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ABSTRACT
Fatty Acid Amide Hydrolase (FAAH) is a serine hydrolase that plays a key role in controlling endogenous
levels of endocannabinoids. FAAH inhibition is considered a powerful approach to enhance the endocan-
nabinoid signalling, and therefore it has been largely studied as a potential target for the treatment of
neurological disorders such as anxiety or depression, or of inflammatory processes. We present two novel
series of amide derivatives of ibuprofen designed as analogues of our reference FAAH inhibitor Ibu-AM5
to further explore its structure-activity relationships. In the new amides, the 2-methylpyridine moiety of
Ibu-AM5 was substituted by benzylamino and piperazinoaryl moieties. The obtained benzylamides and
piperazinoarylamides showed FAAH inhibition ranging from the low to high micromolar potency. The
binding of the new amides in the active site of FAAH, estimated using the induced fit protocol, indicated
arylpiperazinoamides binding the ACB channel and the cytosolic port, and benzylamides binding the
ACB channel.
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Introduction

N-acylethanolamines (NAE) are endogenous lipid ligands that
regulate numerous physiological functions in the body due to
activation of cannabinoid receptors, peroxisome proliferator-acti-
vated receptor-alpha (PPAR-a), and other targets1.
Arachidonoylethanolamide (anandamide, AEA), palmitoylethanola-
mide, oleoylethanolamide, stearoylethanolamide and linoleoyle-
thanolamide are the principal N-acylethanolamines. Fatty acid
amide hydrolase (FAAH) is a serine hydrolase enzyme largely
responsible for the hydrolytic degradation of N-acylethanolamines.
The FAAH catalytic mechanism exploits an unusual catalytic triad,
Ser-Ser-Lys, in which the basic Lys142 activates the nucleophilic
Ser241, involving the Ser217 as a “proton shuttle”2. Structurally,
FAAH is a homodimer enzyme bound to the membrane3 (Figure
1(a)). Its binding cavity is characterised by a series of separate
channels that are crucial for its biological function: (i) the mem-
brane access channel (MAC) that connects the membrane-bound
region with the enzyme active site; (ii) the acyl-chain binding
channel (ACB) including the catalytic triad and residues involved
in the substrate binding; (iii) the cytosolic port (CP), which repre-
sents a way out for the hydrophilic product of the substrates
hydrolysation4 (Figure 1(b)).

A number of different classes of FAAH inhibitors have been
described in the literature, including carbamate derivatives,
a-ketoheterocycles, piperazinyl, and piperidinyl ureas and boronic

acids5. Inhibition of FAAH increases NAE levels in the brain and
other tissues, but does not produce the sorts of behaviours seen
with D-tetrahydrocannabinol, the main psychoactive ingredient of
cannabis6,7 thereby making the enzyme a potentially exciting tar-
get for drug development. In humans, most FAAH inhibitors are
well-tolerated8–10, the exception being BIA10-2474 which pro-
duced its toxic effects by presumed off-target effects11,12. In ani-
mal models, FAAH inhibition produces potentially beneficial
effects in a variety of animal models of pain, but this has not
been translated into the clinic10,13,14. However, other indications
remain of great interest, not least in the field of anxiety/depres-
sion15,16 and intestinal inflammation17,18.

In 1997, it was reported that the non-steroidal anti-inflamma-
tory drug ibuprofen inhibited FAAH19. Although the potency was
modest, the IC50 concentration was in the range that could be
achieved in humans. The ability of ibuprofen to inhibit FAAH is
shared by other profens such as flurbiprofen20 and carprofen21. In
previous studies, our research group has reported the FAAH
inhibitory activity of profen amides and showed that the amide of
Ibuprofen with 2-amino-3-methylpyridine (Ibu-AM5) (Table 1) was
two to three orders of magnitude more potent than ibuprofen
itself as a reversible inhibitor of FAAH22,23. The compound has a
much lower ulcerogenic potency than ibuprofen24. In other stud-
ies, we have explored the SAR of Ibu-AM5 analogues by modify-
ing the 2-aminopyridine moiety25 and the isobutyl moiety26.
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Here, we present the synthesis, docking studies, and pharmaco-
logical characterisation of two new series of Ibuprofen derivatives,
the benzylamides, and the piperazinoamides.

Experimental

Materials

Anandamide [ethanolamine-1-3H] (specific activity 2.22 TBq mmol-
1) was purchased from American Radiolabeled Chemicals, Inc (St.
Louis, MO). All commercially available solvents and reagents were
used without further purification and were purchased from Sigma-
Aldrich (Milan, Italy).

Chemistry

NMR spectra were recorded on an Inova 500 spectrometer
(Varian, Palo Alto, CA). The chemical shifts (d) are reported in
part per million downfield from tetramethylsilane (TMS), which
was used as internal standard, and the spectra were recorded
in hexadeuteriodimethylsulphoxide (DMSO-d6). Infra-red spectra
were recorded on a Vector 22 spectrometer (Bruker, Bremen,
Germany) in Nujol mulls. The main bands are given in cm�1.
Positive-ion electrospray ionisation (ESI) mass spectra were
recorded on a double-focusing MAT 95 instrument (Finnigan,
Waltham, MA) with BE geometry. Melting points (mp) were
determined on a SMP1 Melting Point apparatus (Stuart
Scientific, Stone, UK) and are uncorrected. All products reported
showed 1H NMR spectra in agreement with the assigned struc-
tures. The purity of the tested compounds was determined by
combustion elemental analyses conducted by the
Microanalytical Laboratory of the Chemistry Department of the
University of Ferrara with a MT-5 CHN recorder elemental ana-
lyser (Yanagimoto, Kyoto, Japan) and the values found were
within 0.4% of theoretical values.

General procedure for the synthesis of benzylamide
derivatives 3–16

A solution of ibuprofen 1 (0.21 g, 1mmol), 1–(3-dimethylamino-
propyl)-3-ethylcarbodiimide hydrochloride (EDC) (0.19 g, 1.1mmol)
and hydroxybenzotriazole (HOBt) (0.13 g, 1mmol) in anhydrous
acetonitrile (MeCN) (10ml) was stirred at r.t. for 30min. Then the
appropriate substituted benzylamine 2 (1mmol) was added. The
mixture was then stirred for 24 h at r.t. After the solvent was
removed under vacuum, the residue was dissolved in ethyl acet-
ate (AcOEt) (20ml) and washed sequentially with brine (2� 5ml),
10% citric acid (2� 5ml), NaHCO3 10% aqueous solution (2� 5ml)
and water (2� 5ml). The organic layer was dried over anhydrous
Na2SO4 and evaporated under vacuum. The obtained residue was
tritured with iPr2O; the precipitate was then filtrated to obtain the
compounds 3–16.

N-Benzyl-2–(4-isobutylphenyl)propanamide (3)

Obtained following the general procedure by the condensation
between 1 and benzylamine. Yield 78%. m.p. 60–62 �C. 1H NMR
(DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d, J¼ 7.0 Hz, 3H,
CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d, J¼ 6.5 Hz, 2H,
CH2), 3.62 (q, J¼ 7Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz, 2H, CH2)
7.07–7.30 (m, 9H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR (Nujol) 3311,
1645, 1546, 1466, 1378, 1230 cm�1. Elemental analysis: calculated
for C20H25NO (295.43)% C 81.31; H 8.53; N 4.74; found % C 81.36;
H 8.51; N 4.73.

N-(4-Fluorobenzyl)-2–(4-isobutylphenyl)propanamide (4)

Obtained following the general procedure by the condensation
between 1 and 4-fluorobenzylamine. Yield 83%. m.p. 58–61 �C. 1H
NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d, J¼ 7.0 Hz,
3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d, J¼ 6.5 Hz, 2H,
CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz, 2H, CH2)
7.04–7.22 (m, 8H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR (Nujol) 3308,
1638, 1538, 1512, 1463 cm�1. Elemental analysis: calculated for

Figure 1. (a) 3D structure of the homo-dimer rat FAAH (rFAAH) model complexed with Anandamide (AEA). Monomer a and b are shown as green and orange cartoon,
respectively. The membrane bilayer is indicated as dashed black line. (b) Details of the rFAAH binding cavity and channels. Key aminoacids of the binding cavity are
highlighted as green sticks: Ser217:Ser241:Lys142 (catalytic triad), membrane access channel (MAC), the cytosolic port (CP) and the acyl-chain binding pocket (ACB).
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Table 1. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds 3–16.

