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ABSTRACT
Risks of parasitism vary over time, with infection prevalence often fluctuating with
seasonal changes in the annual cycle. Identifying the biological mechanisms underlying
seasonality in infection can enable better prediction and prevention of future infection
peaks. Obtaining longitudinal data on individual infections and traits across seasons
throughout the annual cycle is perhaps the most effective means of achieving this
aim, yet few studies have obtained such information for wildlife. Here, we tracked
spiny common toads (Bufo spinosus) within and across annual cycles to assess seasonal
variation in movement, body temperatures and infection from the fungal parasite,
Batrachochytrium dendrobatidis (Bd). Across annual cycles, toads did not consistently
sustain infections but instead gained and lost infections from year to year. Radio-
tracking showed that infected toads lose infections during post-breeding migrations,
and no toads contracted infection following migration, which may be one explanation
for the inter-annual variability in Bd infections. We also found pronounced seasonal
variation in toad body temperatures. Body temperatures approached 0 ◦Cduringwinter
hibernation but remained largely within the thermal tolerance range of Bd. These
findings provide direct documentation of migratory recovery (i.e., loss of infection
during migration) and escape in a wild population. The body temperature reductions
that we observed during hibernation warrant further consideration into the role that
this period plays in seasonal Bd dynamics.

Subjects Conservation Biology, Ecology, Zoology
Keywords Batrachochytrium dendrobatidis, Bufo spinosus, Migration, Hibernation

INTRODUCTION
Parasites pose major risks to humans and wildlife, but widespread seasonality in prevalence
of parasitic infections indicate that those risks vary over the annual cycle. While seasonal
infection dynamics may at times be associated with host demographic factors (e.g., seasonal
fluctuations in birth rates and mortality), such patterns may also be a function of seasonal
changes in within-individual infections resulting from seasonality in host life history
characteristics. Migratory wildlife undergo seasonal changes in behaviour and physiology,
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traits which affect basic drivers of within-individual infection dynamics such as rates of
exposure to infective stages, rates at which exposure leads to infection (i.e., susceptibility),
rates of parasite growth following infection (Altizer et al., 2006; Daversa et al., 2017). For
example, migratory movements of juvenile salmon reduce exposure to parasitic lice
(Krkosek et al., 2007), and immunosuppression in birds during migration may cause
seasonal fluctuations in their susceptibility to infection (Owen & Moore, 2008). Direct
documentation of seasonal fluctuations in within-individual infections throughout the
annual cycle is limited, however (but see Knowles et al., 2011; Van Dijk et al., 2014; Spitzen-
van der Sluijs et al., 2017), likely because of the difficulty in tracking individual hosts
and their infections across multiple seasons. Such information could identify hosts that
contribute disproportionately to parasite maintenance, clarify host traits that are linked to
long-term parasite persistence and aid disease mitigation efforts.

Host movements comprising seasonal migrations could bring changes in within-
individual infection through, for example, changes in host social behaviours that influence
rates of exposure or changes in habitat use that affect environmental conditions conducive
to within-host parasite growth (Daversa et al., in press). Both increases and decreases in
infection prevalence followingmigration arewell-documented (Altizer, Bartel & Han, 2011;
Bauer & Hoye, 2014). Those broad patternsmay be indicative of hosts contracting infections
or losing infections (migratory recovery) (Shaw & Binning, 2016) while migrating, but
could also arise from processes that do not entail changes in within-individual infections.
For example, reductions in infection prevalence following migration could be driven by
infection-induced mortality during migration (migratory culling) or migratory individuals
leaving high-risk sites before contracting infections (migratory escape) (Bartel et al., 2011;
Altizer, Bartel & Han, 2011), while increases in infection prevalence following migration
could arise from influxes of susceptible hosts into parasite rich habitats (Van Dijk et al.,
2014). To date, direct evidence for migratory-induced decreases or increases in infection
at the individual level is largely lacking (Shaw & Binning, 2016).

