period with the worst air quality). At high exposure level, the leisure and recreational
activities account for the highest proportion, with a peak of 21%; at medium exposure level,
the ratio declines and peaks at 13%; at low exposure level, the proportion falls sharply at
10%. Similar to shopping activities, it can be observed that the higher the exposure level,
the higher the proportion of leisure and entertainment activities and vice versa.

At different exposure levels, the travel modes are also different. At low exposure
levels, the use of public transportation accounts for the highest proportion, reaching two
peaks 18% and 20% at 11:00 a.m. and 6:00 p.m.; while the use of public transportation at
high exposure levels is very low with an average value of 3%. At the same time, it is also
observed that the proportions of parking at high-, medium- and low exposure levels are
different (the average proportions are 8%, 5%, and 2% respectively). In other words, at
high exposure levels, adventurers tend to take outing activities and travel by car; while at
low exposure levels, adventurers mainly use public transportation to travel.

The visiting behaviors to tourist places (i.e., greens and parks) differ at different
exposure levels. At low exposure level, the proportion of such activities is at a relatively
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high level, gradually rising from 8:00 a.m., reaching the first peak (25%) and the second
peak (18%) at 3:00 p.m. and 8:00 p.m. and then falling sharply. At the medium exposure
level, the trend is similar to that at low exposure levels, but the proportion decreases and
reaches the first peak (14%) and the second peak (13%) at 3:00 p.m. and 8:00 p.m. However,
at high exposure levels, the ratio is very low, with an average value of 5%. It shows that
different ways of using the greens and parks may lead to different exposure results. The
adventurers at low exposure level visit more green spaces, while the adventurers at high
exposure level rarely visit such places.

Generally, the detailed activity structure of adventurers is different at different ex-
posure levels. Adventurers with high exposure level visit leisure and entertainment,
shopping-related places and restaurants with a very high percentage and the main travel
mode is the private car. It is noteworthy that the use of green spaces is very low. However,
adventurers with low exposure levels are more inclined to visit tourist places and travel by
public transportation, but the entertainment and shopping activities are relatively low.

4.4.4. Education-Related Group

Figure 19 represents the structure of the secondary activities of the education-related
group at different exposure levels. At high exposure levels, people leave home during
7:00–8:00 a.m., return home during 5:00–6:00 p.m. and do less outing activities. At medium
exposure level, people start choosing to go out for leisure and entertainment or shopping in
the evening. At low exposure levels, the outing activities are more abundant. For example,
the proportion of bus stops and green spaces increases, and the overall proportion of people
at home is also far lower than the high- and medium exposure levels. It can be seen from
Figure 20, at low exposure level, the education-related group shows stronger vitality and
has a higher willingness to go out than those at medium-to-high exposure level, and the
places visited appear the characteristic of diversification. However, at high exposure levels,
this group shows the opposite trait.

Figure 19. Daily activity structures of the education-related group at different exposure levels.
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Figure 20. The activity structures of secondary activities of the education-related group at different
exposure levels.

Specifically, as the exposure level decreases, the frequency of outing activities (shop-
ping, entertainment and leisure, bus stops, etc.) gradually increases during the periods
12:00 a.m.–2:00 p.m. and after 5:00 p.m. For example, the peak proportion of shopping
activities at the high-, medium- and low levels are 2.9%, 5.8%, and 6.9% at noon, and 3.7%,
6.7%, and 9.7% in the evening hours. The peak proportion of bus stations at the high-,
medium- and low exposure levels are 2.7%, 3.7%, and 4.7% at noon, and 5.2%, 5.6%, and
5.6% in the evening hours. The peak proportion of leisure and entertainment at high-,
medium- and low exposure levels are 2.8%, 4.3%, 4.8% at noon and 2.4%, 5.4%, and 9.4% in
the evening hours. The peak ratio of visiting green spaces at night is 1.5%, 3.2%, and 8.5% at
high-, medium- and low exposure levels respectively. Therefore, these results indicate that
the characteristics of detailed activity structure differ at different exposure levels. People
with high exposure have the lowest proportion of secondary activities and vice versa.

In general, by observing the detailed characteristics of people’s activity structures
under different exposure levels in each group, there is indeed a distinction between the
detailed activity structures. These results also show in turn that at the intra-group level,
different activity structures may affect people’s exposure levels, and the daily activity
structure does have a certain impact on people’s final exposure results.

5. Conclusions

By examining the relationship between people’s activity structure and their PM2.5
exposure levels, this paper provides a new perspective for addressing when, where and
how individuals interact with places and how their daily activity structures affect their
exposure levels. The association between people’s daily activity structure and exposure to
PM2.5 is quantified using the mobile-phone GPS location dataset of a weekday in Wuhan.
First, two types of distance matrices between individuals of the sample population are
constructed (i.e., the activity structure distance matrix and PM2.5 exposure distance matrix).
Pearson correlation analysis and linear regression model were conducted on the two
matrices to reveal the correlation.