Compound Formula
Max 

inhibition 
(%)

pI50

(SE) IC50 (µM)

3 100 4.67 (0.03) 21

4†

100 4.57 (0.07) 27

5†

100 4.57 (0.11) 27

6 100 4.59 (0.12) 25

7†

100 4.29 (0.08) 51

8†
100 4.37 (0.10) 43

9 100 4.55 (0.09) 28

(continued)
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10†
100 4.75 (0.08) 18

11†

100 5.38 (0.06) 4.1

12†

100 4.74 (0.09) 18

13†

100 4.44 (0.11) 36

14†

100 4.67 (0.06) 21

15 54±4§ 5.36 (0.01) 4.4

16 19±6% inhibition @100 µM

Ibu-AM5 100 6.28 (0.01)* 0.52*

URB-597 101±1% inhibition @100 nM#

�Values with ethanol as solvent, taken from25. For the test compounds, the solvent was ethanol except when indicated with †, where DMSO was used. §The inhib-
ition data was better fitted by a curve with a residual activity rather than a curve assuming 100% inhibition. The maximal inhibition is indicated (when it was
greater than 50%), and the pI50 and IC50 values refer to the inhibitable portion of the curve. The inability of the compounds to produce a maximal inhibition was
not investigated further. #Values for URB-597, as reference, with a preincubation time of 60min, are taken from35.
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C20H24FNO (313.42)% C 76.60; H 7.72; N 4.47; found % C 76.70; H
7.70; N 4.45.

N-(4-Chlorobenzyl)-2–(4-isobutylphenyl)propanamide (5)

Obtained following the general procedure by the condensation
between 1 and 4-chlorobenzylamine. Yield 82%. m.p. 65–68 �C. 1H
NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d, J¼ 7.3 Hz,
3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d, J¼ 6.5 Hz, 2H,
CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz, 2H, CH2)
7.07–7.30 (m, 8H, Ar), 8.42 (t, J¼ 5.0 Hz, 1H, NH). IR (Nujol) 3270,
3084, 1904, 1709, 1646, 1560, 1463, 1422 cm�1. Elemental analysis:
calculated for C20H24ClNO (329.87)% C 72.82; H 7.33; N 4.25; found
% C 72.88; H 7.32; N 4.24.

N-(4-(tert-Butyl)benzyl)-2–(4-isobutylphenyl)propanamide (6)

Obtained following the general procedure by the condensation
between 1 and 4-(tertbuthyl)benzylamine. Yield 80%. Oil. 1H NMR
(DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.23 (s, 9H, CH3) 1.34 (d,
J¼ 7.0 Hz, 3H, CH3), 1.81 (m, 1H, CH), 2.41 (d, J¼ 6.5 Hz, 2H, CH2),
3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz, 2H, CH2) 7.07–7.26
(m, 8H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR (Film) 3291, 1649, 1547,
1514 cm�1. Elemental analysis: calculated for C24H33NO (351.53)%
C 82.00; H 9.46; N 3.98; found % C 82.07; H 9.44; N 3.97.

2–(4-Isobutylphenyl)-N-(4-(trifluoromethyl)benzyl)
propanamide (7)

Obtained following the general procedure by the condensation
between 1 and 4-(trifluoromethyl)benzylamine. Yield 82%. m.p.
62–64 �C. 1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34
(d, J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz,
2H, CH2) 7.07–7.60 (m, 8H, Ar), 8.49 (t, J¼ 5.5 Hz, 1H, NH). IR
(Nujol) 3332, 3274, 1639, 1541, 1462 cm�1. Elemental analysis: cal-
culated for C21H24F3NO (363.42)% C 69.40; H 6.66; N 3.85; found %
C 69.48; H 6.64; N 3.83.

2–(4-Isobutylphenyl)-N-(4-methoxybenzyl)propanamide (8)

Obtained following the general procedure by the condensation
between 1 and 4-methoxybenzylamine. Yield 81%. m.p. 78–80 �C.
1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d,
J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 3.68 (s, 3H, OCH3)
4.23 (d, J¼ 5.5 Hz, 2H, CH2) 6.08–7.23 (m, 8H, Ar), 8.31 (t,
J¼ 5.5 Hz, 1H, NH). IR (Nujol) 3284, 2360, 1710, 1648, 1462 cm�1.
Elemental analysis: calculated for C21H27NO2 (325,45)% C 77.50; H
8.36; N 4.30; found % C 77.56; H 8.34; N 4.28.

2–(4-Isobutylphenyl)-N-(3-(trifluoromethyl)benzyl)
propanamide (9)

Obtained following the general procedure by the condensation
between 1 and 3-(trifluoromethyl)benzylamine. Yield 83%. m.p.
53–55 �C. 1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34
(d, J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz,
2H, CH2) 7.04–7.41 (m, 8H, Ar), 8.35 (t, J¼ 5.5 Hz, 1H, NH). IR
(Nujol) 3288, 3073, 1651, 1584, 1452, 1329, 1165 cm�1. Elemental

analysis: calculated for C21H24F3NO (363.42)% C 69.40; H 6.66; N
3.85; found % C 69.47; H 6.64; N 3.84.

2–(4-Isobutylphenyl)-N-(2-methoxybenzyl)propanamide (10)

Obtained following the general procedure by the condensation
between 1 and 2-methoxybenzylamine. Yield 82%. m.p. 61–63 �C.
1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d,
J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 3.68 (s, 3H, OCH3)
4.23 (d, J¼ 5.5 Hz, 2H, CH2) 6.75–7.24 (m, 8H, Ar), 8.15 (t,
J¼ 5.5 Hz, 1H, NH). IR (Nujol) 3275, 1777, 1641, 1564, 1462, cm�1.
Elemental analysis: Calculated for C21H27NO2 (325.45)% C 77.50; H
8.36; N 4.30; found % C 77.57; H 8.34; N 4.28.

N-(2-Chlorobenzyl)-2–(4-isobutylphenyl)propanamide (11)

Obtained following the general procedure by the condensation
between 1 and 2-chlorobenzylamine. Yield 85%. m.p. 60–63 �C. 1H
NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d, J¼ 7.0 Hz,
3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d, J¼ 6.5 Hz, 2H,
CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz, 2H, CH2)
7.08–7.04 (m, 8H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR (Nujol): 3270,
1710, 1666, 1641, 1562 cm�1. Elemental analysis: calculated for
C20H24ClNO (329.87)% C 72.82; H 7.33; N 4.25; found % C 72.88; H
7.32; N 4.24.

N-(3-Hydroxy-4-methoxybenzyl)-2–(4-
isobutylphenyl)propanamide (12)

Obtained following the general procedure by the condensation
between 1 and 3-hydroxy-4-methoxybenzylamine. Yield 80%. m.p.
82–85 �C. 1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34
(d, J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 3.72 (s, 3H, OCH3)
4.23 (d, J¼ 5.5 Hz, 2H, CH2) 6.62–7.21 (m, 7H, Ar), 8.39 (t,
J¼ 5.5 Hz, 1H, NH) 9.45 (s, 1H, OH). IR (Nujol) 3334, 3276, 1642,
1564, 1462 cm�1. Elemental analysis: calculated for C21H27NO3

(341.45)% C 73.87; H 7.97; N 4.10; found % C 73.90; H 7.95; N 4.08.

N-(3,4-Dichlorobenzyl)-2–(4-isobutylphenyl)propanamide (13)

Obtained following the general procedure to by the condensation
between 1 and 3,4-dichlorobenzylamine. Yield 83%. m.p. 78–82 �C.
1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d,
J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz,
2H, CH2), 7.07–7.60 (m, 7H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR
(Nujol) 3268, 3072, 1647, 1549, 1428 cm�1. Elemental analysis: cal-
culated for C20H23Cl2NO (364.31)% C 65.94; H 6.36; N 3.84; found
% C 66.03; H 6.35; N 3.82.

N-(2,4-Dichlorobenzyl)-2–(4-isobutylphenyl)propanamide (14)

Obtained following the general procedure by the condensation
between 1 and 2,4-dichlorobenzylamine. Yield 79%. m.p. 73–75 �C.
1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d,
J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz,
2H, CH2) 7.07–7.60 (m, 7H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR
(Nujol) 3274, 3083, 1646, 1557 cm�1. Elemental analysis: calculated
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for C20H23Cl2NO (364.31)% C 65.94; H 6.36; N 3.84; found % C
66.03; H 6.35; N 3.82.