Physiological changes experienced by migratory hosts during the annual cycle may also
contribute to seasonal infection dynamics because such changes may affect susceptibility
and resistance to infection. In ectotherms for example, seasonal changes in ambient
temperature elicit seasonal changes in body temperature. Studies of amphibians have
shown that seasonal decreases in body temperatures compromise immune function (Raffel
et al., 2015), and when these compromises coincide with periods of high exposure, increases
in infection prevalencemay be particularly likely. Reductions in body temperature may also
activate dormant parasite stages acquired during previous seasons (Glyfe et al., 2000), which
could trigger spikes in prevalence even when exposure is limited (Langwig et al., 2014).
Alternatively, ectotherms also thermoregulate by adjusting behaviours (Richards-Zawacki,
2009) and may undergo fever in response to infection (Sauer, Sperry & Rohr, 2016), which
could drive losses of infection.

We carried out a longitudinal study of migratory amphibians to assess individual
variation in seasonal movement patterns, body temperature and infection from the
pathogenic parasite, Batrachochytrium dendrobatidis (Bd). Bd is a microscopic fungus
that infects the keratinized skin cells of many amphibian species via free-living aquatic
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zoospores that encyst into reproductive sporangia on infected hosts (Piotrowski, Annis
& Longcore, 2004). Surveys of non-migratory hosts have found that Bd infections vary
seasonally (Retallick, McCallum & Speare, 2004; Kriger & Hero, 2007; Murray et al., 2009;
Sapsford et al., 2015), which may reflect seasonal changes in environmental factors like air
and water temperature (Retallick, McCallum & Speare, 2004; Kriger & Hero, 2007; Murray
et al., 2009). Surveys ofmigratory host species, while extensive, have predominantly focused
on breeding seasons in aquatic habitats (Pilliod et al., 2010; Muths, Scherer & Pilliod, 2011;
Bosch et al., in press), providing insight into inter-annual patterns of Bd infection but
limited information on seasonal infection dynamics.

We focus on adult spiny common toads (Bufo spinosus), a competent Bd host that
exhibits a highly seasonal life history. Adult spiny common toads annually convene in
ponds and lakes for one to three months during the summer to breed. Bd zoospores
rely on moist environments and therefore infect pond-breeding amphibians like spiny
toads during occupation of aquatic breeding habitats. Toads then migrate from breeding
sites to terrestrial habitats used for foraging and winter hibernations (i.e., ‘‘post-breeding
migrations’’) until migrating back to breeding sites the following year (i.e., ‘‘pre-breeding
migrations’’) (Sinsch, 1988; Daversa, Muths & Bosch, 2012). Studies report conflicting
evidence for the growth and persistence of Bd infections in amphibians occupying
terrestrial habitats (Stockwell, Clulow & Mahony, 2010; Raffel et al., 2015; Daversa et al.,
in press), differences which may depend on the type of substrate (e.g., soil versus sand)
occupied by hosts. Previous work has shown that Bd can survive temperatures up to 30 ◦C
(Piotrowski, Annis & Longcore, 2004) and that Bd sustains growth between 2 and 26/27 ◦C,
depending on the strain (Voyles et al., 2017). Bd infections should therefore be sustained
over host body temperatures across that range. We first carried out mark-recapture surveys
over eight breeding seasons to assess inter-annual variation in prevalence and intensity
of Bd infections in adult spiny common toads during aquatic breeding seasons. During
that time, we radio-tracked a subset of toads to assess how infection burdens change in
toads during post-breeding migration and subsequent terrestrial phases. We also recorded
body temperatures of a subset of toads for an entire annual cycle to characterize how
temperatures fluctuate throughout the year.