The Pearson correlation coefficient between the distance of activity structure and the
distance of PM2.5 exposure is 0.78 (p < 0.01). The results of the linear regression model
show a positive relationship between the distance of PM2.5 exposure and the distance of
activity structure vector (with a slope of 7.34 and an R2 of 0.60). This indicates that there
is a strong linear relationship between individual activity structure and PM2.5 exposure.
The smaller the distance of activity structure between two individuals, the closer are the
PM2.5 exposures between them and vice versa. In other words, people with similar activity
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structures tend to have similar exposure levels to PM2.5, while people with greatly different
activity structures tend to have large differences in their exposure levels to PM2.5.

We used the K-means algorithm to cluster the sample individuals into four distinctive
groups (factory workers, office workers, adventurers and education-related workers) and
compared the inter-group difference and intra-group difference in the relationship between
activity structure and PM2.5 exposure.

At the inter-group level, an ANOVA test was conducted and the F-value (4596.97)
is much larger than the critical value of F (2.6056) when the level of significance is 0.05,
which means that the mean PM2.5 exposure levels of the four activity structure groups
differ significantly from each other. Then, the post-hoc procedure of the Scheffé test was
performed and the F-values between all pairs of activity structure groups are greater than F-
Critical (7.8168) except for the pair of adventures and education-related groups. The results
indicate that different activity structure groups do experience different levels of PM2.5
exposure. Among the four groups, factory workers tend to have the highest exposures;
office workers have relatively high exposures; the education-related group tends to have
low exposure; while the adventurers have the lowest exposures among the four groups.
Then, the relationship between activity structure distance and PM2.5 exposure distance
among the four groups is examined. The order of the distance of PM2.5 exposure between
activity structure groups is consistent with the order of the distance of activity structure
between activity structure groups. The results show that, at the activity structure group
level, the relationship between the two variables (activity structure and PM2.5 exposure) is
also true. The smaller the distance between the activity structures of two activity structure
groups, the closer is the distance between their PM2.5 exposures and vice versa.

At the intra-group level, differences in the detailed characteristics of activity structure
for people at different exposure levels within each group are also observed. For factory
workers, people with higher exposure levels have longer work hours and the types of
recreational activities are more monotonous than people with lower exposure levels. For
adventures, people with high exposure levels visit leisure and entertainment facilities,
shopping-related places and restaurants more, the main travel mode is the private car
and the use of green spaces is very low. However, people with low exposure levels are
more inclined to visit tourist places and travel by public transportation, and the levels of
entertainment and shopping activities are relatively low. For education-related, people with
low exposure levels have a higher willingness to go out than those with medium-to-high
exposures, and the places they visited are diverse. These results indicate that individuals
with different activity structures tend to experience different exposures, and human activity
structure has a significant influence on people’s exposure to environmental risk factors.

The findings of this study emphasize the need for public health interventions and
urban planning initiatives to mitigate social disparities in exposure to air pollution and
alleviate health disparities across socioeconomic groups. More attention needs to be paid
to the groups with higher exposure risk. Also, changing when and where to undertake
activities can change the exposure level as well, because specific activity patterns are associ-
ated with specific exposure levels. This work also indicates that interdisciplinary research
connecting researchers in health geography, computer sciences and human dynamics can
generate useful information for a better understanding of the interaction between human
behavior and environmental factors.

There are several limitations in this study. First, it is recognized that indoor air
pollution levels may be different from outdoor air pollution levels, we do not have data on
indoor air pollution levels. As a result, we assume in this study that air pollution levels in
different microenvironments (e.g., indoors) are the same as the outdoor levels estimated by
Kriging interpolation due to data limitations. Second, there are other limitations associated
with the strict correspondence between PM2.5 concentrations and users’ activity in indoor
and outdoor spatio-temporal semantics. Due to the accuracy of the large-scale cell phone
GPS dataset, it is still challenging to distinguish indoor and outdoor activities based on
GPS trajectory data. In future studies, the trajectories of indoor and outdoor should be
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separated through the analysis of the spatio-temporal activity patterns of the trajectories,
and the indoor air pollution measurement method should be used to assist in establishing
a suitable correspondence between PM2.5 concentrations and city-wide activity structures,
which provides semantically consistent data for the quantitative study of the relationship
between individual’s activity structure and PM2.5 exposure level at the urban scale.
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Appendix A. The Pseudo Code for the K-Means Algorithm

Algorithm A1: K-means algorithm based on cosine similarity

Input: Sample Sets S = {S1, S2, . . . , , Sn};Cluster number K
Output: Cluster after division C = {C1, C2, . . . , , Cn}
1: select k samples from S random as the initial mean vector {µ1, µ2, . . . , , µk}
2: Ci = ∅
3: for j = 1 → m do
4: Calculate the distance between Si and dij
5: Determine the cluster label of λi by λi = argminiε{1,2,...,k} dij
6: Divide xj into corresponding cluster Cλj : Cλj = Cλj ∪ {}xj
7: end for
8: for i = 1 → k do
9: Calculate the new mean vector: µ′i =

1
|Ci | ∑xεCi

x
10: if ui’ 6= ui then
11: Updateu with ui’
12: Else
13: Keep µ unchanged
14: end if
15: end for
16: until None of mean vectors will updated
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