N-(2,5-Dichlorobenzyl)-2–(4-isobutylphenyl)propanamide (15)

Obtained following the general procedure by the condensation
between 1 and 2,5-dichlorobenzylamine. Yield 82%. m.p. 93–96 �C.
1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34 (d,
J¼ 7.3 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz,
2H, CH2) 7.06–7.40 (m, 7H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR
(Nujol) 3268, 3072, 1647, 1549, 1428 cm�1. Elemental Analysis: cal-
culated for C20H23Cl2NO (363.42)% C 65.94; H 6.36; N 3.84; found
% C 66.03; H 6.35; N 3.82.

N-(2,6-Dichlorobenzyl)-2–(4-isobutylphenyl)propanamide (16)

Obtained following the general procedure by the condensation
between 1 and 2,6-dichlorobenzylamine. Yield 82%. m.p.
130–135 �C. 1H NMR (DMSO-d6) d 0.85 (d, J¼ 6.5 Hz, 6H, CH3), 1.34
(d, J¼ 7.0 Hz, 3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 6.5 Hz, 2H, CH2), 3.62 (q, J¼ 7.0 Hz, 1H, CH), 4.23 (d, J¼ 5.5 Hz,
2H, CH2) 7.04–7.45 (m, 7H, Ar), 8.39 (t, J¼ 5.5 Hz, 1H, NH). IR
(Nujol) 3310, 1641, 1534, 1437 cm�1. Elemental analysis: calculated
for C20H23Cl2NO (363.42)% C 65.94; H 6.36; N 3.84; found % C
66.00; H 6.35; N 3.82.

General procedure for the synthesis of phenylpiperazine
derivatives 18–27

A solution of 1 (0.21 g, 1mmol), EDC (0.19 g, 1.1mmol) and HOBt
(0.13 g, 1mmol) in anhydrous MeCN (10ml) was stirred at r.t. for
30min, then the appropriate arylpiperazine 17 (1mmol) was
added. The mixture was then stirred for 12 h at r.t. After the solv-
ent was removed under vacuum, the residue was dissolved in
AcOEt (20ml) and washed sequentially with brine (2� 5ml), 10%
citric acid (2� 5ml), NaHCO3 10% aqueous solution (2� 5ml) and
water (2� 5ml). The organic layer was dried over anhydrous
Na2SO4 and evaporated under vacuum. The obtained residue was
tritured with iPr2O; the precipitate was then filtrated to obtain the
compounds 18–27.

2–(4-Isobutylphenyl)-1–(4-phenylpiperazin-1-yl)propan-1-
one (18)

Obtained following the general procedure by the condensation
between 1 and 1-phenylpiperazine. Yield 97%. m.p. 75–80 �C. 1H
NMR (DMSO-d6) d 0.83 (d, J¼ 7.0 Hz, 6H, CH3), 1.30 (d, J¼ 7.0 Hz,
3H, CH3), 1.80 (hept, J¼ 7.0 Hz, 1H, CH), 2.42 (d, J¼ 7.0 Hz, 2H,
CH2), 3.16 (m, 2H, CH2), 3.20 (m, 2H, CH2), 3.40 (m, 1H, CH),
3.48–3.65 (m, 4H, CH2), 6.81 (m, 1H Ar), 7.04–7.45 (m, 6H, Ar), 7.53
(m, 1H Ar), 7.59 (m, 1H Ar). IR (Nujol) 3273, 1741, 1631, 1600,
1508, 1465 cm�1. Elemental analysis: calculated for C23H30N2O
(350.51)% C 78.82; H 8.63; N 7.99; found % C 78.89; H 8.67; N 7.85.

1–(4-(3-Chlorophenyl)piperazin-1-yl)-2–(4-
isobutylphenyl)propan-1-one (19)

Obtained following the general procedure by the condensation
between 1 and 1–(3-chlorophenyl)piperazine. Yield 95%. Oil. 1H
NMR (DMSO-d6) d 0.84 (d, J¼ 6.5 Hz, 6H, CH3), 1.32 (d, J¼ 7.0 Hz,
3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.43 (d, J¼ 7.0 Hz, 2H,

CH2), 2.89 (m, 2H, CH2), 3.23 (m, 2H, CH2), 3.41 (q, J¼ 7.0 Hz, 1H,
CH), 3.45–3.68 (m, 4H, CH2), 6.70 (m, 1H Ar), 7.06–7.43 (m, 6H, Ar),
7.50 (m, 1H Ar). IR (Film) 3437, 1732, 1646, 1594, 1486, 1463, 1384,
1231 cm�1. Elemental analysis: calculated for C23H29ClN2O
(384.95)% C 71.76; H 7.59; N 7.28; found % C 71.75; H 7.60; N 7.35.

1–(4-(4-Chlorophenyl)piperazin-1-yl)-2–(4-
isobutylphenyl)propan-1-one (20)

Obtained following the general procedure by the condensation
between 1 and 1–(4-chlorophenyl)piperazine. Yield 83%. Oil. 1H
NMR (DMSO-d6) d 0.94 (d, J¼ 7.0 Hz, 6H, CH3), 1.32 (d, J¼ 6.5 Hz,
3H, CH3), 1.81 (hept, J¼ 7.0 Hz, 1H, CH), 2.66 (m, 2H, CH2), 2.95 (m,
2H, CH2), 3.11 (m, 2H, CH2), 3.50–3.68 (m, 4H, CH2), 4.17 (q,
J¼ 6.5 Hz, 1H, CH), 6.89 (m, 1H, Ar), 7.03 (m, 1H, Ar), 7.16–7.21 (m,
5H, Ar), 7.30 (m, 1H, Ar). IR (Film) 3421, 2955, 1731, 1645, 1497,
1463, 1384 cm�1. Elemental analysis: calculated for C23H29ClN2O
(384.95)% C 71.76; H 7.59; N 7.28; found % C 71.70; H 7.65; N 7.30.

1–(4-(3,4-Dichlorophenyl)piperazin-1-yl)-2–(4-
isobutylphenyl)propan-1-one (21)

Obtained following the general procedure by the condensation
between 1 and 1–(3,4-dichlorophenyl)piperazine. Yield 90%. Oil.
1H NMR (DMSO-d6) d 0.86 (d, J¼ 6.5 Hz, 6H, CH3), 1.33 (d,
J¼ 7.0 Hz, 3H, CH3), 1.80 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.41 (d,
J¼ 7.0 Hz, 2H, CH2), 2.92 (m, 2H, CH2), 3.17 (m, 2H, CH2), 3.22 (m,
1H, CH), 3.40–3.71 (m, 4H, CH2), 6.88 (m, 1H Ar), 7.06–7.43 (m, 5H,
Ar), 7.53 (m, 1H Ar). IR (Film) 3433, 1728, 1645, 1594, 1555, 1484,
1230 cm�1. Elemental analysis: calculated for C23H28Cl2N2O
(419.39)% C 64.87; H 6.73; N 6.68; found % C 64.78; H 6.68; N 6.59.

1–(4-(4-Fluorophenyl)piperazin-1-yl)-2–(4-isobutylphenyl)propan-
1-one (22)

Obtained following the general procedure by the condensation
between 1 and 1–(4-fluorophenyl)piperazine. Yield 97%. m.p.
45–50 �C. 1H NMR (DMSO-d6) d 0.90 (d, J¼ 7.0 Hz, 6H, CH3), 1.36
(d, J¼ 6.5 Hz, 3H, CH3), 1.87 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.61 (m,
2H, CH2), 2.99 (m, 2H, CH2), 3.06 (m, 2H, CH2), 3.44–3.61 (m, 4H,
CH2), 4.19 (q, J¼ 6.5 Hz, 1H, CH), 6.97 (m, 1H, Ar), 7.02 (m, 1H, Ar),
7.10–7.27 (m, 5H, Ar), 7.34 (m, 1H, Ar). IR (Nujol) 3445, 2955, 2929,
1644, 1510, 1441, 1230 cm�1. Elemental analysis: calculated for
C23H29FN2O (368.23)% C 74.97; H 7.93; N 7.60; found % C 75.01; H
7.90; N 7.55.