MATERIALS & METHODS
Study site and species
Adult spiny common toadswere studied at permanent ponds inGuadarramaNational Park,
Spain (41◦N, 4◦W, elevation: 1,800–2,430 m). We focused on five of the ponds (elevational
range: 1,956–2,175 m a.s.l.) where common toads breed annually: Laguna Grande (LG;
elevation: 2,018 a.s.l), Laguna Chica (LCH; elevation: 1,956 m a.s.l), Laguna de Pájaros (LP;
elevation: 2,175 m a.s.l.), Charca de la Mariposa (CHM; elevation: 2,136 m a.s.l.) and the
Charca Larga y de las Piedras (CHLP; elevation: 2,110 m a.s.l.). The surrounding terrain
consists of granite outcrops and alpine grasslands at higher elevations and heathland
and pine forest at lower elevations. The park is the type locality of Bd in Europe, with
first reports of chytridiomycosis in common midwife toads (Alytes obstetricans) in 2001
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(Bosch, Martínez-Solano & García-París, 2001). Bd has also been detected in our focal host,
but spiny toad populations have not suffered mass mortalities as midwife toad populations
have (Bosch et al., in press). The costs of Bd to adult spiny toads are not well known, but
experimental and field work have demonstrated that Bd infections can cause mortality
in metamorphs (Bosch & Martínez-Solano, 2006; Garner et al., 2009; Bielby et al., 2015).
The Consejería de Medio Ambiente of Madrid provided full approval for this research
including fieldwork (10/025449.9/8, 10/168152.9/09,10/012157.9/10, 10/121009.9/11,
10/032921.9/12, 10/071126.9/13, 10/130923.9/14, 10/064263.9/15).

Infection during aquatic breeding
We conducted mark-recapture capture surveys during toad breeding seasons (May–June)
in 2008–2015 to determine infection status and intensity during aquatic breeding. We
walked the perimeter of each pond at night and captured toads using dipnets. We recorded
passive integrated transponder (PIT) tag numbers, and if animals did not already have
a PIT tag, a new tag was inserted with a sterile syringe (Microplus, Insvet Inc., Esplus,
Huesca, Spain) underneath the skin of the dorsal side. We then collected a sample of skin
tissue by rubbing a sterile cotton swab (ref. 300261, Deltalab Inc., Barcelona, Spain), over
the ventral side of the body and thighs (20 strokes) and the webbing of the hind feet (10
strokes), consistent with standard swabbing protocols (Briggs, Knapp & Vredenburg, 2010).
Toads recaptured within the same breeding season were only swabbed once. Swabs were
sprayed with 95% ethanol and stored refrigerated for a few weeks until processed.

Infection during migration and terrestrial non-breeding seasons
In 2009 we installed transmitters in a subset of 20 toads at the end of the breeding season
while toads were still occupying ponds. We attached transmitters (Bd-2 model, Holohil
Systems Ltd., Canada) externally (N = 9 males and 2 females) or subcutaneously (N = 7
males and 5 females). Detailed information on our attachment procedures and transmitter
specifications is reported inDaversa, Muths & Bosch (2012). The size of the transmitter was
matched to the mass of the toad such that all transmitters weighed less than five percent of
the body mass of the individual. Toads with both subcutaneous and external transmitters
showed signs of normal behavior (e.g., burrowing in small rock crevices, undergoing
amplexus).

We tracked toads throughout post-breeding migrations and subsequent terrestrial
phases. We located toads once to twice per week between 0800 and 2,000 h using a TR-4
receiver (150/154 mH, Telonics, Inc., United States). If no signal was detected within the
respective basin we attempted to obtain a signal in all adjacent basins. Once toads were
located, individuals were hand-captured when possible (at times toads were burrowed
under rock piles preventing capture). We identified recorded capture location using an
eTrex HCx Global Positioning System (Garmin Ltd., Olathe, Kansas, USA). We then
collected a tissue sample by rubbing a cotton swab as described before. We poured sterile
water over the ventral side of terrestrial toads before swabbing because swabs must be
moist to work effectively.
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Body temperature
In 2014 we subcutaneously implanted iButton Data Loggers (DS1922L; Maxim/Dallas
Semiconductor Inc., United States) in a subset of 10 toads during the breeding season.
All iButtons weighed less than five percent of the body mass of the individuals (>70 g)
and toads showed signs of normal behavior after implantation. Toads were anaesthetized
by immersion in a 0.4% aqueous solution of Tricaine methanesulfonate (MS-222, Sigma-
Aldrich, Inc.) for implantation and removal and the skin was sutured with three surgeon’s
knots using absorbable material. iButtons recorded body temperature every 2 h (i.e., 12
measurements per day) and their data were downloaded using Eclo ExpressThermo
software (http://www.eclo.solutions/en/product_page/expressthermo).