2–(4-Isobutylphenyl)-1–(4-(4-methoxyphenyl)piperazin-1-
yl)propan-1-one (23)

Obtained following the general procedure by the condensation
between 1 and 1–(4-methoxyphenyl)piperazine. Yield 95%. Oil. 1H
NMR (DMSO-d6) d 0.95 (d, J¼ 7.0 Hz, 6H, CH3), 1.30 (d, J¼ 6.5 Hz,
3H, CH3), 1.83 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.62 (m, 2H, CH2), 3.03
(m, 2H, CH2), 3.09 (m, 2H, CH2), 3.40–3.59 (m, 4H, CH2), 3.66 (s, 3H,
CH3), 4.22 (q, J¼ 6.5 Hz, 1H, CH), 7.01 (m, 1H, Ar), 7.04 (m, 1H, Ar),
7.12–7.23 (m, 5H, Ar), 7.38 (m, 1H, Ar). IR (Film) 3440, 2954, 2930,
1732, 1644, 1464, 1442, 1246 cm�1. Elemental analysis: calculated
for C24H32N2O2 (380.53)% C 75.75; H 8.48; N 7.36; found % C
75.80; H 8.53; N 7.30.
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2–(4-Isobutylphenyl)-1–(4-(3-methoxyphenyl)piperazin-1-
yl)propan-1-one (24)

Obtained following the general procedure by the condensation
between 1 and 1–(3-methoxyphenyl)piperazine. Yield 92%. Oil. 1H
NMR (DMSO-d6) d 0.82 (d, J¼ 7.0 Hz, 6H, CH3), 1.28 (d, J¼ 6.0 Hz,
3H, CH3), 1.79 (hept, J¼ 6.0–7.0 Hz, 1H, CH), 2.87 (m, 2H, CH2), 3.01
(m, 2H, CH2), 3.13 (m, 2H, CH2), 3.44–3.54 (m, 4H, CH2), 3.68 (s, 3H,
CH3), 4.08 (q, J¼ 6.5 Hz, 1H, CH), 6.34 (m, 2H, Ar), 6.42 (m, 1H, Ar),
7.05–7.10 (m, 3H, Ar), 7.16 (m, 2H, Ar). IR (Film) 2956, 2928, 1734,
1647, 16071460,1203 cm�1. Elemental analysis: calculated for
C24H32N2O2 (380.53)% C 75.75; H 8.48; N 7.36; found % C 75.70; H
8.50; N 7.34.

2–(4-Isobutylphenyl)-1–(4-(m-tolyl)piperazin-1-yl)propan-1-
one (25)

Obtained following the general procedure by the condensation
between 1 and 1–(3-methylphenyl)piperazine. Yield 91%. Oil. 1H
NMR (DMSO-d6) d 0.81 (d, J¼ 7.0 Hz, 6H, CH3), 1.27 (d, J¼ 6.0 Hz,
3H, CH3), 1.78 (hept, J¼ 6.0–7.0 Hz, 1H, CH), 2.20 (s, 3H, CH3), 2.50
(d, J¼ 7.0 Hz, 2H, CH2), 2.83 (m, 1H, CH2), 2.98 (m, 1H, CH2), 3.13
(m, 1H, CH2), 3.46–3.53 (m, 4H, CH2), 3.73 (m, 1H, CH2), 4.09 (q,
J¼ 6.5 Hz, 1H, CH), 6.58–6.64 (m, 3H, Ar), 7.05 (m, 1H, Ar), 7.09 (d,
J¼ 8.0, 2H, Ar), 7.16 (d, J¼ 8.0 Hz, 2H, Ar). IR (Film) 3483, 2955,
1926, 1644, 1602, 1494, 1434, 1233,1185 cm�1. Elemental analysis:
calculated for C24H32N2O (364.25)% C 79.08; H 8.85; N 7.68; found
% C 79.15; H 8.92; N 7.60.

1–(4-(2,3-Dimethylphenyl)piperazin-1-yl)-2–(4-
isobutylphenyl)propan-1-one (26)

Obtained following the general procedure by the condensation
between 1 and 1–(2,3-dimethylphenyl)piperazine. Yield 90%. Oil.
1H NMR (DMSO-d6) d 0.83 (d, J¼ 7.0 Hz, 6H, CH3), 1.30 (d,
J¼ 7.0 Hz, 3H, CH3), 1.78 (hept, J¼ 7.0 Hz, 1H, CH), 2.12 (m, 3H,
CH3), 2.18 (m, 3H, CH3), 2.40 (m, 2H, CH2) 2.12 (m, 2H, CH2), 2.50
(m, 2H, CH2), 2.72 (m, 2H, CH2), 3.56 (m, 2H, CH2), 4.09 (q, J¼ 7Hz,
1H, CH), 6.76 (m, 1H, Ar), 6.69 (m, 1H, Ar), 6.99 (m, 1H, Ar), 7.11
(m, 2H, Ar), 7.17 (m, 2H, Ar). IR (Film) 2959, 1731, 1644, 15111471,
1367, 1235 cm�1. Elemental analysis: calculated for C25H34N2O
(378.56)% C 79.32; H 9.05; N 7.40; found % C 79.28; H 9.02; N 7.50

2–(4-Isobutylphenyl)-1–(4-(o-tolyl)piperazin-1-yl)propan-1-
one (27)

Obtained following the general procedure by the condensation
between 1 and 1–(2-methylphenyl)piperazine. Yield 91%. Oil. 1H
NMR (DMSO-d6) d 0.83 (d, J¼ 6.5 Hz, 6H, CH3), 1.29 (d, J¼ 7.0 Hz,
3H, CH3), 1.81 (hept, J¼ 6.5–7.0 Hz, 1H, CH), 2.21 (s, 3H, CH3), 2.24
(m, 1H, CH2), 2.41 (d, J¼ 6.0 Hz, 2H, CH2), 2.63 (m, 2H, CH2), 2.76
(m, 1H, CH2), 3.43 (m, 1H, CH2), 3.56 (m, 2H, CH2), 3.69 (m, 1H,
CH2), 4.10 (q, J¼ 7.0 Hz, 1H, CH), 6.82 (m, 1H, Ar), 6.93 (m, 1H, Ar),
7.07–7.14 (m, 4H, Ar), 7.42 (d, J¼ 7.5, 2H, Ar). IR (Film) 2923, 1639,
1600, 1494, 14631377,1224, 1147 cm�1. Elemental analysis: calcu-
lated for C25H32N2O (364.25)% C 79.32; H 8.85; N 7.68; found % C
79.27; H 9.00; N 7.59.

2–(4-Isobutylphenyl)-1-(piperazin-1-yl)propan-1-one
trifluoroacetate (29)

Compound 1 (2.06 g, 10mmol), EDC (2.09 g, 11mmol) and HOBt
(1.35 g, 10mmol) were dissolved in MeCN (10ml). The mixture was

stirred at r.t. for 30min, then BOC-piperazine (28) (1.86 g,
10mmol) was added. The mixture was stirred at r.t. for 12 h. After
the solvent was removed under vacuum. The residue was dis-
solved in AcOEt (20ml) and washed sequentially with brine
(2� 5ml), 10% citric acid (2� 5ml), saturated NaHCO3 aqueous
solution (2� 5ml) and water (2� 5ml). The organic layer was
dried over anhydrous Na2SO4 and evaporated under vacuum. The
obtained residue was dissolved in dichloromethane, without fur-
ther purification, added trifluoroacetic acid (TFA) (20ml) and
stirred at r.t. for 24 h to obtain the BOC de-protected compound.
Then the solvent was removed under vacuum and to the obtained
residue diethyl ether (Et2O) (20ml) was added leading to forma-
tion of a solid that was filtered to give the title compound. Yield
97%. Oil. 1H NMR (DMSO-d6) d 0.84 (d, J¼ 5.0 Hz, 6H, CH3), 1.28 (d,
J¼ 5.0 Hz, 3H, CH3), 1.81 (m, 1H, CH), 2.41 (d, J¼ 6.0 Hz, 2H, CH2),
2.56 (m, 1H, CH2), 3.00 (m, 3H, CH2), 3.34 (m, 1H, CH2), 3.58 (m,
1H, CH2), 3.74 (m, 2H, CH2), 4.09 (m, 1H, CH), 7.11 (m, 2H, Ar), 7.18
(d, 2H, Ar), 8.88 (s, 1H, NH). IR (Film) 2957, 2925, 2854, 1674, 1636,
1461, 1442, 1367, 1199, 1082 cm�1. Elemental analysis: calculated
for C19H27F3N2O3 (388.42)% C 58.75; H 7.01; N 7.21; found % C
58.80; H 6.99; N 7.17.

General procedure for the synthesis of benzylpiperazine 30–34

To a solution of compound 29 (0.39 g, 1mmol) in dichlorome-
thane (CH2Cl2) (10ml) the appropriate arylaldehyde (1.6mmol),
sodium sodium hydrogen carbonate (NaHCO3) (0.10 g, 1.2mmol)
and sodium triacetoxyborohydride (NaBHAc3) (0.32 g, 1.5mmol)
were added; the mixture was then stirred at r.t. for 24 h. After the
mixture was basified to pH 10 with a solution of NaOH 0.1 N, then
extracted with CH2Cl2 (3� 20ml). The organic phases were col-
lected, dried over sodium Na2SO4, filtrated and the solvent
removed to obtain the desired compound.

1–(4-Benzyl-1-yl)-2–(4-isobutylphenyl)propan-1-one (30)

Obtained following the general procedure by the reductive alkyl-
ation between 29 and benzaldehyde. Yield 91%. Oil. 1H NMR
(DMSO-d6) d 0.85 (d, J¼ 7.0 Hz, 6H, CH3), 1.25 (d, J¼ 7.0 Hz, 3H,
CH3), 1.78 (m, 1H, CH2), 1.81 (q, J¼ 6.0 Hz, 1H, CH), 2.21 (m, 1H,
CH2), 2.34 (m, 1H, CH2), 2.41 (d, J¼ 7.5 Hz, 2H, CH2), 2.50 (s, 1H,
CH2), 3.36 (m, 3H, CH2), 3.38 (s, 2H, CH2), 3.60 (m, 1H, CH2), 4.03
(m, 1H, CH), 7.08 (m, 2H, Ar), 7.13 (d, 2H, Ar), 7.23 (m, 3H, Ar), 7.29
(d, 2H, Ar). IR (Film) 3448, 2954, 2929, 2645, 1462, 1230, 1032,
1000 cm�1. Elemental analysis: calculated for C24H32N2O (364.25)%
C 79.08; H 8.85; N 7.68; found % C 79.15; H 8.80; N 7.65.

1–(4-(2-Chlorobenzyl)piperazin-1-yl)-2–(4-isobutylphenyl)propan-
1-one (31)

Obtained following the general procedure by the reductive alkyl-
ation between 29 and 2-chlorobenzaldehyde. Yield 87%. Oil. 1H
NMR (DMSO-d6) d 0.83 (d, J¼ 7.0 Hz, 6H, CH3), 1.23 (d, J¼ 7.0 Hz,
3H, CH3), 1.79 (q, J¼ 6.0 Hz, 1H, CH), 2.40 (d, J¼ 7.5 Hz, 2H, CH2),
3.32–3.75 (m, 8H, CH2), 4.00 (m, 1H, CH), 4.56 (s, 2H, CH2),
6.99–7.56 (m, 8H, Ar). IR (Film) 3416, 2955, 2927, 1628, 1060,
1033 cm�1. Elemental analysis: calculated for C24H31ClN2O
(398.98)% C 72.25; H 7.83; N 7.02; found % C 72.30; H 7.81; N 7.08.
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1–(4-(3-Chlorobenzyl)piperazin-1-yl)-2–(4-isobutylphenyl)propan-
1-one (32)

Obtained following the general procedure by the reductive alkyl-
ation between 29 and 3-chlorobenzaldehyde. Yield 90%. Oil. 1H
NMR (DMSO-d6) d 0.96 (d, J¼ 6.5 Hz, 6H, CH3), 1.36 (d, J¼ 7.5 Hz,
3H, CH3), 1.94 (q, J¼ 6.5–7.5 Hz, 1H, CH), 2.52 (d, J¼ 7.5 Hz, 2H,
CH2), 3.37–3.85 (m, 8H, CH2), 4.14 (m, 1H, CH), 4.62 (s, 2H, CH2),
7.13–7.55 (m, 8H, Ar). IR (Film) 3414, 2955, 2928,1702, 1631, 1464,
1434, 1228, 1196 cm�1. Elemental analysis: calculated for
C24H31ClN2O (398.98)% C 72.25; H 7.83; N 7.02; found % C 72.38;
H 7.85; N 7.00.

2–(4-Isobutylphenyl)-1–(4-(4-(trifluoromethyl)benzyl)piperazin-1-
yl)propan-1-one (33)

Obtained following the general procedure by the reductive alkyl-
ation between 29 and 4-(trifluoromethyl)benzaldehyde. Yield 50%.
Oil. 1H NMR (DMSO-d6) d 0.96 (d, J¼ 6.5 Hz, 6H, CH3), 1.37 (d,
J¼ 6.5 Hz, 3H, CH3), 1.90 (q, J¼ 6.5 Hz, 1H, CH), 2.53 (s, 2H, CH2),
2.61 (d, J¼ 6.5 Hz, 2H, CH2), 3.43–3.70 (m, 8H, CH2), 4.12 (m, 1H,
CH), 7.13–7.27 (m, 8H, Ar). IR (Film) 3332, 2955, 32868, 1644, 1510,
1462, 1367, 1228, 1164, 1125, 1066 cm�1. Elemental analysis: calcu-
lated for C25H31F3N2O (432.53)% C 69.42; H 7.22; N 6.48; found %
C 69.48; H 7.21; N 6.53.

1–(4-(3-Fluorobenzyl)piperazin-1-yl)-2–(4-isobutylphenyl)propan-
1-one (34)

Obtained following the general procedure by the reductive alkyl-
ation between 29 and 3-fluorobenzaldehyde. Yield 49%. Oil. 1H
NMR (DMSO-d6) d 0.96 (d, J¼ 6.5 Hz, 6H, CH3), 1.36 (d, J¼ 6.5 Hz,
3H, CH3), 1.89 (q, J¼ 6.5 Hz, 1H, CH), 2.51 (s, 2H, CH2), 2.61 (d,
J¼ 6.5 Hz, 2H, CH2), 3.32–3.52 (m, 8H, CH2), 4.12 (m, 1H, CH),
7.15–7.25 (m, 8H, Ar). IR (Film) 3407, 2955, 2926, 1713, 1696, 1631,
1591, 1254, 1001 cm�1. Elemental analysis: calculated for
C24H31FN2O (382.52)% C 75.36; H 8.17; N 7.32; found % C 75.40; H
8.05; N 7.40.

Computational studies

FAAH receptor and ibuprofen amides preparation
The crystal structure of the fatty acid amide hydrolase (FAAH)
(PDB ID: 3QK5)27 has been downloaded from the Protein Data
Bank website. Both monomers A and B were treated with the
Protein Preparation Wizard28 tool implemented in Maestro ver.
11.129 in order to add all the hydrogen atoms and assign the cor-
rect bond orders. Moreover, the co-crystallised ligand (QK5), as
well as all the crystallographic water molecules, were removed.
Residue Lys142 was considered in its deprotonated form, accord-
ing to the proposed catalytic mechanism2,3,30. The 3D structure of
amides described above was built using the Graphical User
Interface of Maestro ver. 11.129, as (S)-enantiomers in view of our
data with (S)-Ibu-AM5, which was ten-fold more potent inhibitor
than the (R)-enantiomer23. The protonation state of these amides
at pH 7.4 in water has been calculated using the Epik module31,
revealing the protonation of the nitrogen atom of the piperazine
ring only of compounds 30–34 characterised by a methylene
bridge between the aryl and the piperazine rings. Finally, each
compound was then minimised with the OPLS_2005 force field
using the Polak-Ribiere Conjugate Gradient (PRCG) algorithm and
2500 iteration steps.

Induced-Fit docking protocol
Only the monomer A of the rat FAAH (rFAAH) receptor was con-
sidered for the induced-fit docking (IFD)32,33. The IFD protocol has
three stages. In the first stage, ligands were docked to rigid pro-
tein using initial Glide softened potential (van der Waals radii scal-
ing). The top 20 poses for each ligand were retained. In the
second stage, a Prime side-chain prediction for each protein/lig-
and complex on residues within a default distance of 5 Å was per-
formed followed by a Prime minimisation of the same set of
residues and protein/ligand complexes. In the third stage, a Glide
re-docking of each protein/ligand complex within a specified
default lowest-energy structure (30 kcal/mol) was carried out. In
this step, each ligand is rigorously docked using the default Glide
settings, into the induced-fit receptor structure. At the end of the
final stage, two methods were used for estimation of the binding
energy for each output complex pose (IFDScore and
Glide_emodel). Glide SP (Standard Precision) was used for all
docking calculations. Docking poses were ranked on the basis of
Glide_emodel energy. A preliminary validation of the computa-
tional protocol was performed by reproducing with IFD the crys-
tallographic binding mode of QK5 ligand complexed in the model
PDB ID: 3QK5 (QK5) (Supplementary Figure S2-A)27 and that of the
(S)-Ibu-AM5 found after Molecular Dynamics simulations23

(Supplementary Figure S2-B).