Bd detection
Bd DNA from swabs was quantified using standard realtime Polymerase Chain Reaction
(qPCR) procedures (Boyle et al., 2004). We included amplification standards of 0.1, 1,
10 and 100 zoospore equivalents prepared from an isolate of known cell density (IA042,
Spain) and a negative control in each plate. We used an internal positive control (IPC) to
measure PCR inhibition in randomly selected samples that tested negative for Bd infection.
Following the methodology of Hyatt et al. (2007), a VICTM-labelled synthetic amplicon
was used as the IPC (VICTM dye, Applied Biosystems). The IPC was included in one of
each duplicate well as 1 µl 10 × Exo IPCmix and 0.5 µl 50 × Exo IPC DNA. Infection
loads are reported in zoospore equivalents (ZE), where one ZE is equivalent to a single
zoospore. We considered ZE values of 0.1 or higher as positive for infection. All samples
were analyzed in duplicate. Loads are reported as the mean and standard error, unless
otherwise noted.

Data analysis
We used mark-recapture data on toads captured at least twice to assess variability in Bd
infections across survey years.We ran two generalized linearmixed effectsmodels (GLMM),
the first with infection status (0, 1) as a response and a binomial error structure, and the
second with load (log-normalized ZE) as the response and a Gaussian error structure,
as log-transformation of ZE values achieved normalization. In both models we included
survey year as a fixed effect and PIT tag ID of toads as a random effect to account for
repeated samples of individuals. For the models of infection intensity we only considered
infected toads because we were interested in interannual variability in Bd loads among
individuals testing positive for infection. We used likelihood ratio tests to determine the
significance of inter-annual differences in infection prevalence and intensity by comparing
models including year as a fixed effect with models omitting the effect.

A general linear mixed model was used to partition the variance in body temperature
of toads according to sums of squares (SS) considering three independent components
of variation: inter-individual differences (with individual toads as the levels of a random
factor), within day changes (circadian; using time of day as a covariate) and year-round
variation (employing the julian date as a covariate). Sample units were temperature
measurements every two hours. To account for non-linear effects of time of day and julian
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Figure 1 Changes on infection status of toads during aquatic breeding seasons from 2008 to 2015. Pro-
portion of toads that remained positive (red), remained negative (green), changed from negative to posi-
tive (orange) or changed from positive to negative (cyan) for every year related to their last capture event
of a previous year (2008–2014). Sample sizes are shown above each bar.

Full-size DOI: 10.7717/peerj.4698/fig-1

date, we defined linear, quadratic and cubic polynomial terms of standardized predictors
(i.e., at mean zero and sd= 1). Data were analyzed using StatSoft’s Statistica 10.0 (StatSoft
Inc, Tulsa, Oklahoma).

RESULTS
Infection during aquatic breeding seasons
We collected 156 swabs from the 38 toads that were captured at least twice. Fifty-four
swabs tested positive for Bd (35%). Within-individual infections varied from year-to-year,
both in terms of status and load, meaning that individuals gained and lost infections in
every possible combination across years (Fig. 1, Data S1). Infection prevalence and mean
intensities of breeding cohorts also differed across years (infection prevalence: χ2

= 41.19,
df = 7, p< 0.001, infection intensity: χ2

= 5.4275, df = 1, p= 0.020). Infection prevalence
ranged from 5% (2010) to 77% (2014) from year-to-year (mean = 41%, Fig. 2A), and Bd
loads of infected toads averaged 1187.13 ZE (±618.08, Fig. 2B).