Pharmacology

FAAH assay
Frozen (�80 �C) brains (minus cerebella) from adult Wistar or
Sprague-Dawley rats were thawed and homogenised in 20mM
HEPES, 1mM MgCl2, pH 7.0. and thereafter centrifuged at
�35000� g for 20min at 4 �C. Homogenates were washed (by
centrifugation at �35000� g for 20min at 4 �C followed by resus-
pension in the buffer) twice and incubated at 37 �C for 15min in
order to hydrolyse all endogenous FAAH substrates. After a further
centrifugation, pellets were resuspended in 50mM Tris-HCl buffer,
pH 7.4, containing 1mM EDTA and 3mM MgCl2, and frozen at
�80 �C in aliquots until used for the assay. For the FAAH assay34

test compounds, homogenates (usually 0.5–0.8lg protein per
assay, diluted with 10mM Tris-HCl, 1mM EDTA pH 7.4) and 25 lL
of [3H]AEA in 10mM Tris- HCl, 1mM EDTA, pH 7.4, containing 1%
w/v fatty acid-free bovine serum albumin, final substrate concen-
tration of 0.5lM) were incubated for 10min at 37 �C (final assay
volume 200 lL). Reactions were stopped by placing the tubes on
ice. Final assay concentrations of the solvents used for the com-
pounds (ethanol or DMSO) were in the range 1–5%. Activated
charcoal (80lLþ 320 lL 0.5M HCl) was added and the samples
were mixed and left at room temperature for about 30min.
Following centrifugation at 2500 rpm for 10min, aliquots (200lL)
of the supernatants were analysed for tritium content by liquid
scintillation spectroscopy with quench correction. Blank values
were obtained by the use of buffer rather than homogenate.

In general, FAAH assays upon three homogenates were under-
taken using separate inhibitor dilution series (from a stock solu-
tion), with 6 concentrations of inhibitor in half-log concentrations
(i.e. 1, 3, 10mM etc) ranging from 0.3–100 mM. Data were
expressed as % of vehicle control and analysed using the algo-
rithm log(inhibitor) vs. response – variable slope (four parameters)
built into the GraphPad Prism computer programme for the
Macintosh (GraphPad Software Inc., San Diego, CA). Two different
curve fits were chosen: one where the top (uninhibited) value was
set to 100 and the bottom (maximum inhibition) was set to 0,
and one where the top was set to 100 and the bottom allowed to
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float. The best model (when the bottom value returned >0) was
chosen by Akaike’s informative criteria. Since the programme uses
log10 inhibitor concentrations, the IC50 values for the inhibitable
fraction are derived from the corresponding� log10(IC50) (pI50) val-
ues. Hence the SE values are for the pI50 values rather than the
IC50 values. In consequence, we report both pI50 and IC50 values
to indicate the SE values.

Results and discussion

The target amides of ibuprofen were synthesised according to the
Schemes 1–3. The benzylamides were obtained by coupling ibu-
profen (1) with substituted benzylamines (2) in the presence of
EDC and HOBt in MeCN solution. This synthetic pathway was
found to be clean and high yielding.

The benzylamides 3–16, along with the reference compound
Ibu-AM5, were evaluated for their ability to inhibit FAAH.
The inhibition assays were performed using 0.5 lM [3H]AEA as
substrate and rat brain homogenates as the enzyme source. For
comparison, the % inhibition produced by URB597 (which shows
time-dependent inhibition) using this assay in our laboratory but
following a 60min preincubation, was 8, 38, 98 and 100 at con-
centrations of 0.1, 1, 10 and 100 nM, respectively35. The results of
these primary assays are shown in Table 1. The replacement of
the Ibu-AM5 2-methylpyridine moiety with a benzyl moiety to
give benzylamides 3–16 led to a reduction in inhibitory activity. In
general, benzylamide derivatives showed IC50 values ranging
18–51mM with the exception of 11, and 15. Compounds 11 and
15 showed FAAH inhibitory activity with IC50 values of 4.1 and

4.4 mM, respectively (Table 1). As shown in Table 1, the position
and the kind of substituent on benzyl moiety affect the inhibitory
activity. The presence of 4-substituent is not favourable for the
inhibitory activity. Conversely, the presence of substituents at 2-
position improved the activity as compared with the unsubsti-
tuted amide 3, as showed by the 2-chloro (11) and 2,5-dichloro
(15) derivatives. Moreover, the moving of chlorine atom from 5-
position of amide 15 to 4-position to give the analogue 14 led to
a reduction in activity (IC50 21mM). While the moving of a chlorine
atom from 5-position to 6-position (amide 16) led to a complete
loss of activity.

We also studied the binding of the newly designed com-
pounds in the active site of FAAH by using the Induced fit proto-
col (IFD) implemented in Maestro (Schr€odinger), that takes into
consideration not only ligand flexibility, but also protein rear-
rangements upon ligand binding. Calculations were carried out in
the monomer A of the rat FAAH (rFAAH) (PDB ID: 3QK5). Taking
into considerations previous results on stereoselectivity of Ibu-
AM5, demonstrating (S)-IbuAM5 being 10-fold more active than
(R)-Ibu-AM523, we performed and discussed docking calculations
on the (S)-enantiomers of selected compounds in the series.
However, for the sale of completeness, docking results for the (R)-
enantiomers were reported as Supplementary information. A pre-
liminary validation of the computational protocol was performed
on (S)-Ibu-AM5 and QK5 ligand. Results highlighted that the pose
with the lowest Glide-emodel and IFDScore reproduced closely
the binding mode of (S)-Ibu-AM5 and QK5 (RMSD: 1.34 Å and 0.
58 Å respectively; (Supplementary Figure S1). We have compared
the binding mode of amides 3, 11 and 15. Best poses of com-
pounds 3 (Figure 2(a)), 11 and 15 (Figure 2(b)) were positioned
within the ACB channel with the benzylamide moiety oriented
toward the membrane, and the isobutyl moiety pointing toward
the catalytic triad, but differed for the position along the ACB
channel, being 3 slightly shifted toward the catalytic triad. The
more active compounds of the series, 11 and 15 showed high
similarity to the binding mode predicted for Ibu-AM5
(Supplementary Figure S2). All the compounds engaged one
hydrogen bond (H-bond) interaction of the carbonyl with the
Thr488 side chain, but differed for the positioning of the rest of
the molecule (Figure 2). In particular, the isobutyl well matching
the hydrophobic region formed by Ile491, Phe244, Ile238, and
Leu192 in the case of 3, or Phe381, Ala377, Phe432, and Leu380
in the case of amide 11, and Leu192, Ile491, and Leu404 in the
case of amide 15. The binding mode adopted by amides 11 and
15 positioned the substituted benzyl ring in a similar position
within the hydrophobic region at the gorge of MA channel and
appeared favoured with respect to amide 3, since they showed an
additional H-bond interaction with Trp531 (amide 11) or Asp403
(amide 15).

With the aim to increase the hydrophilicity of the amides and
to reduce the flexibility of the amide chain a new series of arylpi-
perazinoamides was designed. As indicated in Scheme 2, amides

Scheme 3. Synthesis of Ibuprofen amides 30–34. (i) EDC, OH-Bt, MeCN, r.t. 12 h, (ii) TFA, CH2Cl2, r.t., 24 h.; (iii) NaBHAc3, NaHCO3, ArCHO, r.t., 24 h.

Scheme 1. Synthesis of Ibuprofen amides 3–16. (i) EDC, OH-Bt, MeCN, r.t. 24 h.

Scheme 2. Synthesis of Ibuprofen amides 18–27. (i) EDC, OH-Bt, MeCN, r.t. 12 h.
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18–27 were prepared by condensation between Ibuprofen (1)
and aryl-substituted piperazines (17) using the EDC method. In
general, all the arylpiperazinoamides displayed FAAH inhibitory
activity better than benzylamide series. As shown in Table 2 the
N-phenylpiperazinoamide 18 displayed inhibitory activity compar-
able to benzylamides 11 and 15. The introduction of 4-methoxy
group on the phenyl ring (amide 23) did not change the activity,
while the displacement of the methoxy group into the 3-position
(amide 24) led to a drop in activity. The replacement of 4-
methoxy group with fluorine atom produced a reduction in activ-
ity (compound 22, IC50 17lM). In contrast, the introduction in the
same position of chlorine atom to give compound 20 improved
ten-fold the inhibitory activity. Moving the chlorine from 4- to 3-
position (amide 19) did not affect the activity. However, the 3,4-
dichlorophenyl substituted amide 21 that, contrary to expectation,
showed inhibitory activity an order of magnitude lower potency
than analogue 20. The substitution of 3-chlorine of amide 19 with
the methyl group to afford compound 25 caused a clear reduc-
tion in activity. The introduction of the second methyl group in 2-
position (amide 26) restored the activity, while the displacement
of 3-methyl into 2-position produced loss of activity (amide 27).