Infection and activity during migration and terrestrial non-breeding
seasons
Three toads shed transmitters (onemale, two females) and transmitters failed to function on
three toads (onemale, two females). Onemale toadwas found desiccated near LCH after the
pond had completely dried, leaving 13 toads (10 male, three female) that were considered
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Figure 2 Proportion of infected toads and infection intensity during aquatic breeding seasons from
2008 to 2015. (A) Proportion of infected toads (±95% confidence intervals), and (B) Boxplot of Bd infec-
tion intensity (zoospore equivalents) of positive animals (boxes represent 25 and 75 percentile, the hori-
zontal line is the median and whiskers are maximum and minimum values of infection intensity). Sample
sizes are shown above each bar and boxplot.

Full-size DOI: 10.7717/peerj.4698/fig-2
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in analysis. We located those toads from 10 to 23 times after attaching transmitters (mean
± SE = 16.70 ± 1.23) and made 217 successful captures. A detailed account of the
movement patterns and habitat use of these toads is provided by Daversa, Muths & Bosch
(2012). Briefly, toads migrated in various directions away from ponds to inhabit rock
piles and leaf litter. Individual radio-tracked toads were never found in association with
other spiny common toads, though at two locations a toad was co-occupying burrow with
another amphibian species (once with Triturus marmoratus and once with Salamandra
salamandra). In only one instance did we observe a toad return to ponds following
post-breeding migrations. Four of the 13 toads were infected when initially captured in
ponds (mean ZE± SE= 56.94± 31.27), all of which were males. All of the 144 swabs that
we collected after toads migrated tested negative for Bd.

Body temperature
Five toads out of 10 with implanted iButtons were recovered during the breeding of 2015
but iButtons failed to function on two toads. The three toads for which we recovered data
came from different lakes (LP, LCH, CHM), each located in distinct basins. Components
of variance in body temperature of toads, derived from a general linear model (with cubic
polynomial terms for time of day and julian date; wholemodelR2

= 80.6%), were as follows:
inter-individual = 0.3%; circadian = 1.0%; year-round = 79.3% (Table 1). Moreover, the
average Pearson correlation between body temperatures of the three toads (three pairwise
correlations throughout 334 common study days) were very high: r = 0.941 for average
daily body temperature; r = 0.837 for minimum daily body temperature; r = 0.917 for
maximum daily body temperature (these correlations are presented for the sake of showing
the consistency-similarity in body temperature variation in the three studied toads). Thus,
body temperatures of the three study toads were very similar and followed a very similar
pattern of having a very low inter-individual variation with respect to time within day or
year-round daily variation.

Average daily minimum body temperature ranged between 0.4 ◦C and 17 ◦C, while
average dailymaximum temperature ranged between 0.4 ◦ C and 25.8 ◦C. Body temperature
was less than 5 ◦C for 43.4% of the year considering all temperature measurements every
two hours, and less than 10 ◦C for 57.7%of the year (Fig. 3). Daily average body temperature
of the three studied toads was below 5 ◦C from November 27th to April 29th, or 43.7% of
the year (Fig. 3).

DISCUSSION
Bd infections in our focal host were variable across years. Infection prevalence and
mean infection intensities in breeding cohorts differed across annual breeding seasons.
Within-individual infections were also inconsistent across years: toads often gained and
lost infections from one breeding season to the next, reflecting patterns observed in other
pond-breeding amphibians, such as Rana sierra, that have not suffered disease-induced
mass mortalities (Briggs, Knapp & Vredenburg, 2010). Annual differences in biotic (Muths,
Scherer & Pilliod, 2011) and abiotic conditions (Bosch et al., in press) at breeding sites may
play a role in driving this inter-annual variation in infections. At our sites, abundance of
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Table 1 General lineal mixedmodel analyzing the inter-individual (three different toads), circadian
(time of day; 12 measurements per day every 2 h) and year-round (Julian date; 334 common study days)
variation in toad body temperature. Total sample size of body temperatures is 12,264 measurements. The
mixed model refers to a random intercept fixed slope model, considering the very similar pattern of body
temperature variation shown by the three studied toads. SS, sums of squares; beta, standardized regression
coefficients; se beta, standard error of the beta coefficients; df, degrees of freedom.

df SS Beta se beta

;Toad 2 1,565
;Time of day
; Linear term 1 3,352 0.198 0.010
; Cuadratic term 1 1,723 −0.055 0.004
; Cubic term 1 2,045 −0.155 0.010
;Julian date
; Linear term 1 249,862 −1.669 0.010
; Cuadratic term 1 68,921 0.351 0.004
; Cubic term 1 99,945 1.055 0.010
;Error term 12,255 108,851
;TOTAL 560,689

toads and sympatric hosts in breeding sites vary annually (Bosch et al., in press), as does
temperature (Bosch et al., in press), and these annual differences in breeding site conditions
likely affect vital epidemiological rates like host contact and zoospore accumulation in the
sites.

Our radio-tracking of toads after the aquatic breeding season revealed seasonal changes
in Bd infections that may contribute to inter-annual differences in Bd infections in toads.
While four toads tracked in this studywere infectedwithBd at the time of capture during the
aquatic breeding season, all samples collected after toads migrated away from ponds tested
negative for Bd, and at no point during the tracking period did any detectable infections
emerge in previously uninfected individuals. These findings indicate that reductions in
infection prevalence in these migratory hosts are attributable to recovery and escape from
infection rather than mortality of infected hosts (migratory culling), and to the best of
our knowledge are one of the first direct observations of these processes. Determining
the broader effects of migratory recovery and escape on seasonal Bd dynamics in toads
will require tracking of infection and movement over a more comprehensive coverage
of population, and the Bd detection from swabbing should be validated with other
procedures (Clare et al., 2016). In addition, studies have also suggested that infections
during host terrestrial phases may remain cryptic and re-emerge when animals return
to water (Minting, 2012). Nevertheless, our radio-tracking indicates that post-breeding
migrations pose a time constraint for infections to proliferate in individuals. If migratory
recovery and escape occurs in a large proportion of the population, Bd dynamics across
aquatic breeding seasons may be decoupled, which could also explain why infections in
toads are not consistently exhibited across years. Given the typically load-dependent nature
of chytridiomycosis (Vredenburg et al., 2010; Wilber et al., 2017), post-breeding migration
may also modulate disease risk.
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Figure 3 Daily average body temperature and proportion of time in a year spent within different tem-
perature ranges for the three studied toads fromwhom implanted iButtons were recovered. (A) The
daily average body temperature of the three toads originally captured in three different breeding ponds in
Guadarrama: Laguna de Pájaros (blue line), Charca de la Mariposa (green line) and Laguna Chica (yellow
line). Maximum and minimum air temperatures from the nearby meteorological station in Cotos moun-
tain pass (1,857 m a.s.l) are shown in grey. (B) Proportion of time in a year spent within different temper-
ature ranges for the three toads.

Full-size DOI: 10.7717/peerj.4698/fig-3
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Multiple factors may result in migratory recovery. Changes in body temperature as
a result of migration could play a role in migratory recovery, though at least in the
three toads tracked for this study, body temperatures of toads rarely exceeded the upper
thermal limits of Bd (26–30 ◦C) (Piotrowski, Annis & Longcore, 2004; Voyles et al., 2017).
The largely isolated distributions of toads during and following post-breeding migrations
may have been involved in the losses in infection observed, but since Bd infects toads via
free living infective stages and is capable of re-infecting hosts via zoospore production,
host-to-host transmission may not be critical for infection persistence at the individual
level. We propose rather that the change from aquatic to terrestrial habitats is a key factor
involved in the migratory recovery that we observed in toads. Evidence is accumulating
that terrestrial habitats provide potential refuges from Bd (Puschendorf et al., 2011;Daversa
et al., in press). For example, in another adult host species at our study sites, periodic
switching from aquatic to terrestrial results in reduced proliferation and persistence of Bd
infections (Daversa et al., in press). Bd can proliferate in certain terrestrial hosts (Raffel et
al., 2015) and outside of hosts in certain substrates (Johnson & Speare, 2005; Kirshtein et al.,
2007) however, and so the efficacy of terrestrial habitats to enable recovery from infection
may depend on micro-habitat characteristics like temperature (Puschendorf et al., 2011;
Raffel et al., 2015), salinity (Stockwell, Clulow & Mahony, 2015), sunlight (Puschendorf et
al., 2011), and moisture retention (Johnson & Speare, 2005; Raffel et al., 2015). Although
toads in our study were occasionally found in saturated terrain and damp burrows under
rock piles that may contain adequate moisture levels for Bd (Garner et al., 2009; Raffel et
al., 2015), individuals were predominantly located in burrows, rock fissures, juniper bushes
(Juniperus communis nana) and rock piles with dry sandy substrates where moisture levels
were low (Daversa, Muths & Bosch, 2012), conditions which appear particularly inhibitory
to Bd infections (Johnson & Speare, 2005; Puschendorf et al., 2011; Raffel et al., 2015).

Despite certain losses of infection during post-breeding migrations, Bd persists and
continues to annually infect toads. Given the incomplete population coverage inherent in
CMR surveys and radiotracking, toads not accounted for by surveys may sustain infections
across the annual cycle. Fully aquatic larval stages of spiny toads and other sympatric
species (e.g., fire salamanders, Medina et al., 2015) that overwinter in the same aquatic
breeding habitats could also play a role in Bd maintenance across the annual cycle. With
reservoir hosts to sustain a consistent pool of infective zoospores, the return of adult toads
to aquatic habitats may drive forcing of infection during the breeding season. While birth
pulses have explained seasonal forcing of infection in other systems (Hosseini, Dhondt
& Dobson, 2004), clutches produced by toads do not hatch until later in the season after
infections have accumulated in adults.

The remarkably lowbody temperatures of toads during the hibernation periods following
post-breeding migrations may make toads more susceptible to infection when returning to
breeding sites because immune function in amphibians is suppressed at low temperatures
(Raffel et al., 2006). While previous work has examined effects of body temperature on Bd
infection (Woodhams, Alford & Marantelli, 2003; Rowley & Alford, 2013; Catenazzi et al.,
2017), the focus has been on effects of elevated body temperatures of hosts. Not much is
known about Bd dynamics in hosts with body temperatures near the thermal minimum
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for Bd growth. Although the isolated and predominantly terrestrial nature of non-breeding
toads makes acquisition of new infections from Bd exposure unlikely during hibernation,
the reduced body temperatures that increase susceptibility may exacerbate seasonal
forcing of infection when aquatic breeding commence. In addition, if as hypothesized
a proportion of infections do remain cryptic during terrestrial phases (Minting, 2012),
immunosuppression could potentially allow for infections to re-emerge before returning
to breeding sites, similar to the re-activation of Borrelia infections in migratory birds (Glyfe
et al., 2000). Owing to the limited number of the toads for which body temperature data
was collected, any inferences on its broader significance for Bd dynamics should be made
with caution. Nevertheless, the extremely low body temperatures of toads that we observed
during winter months warrant further investigation of within-host dynamics of Bd during
periods of hibernation to better understand its role in host susceptibility and seasonal Bd
dynamics.

CONCLUSIONS
Disentangling specific biological processes driving seasonal patterns of infection in wildlife
remains a major challenge in disease ecology, in part because most studies of this topic
are based on cross-sectional data and modeling. By obtaining detailed longitudinal data
on host traits and infection across different seasons in the annual cycle, this study makes
a step toward understanding the implications of seasonal life histories of migratory hosts
for long patterns of infection in host populations. Our individual-based tracking provides
direct documentation of migratory recovery. Additionally, this work empirically shows that
host body temperature, a trait that affects host immunological defense, can significantly
decrease during seasons of hibernation. Together, this study emphasizes that migration
can alter within-host infection dynamics and also suggests a role of hibernation in seasonal
infection dynamics owing to body temperature changes that decrease immune ability and
thus increase susceptibility to infection.
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