Induced-Fit docking at the enzyme active site revealed that all
the arylpiperazinoamide derivatives adopted a different binding
mode when compared to benzylamides or to the lead Ibu-AM5,
binding deeper in the ACB, establishing, in most cases, direct
interactions with at least one residue of the catalytic triad through
the carbonyl of the amide, and the arylpiperazinoamide moiety
entering the cytosolic port (CP). In order to clarify the SARs of this
interesting novel series of ibuprofen derivatives, we analysed the
binding mode of 19, 20, 21, 25, and 26. Figure 3(a) represents
the binding mode of amide 19, showing two H-bonds with the
catalytic triad residues Ser241 and Ser217, and a clear interaction
of the chlorine with the NH of Cys269. Accordingly, the introduc-
tion of a second chlorine in 4-position, would clash with the side

chain of Val270, thus forcing the 3,4-dichlorophenyl ring of com-
pound 21 to move toward Phe381 (Figure 3(a)). This movement
also induces a rearrangement of the isobutylphenyl moiety deter-
mining the disruption of the hydrophobic network that could
account for the 10-fold loss of activity. Interestingly compound
20, which showed the same FAAH inhibitory activity of analogue
19, showed the same position as the isobutylphenyl moiety, albeit
the 4-chlorophenyl ring assumed an intermediate conformation
with respect to amides 19 and 21. We also studied the binding of
amides 25, and 26 differing for the number and the position of
methyl groups on the piperazine phenyl ring (Figure 3(b)).
Docking results did not allow to give a clear explanation of how
these subtle structural differences gave rise to the observed strik-
ing differences in activity. The two compounds indeed occupied
the same binding pocket, and all established a H-bond with
Ser241. Nevertheless, the introduction of the 2-methyl forced the
phenyl ring to assume a perpendicular conformation with respect
to the piperazine ring as an effect of steric hindrance with pipera-
zine ring hydrogens. This led to different binding modes for 2-
methylphenyl (compound 26) and 3-methylphenyl analogue (25),
that resulted in a different ability in engaging T-shape p-p stack-
ing interactions with Phe381, only observed for 2-methyl deriva-
tive (Figure 3(b)). Albeit docking results gave interesting
suggestions about some aspects of SAR of the benzyl- and the
piperazine phenyl derivatives, the lack of correlation between
IFDscores (Data not shown) and IC50 suggests some caution in
interpreting the results.

As further modification, a methylene bridge was inserted
between the piperazine and the aromatic ring. The amides 30–34
were prepared by condensation of ibuprofen (1) with N-BOC-
piperazine (29), using the same EDC method described above.
After BOC-deprotection, a benzyl group was added by reductive
alkylation, treating the intermediate 6 with the suitable substi-
tuted arylaldehyde in presence of NaHCO3, NaBHAc3 in CH2Cl2

Figure 2. The lowest emodel binding modes of (S)-benzylamides : (a) 3, (b) 11 and 15. Key interacting residues of FAAH are displayed as green, cyan and orange lines
relatively to benzylamides 3, 11, and 15 that are represented as green, cyan and orange sticks, respectively. Hydrogen bond interactions detected by Maestro 11.1 are
shown as dashed black lines.
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Table 2. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds 18–27.

Compound Formula
Max 

inhibition 
(%)

pI50

(SE) IC50 (µM)

18 100 5.33 (0.04) 4.7

19 100 5.75 (0.06) 1.7

20 100 5.77 (0.03) 1.7

21 100 4.79 (0.09) 16

22 100 4.77 (0.07) 17

23 100 5.35 (0.07) 4.5

24 41±3% inhibition @100 µM*

(continued)
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solution (Scheme 3). Unfortunately, this modification afforded the
poor active analogues 30–34 (Table 3). This loss of activity could
be attributed to the protonation of the nitrogen atom of the
piperazine ring that is unfavourable in the hydrophobic environ-
ment of the FAAH channels. The induced fit docking of 30 and 32

confirmed this hypothesis, yielding binding modes characterised
by the loss of interactions with Ser241, and by a closed conform-
ation (Supplementary Figure S3), due largely to an intramolecular
cation-p interaction, thus explaining the loss in the inhib-
ition activity.

25 65±3 4.79 (0.04) 16

26 89±4 5.76 (0.07) 1.7

27 33±3% inhibition @100 µM*

�The inhibition data was better fitted by a curve with a residual activity rather than a curve assuming 100% inhibition. The maximal inhibition is indicated (when it
was greater than 50%), and the pI50 and IC50 values refer to the inhibitable portion of the curve. The inability of the compounds to produce a maximal inhibition
was not investigated further.

Figure 3. Superposition between the lowest emodel binding mode of (S)-piperazinoarylamides: (a) 19, 20 and 21 depicted as yellow, purple and dark-green sticks,
respectively; (b) 25 and 26 dysplayed as brown and violet sticks, respectively. rFAAH key residues involved in ligand interactions are displayed as lines coloured rela-
tively as the interacting ligand. Hydrogen bond interactions and T-shaped p-p stacking interaction detected by Maestro 11.1 are shown as dashed black lines. Globally,
the substitution of a chorine atom to the phenyl ring (compound 19) allows an Hbond interaction with Cys269. The addition of a one more methyl group on the aro-
matic ring (amide 26) does not affect the binding mode of the two ligands, except for the phenyl ring itself that in the case of amide 26 is slightly oriented toward
the Phe381 residue engaging one T-shape p-p stacking interaction.
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In conclusion, the present study has further explored the
pharmacophore of Ibu-AM5 with respect to its interaction with
FAAH. Although the benzyl- and the piperazinoamides were
logical areas to explore, neither set of derivatives improved upon
the inhibitory potency of Ibu-AM5. Nevertheless, the arylpiperazi-
noamide derivatives showed a binding mode involving residues
from the cytosolic port, which has been poorly explored as poten-
tial binding site of FAAH inhibitors and could, therefore, be con-
sidered interesting leads for the design of novel and more potent
FAAH inhibitors.

Acknowledgements

The authors thank Mona Svensson for excellent technical help. BC
acknowledges the SCoPE Datacenter of the University of Napoli
for the access to HPC infrastructures.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Regione Autonoma della
Sardegna Project L.R. 7/2007 under grant no. 2012_CRP-59473 to
VO; the University of Cagliari [grant FIR 2016–17] to VO and by
the Swedish Research Council under the grant no. 12158, medi-
cine, and the Research Funds of Umea˚ University Medical Faculty
to CJF.

ORCID

Alessandro Deplano http://orcid.org/0000-0002-8451-5831
Mariateresa Cipriano http://orcid.org/0000-0001-6644-7137
Federica Moraca http://orcid.org/0000-0002-1077-1971

Table 3. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds 30–34.

Compound Formula
Max 

inhibition 
(%)

IC50 (µM)

30 18±5% inhibition @100 
µM

31 no inhibition @100 µM

32 8±1% inhibition @100 
µM

33 no inhibition @100 µM

34 no inhibition @100 µM

574 A. DEPLANO ET AL.



Ettore Novellino http://orcid.org/0000-0002-2181-2142
Bruno Catalanotti http://orcid.org/0000-0002-7532-6959
Christopher J. Fowler http://orcid.org/0000-0002-6658-7874
Valentina Onnis http://orcid.org/0000-0002-2438-725X

References

1. Di Marzo V. New approaches and challenges to targeting
the endocannabinoid system. Nat Rev Drug Discov 2018;17:
623–39.

2. Palermo G, Rothlisberger U, Cavalli A, De Vivo M.
Computational insights into function and inhibition of fatty
acid amide hydrolase. Eur J Med Chem 2015;91:15–26.

3. Bracey M, Hanson M, Masuda K, et al. Structural adaptions
in a membrane enzyme that terminates endocannabinoid
signaling. Science 2002;298:1793–6.

4. McKinney MK, Cravatt BF. Structure and function of fatty
acid amide hydrolase. Annu Rev Biochem 2005;74:411–32.

5. Tuo W, Leleu-Chavain N, Spencer J, et al. Therapeutic poten-
tial of fatty acid amide hydrolase, monoacylglycerol lipase,
and n-acylethanolamine acid amidase inhibitors. J Med
Chem 2017;60:4–46.

6. Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety
through blockade of anandamide hydrolysis. Nat Med 2003;
9:76–81.

7. Justinova Z, Mangieri R, Bortolato M, et al. Fatty acid amide
hydrolase inhibition heightens anandamide signaling with-
out producing reinforcing effects in primates. Biol Psychiat
2008;64:930–7.

8. Li GL, Winter H, Arends R, et al. Assessment of the pharma-
cology and tolerability of pf-04457845, an irreversible inhibi-
tor of fatty acid amide hydrolase-1, in healthy subjects. Br J
Clin Pharmacol 2012;73:706–16.

9. Pawsey S, Wood M, Browne H, et al. Safety, tolerability and
pharmacokinetics of FAAH inhibitor v158866: a double-blind,
randomised, placebo-controlled phase I study in healthy vol-
unteers. Drugs R D 2016;16:181–91.

10. Wagenlehner FME, van Till JWO, Houbiers JGA, et al. Fatty
acid amide hydrolase inhibitor treatment in men with
chronic prostatitis/chronic pelvic pain syndrome: an adap-
tive double-blind, randomized controlled trial. Urology 2017;
103:191–7.

11. van Esbroeck ACM, Janssen APA, Cognetta AB III, et al.
Activity-based protein profiling reveals off-target proteins
of the FAAH inhibitor BIA 10-2474. Science 2017;356:
1084–7.

12. US Food and Drug Administration. FDA works with regula-
tory partners to understand French-based Biotrial phase 1
clinical study. 22 January 2016. Retrieved 23 January 2016.
https://www.fda.gov/Drugs/DrugSafety/ucm482740.htm

13. Huggins JP, Smart TS, Langman S, et al. An efficient rando-
mised, placebo-controlled clinical trial with the irreversible
fatty acid amide hydrolase-1 inhibitor pf-04457845, which
modulates endocannabinoids but fails to induce effective
analgesia in patients with pain due to osteoarthritis of the
knee. Pain 2012;153:1837–46.

14. Vernalis P. Vernalis plc Completes Investment in its NCE
Development [press release]. 2015. Retrieved from http://
www.vernalis.com/media-centre/latest-releases/708-vernalis-

plc-completes-investment-in-its-nce-development-pipeline
(URL checked 28 May 2018).

15. Fowler CJ. The potential of inhibitors of endocannabi-
noid metabolism as anxiolytic and antidepressive
drugs-A practical view. Eur Neuropsychopharmacol
2015;25:749–62.

16. Patel S, Hill MN, Cheer JF, et al. The endocannabinoid sys-
tem as a target for novel anxiolytic drugs. Neurosci
Biobehav Rev 2017;76:56–66.

17. Storr M, Keenan C, Emmerdinger D, et al. Targeting endo-
cannabinoid degradation protects against experimental col-
itis in mice: involvement of CB1 and CB2 receptors. J Mol
Med 2008;86:925–36.

18. Sałaga M, Mokrowiecka A, Zakrzewski PK, et al. Experimental
colitis in mice is attenuated by changes in the levels of
endocannabinoid metabolites induced by selective inhib-
ition of fatty acid amide hydrolase (FAAH). J Crohns Colitis
2014;8:998–1009.

19. Fowler CJ, Tiger G, Stenstr€om A. Ibuprofen inhibits rat
brain deamidation of anandamide at pharmacologically
relevant concentrations. Mode of inhibition and structure-
activity relationship. J Pharmacol Exp Ther 1997;283:
729–34.

20. Fowler CJ, Janson U, Johnson RM, et al. Inhibition of anan-
damide hydrolysis by the enantiomers of ibuprofen, ketoro-
lac, and flurbiprofen. Arch Biochem Biophys 1999;362:191–6.

21. Favia AD, Habrant D, Scarpelli R, et al. Identification and
characterization of carprofen as a multitarget fatty acid
amide hydrolase/cyclooxygenase inhibitor. J Med Chem
2012;55:8807–26.

22. Holt S, Paylor B, Boldrup L, et al. Inhibition of fatty acid
amide hydrolase, a key endocannabinoid metabolizing
enzyme, by analogues of ibuprofen and indomethacin. Eur J
Pharmacol 2007;565:26–36.

23. Karlsson J, Morgillo CM, Deplano A, et al. Interaction of the
N-(3-Methylpyridin-2-yl)amide derivatives of flurbiprofen and
ibuprofen with FAAH: enantiomeric selectivity and binding
mode. PLoS One 2015;10:e0142711.

24. Cocco M, Congiu C, Onnis V, et al. Synthesis of ibuprofen
heterocyclic amides and investigation of their analgesic and
toxicological properties. Eur J Med Chem 2003;38:513–18.

25. Fowler CJ, Bj€orklund E, Lichtman AH, et al. Inhibitory proper-
ties of ibuprofen and its amide analogues towards the
hydrolysis and cyclooxygenation of the endocannabinoid
anandamide. J Enzyme Inhib Med Chem 2013;28:172–82.

26. Deplano A, Morgillo CM, Demurtas M, et al. Novel propana-
mides as fatty acid amide hydrolase inhibitors. Eur J Med
Chem 2017;136:523–42.

27. Gustin DJ, Ma Z, Min X, et al. Identification of potent, non-
covalent fatty acid amide hydrolase (FAAH) inhibitors.
Bioorg Med Chem Lett 2011;21:2492–6.

28. Sastry GM, Adzhigirey M, Day T, et al. Protein and ligand
preparation: parameters, protocols, and influence on virtual
screening enrichments. J Comput Aid Mol Des 2013;27:
221–34.

29. Schr€odinger Release 2017-1: Maestro, Schr€odinger, LLC, New
York, NY, 2017.

30. Lodola A, Castelli R, Mor M, Rivara S. Fatty acid amide
hydrolase inhibitors: a patent review (2009–2014). Expert
Opin Ther Pat 2015;25:1247–66.

31. Shelley JC, Cholleti A, Frye L, et al. Epik: a software program
for pK(a) prediction and protonation state generation for

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 575

https://www.fda.gov/Drugs/DrugSafety/ucm482740.htm
http://www.vernalis.com/media-centre/latest-releases/708-vernalis-plc-completes-investment-in-its-nce-development-pipeline
http://www.vernalis.com/media-centre/latest-releases/708-vernalis-plc-completes-investment-in-its-nce-development-pipeline
http://www.vernalis.com/media-centre/latest-releases/708-vernalis-plc-completes-investment-in-its-nce-development-pipeline


drug-like molecules. J Comput Aided Mol Des 2007;21:
681–91.

32. Sherman W, Day T, Jacobson MP, et al. Novel procedure for
modeling ligand/receptor induced fit effects. J Med Chem
2006;49:534–53.

33. Schr€odinger Suite 2017-1 Induced Fit Docking protocol;
Glide, Schr€odinger, LLC, New York, NY, 2017; Prime,
Schr€odinger, LLC, New York, NY, 2017.

34. Boldrup L, Wilson SJ, Barbier AJ, Fowler CJ. A simple
stopped assay for fatty acid amide hydrolase avoiding the
use of a chloroform extraction phase. J Biochem Biophys
Methods 2004;60:171–7.

35. Wilson AA, Hicks JW, Sadovski O, et al. Carbonyl-labeled
carbamates as fatty acid amide hydrolase radiotracers for
positron emission tomography. J Med Chem 2013;56:
201–9.

576 A. DEPLANO ET AL.


	Abstract
	Introduction
	Experimental
	Materials
	Chemistry
	General procedure for the synthesis of benzylamide derivatives 316
	N-Benzyl-24-isobutylphenylpropanamide 3
	N-4-Fluorobenzyl-24-isobutylphenylpropanamide 4
	N-4-Chlorobenzyl-24-isobutylphenylpropanamide 5
	N-4-tert-Butylbenzyl-24-isobutylphenylpropanamide 6
	24-Isobutylphenyl-N-4-trifluoromethylbenzylpropanamide 7
	24-Isobutylphenyl-N-4-methoxybenzylpropanamide 8
	24-Isobutylphenyl-N-3-trifluoromethylbenzylpropanamide 9
	24-Isobutylphenyl-N-2-methoxybenzylpropanamide 10
	N-2-Chlorobenzyl-24-isobutylphenylpropanamide 11
	N-3-Hydroxy-4-methoxybenzyl-24-isobutylphenylpropanamide 12
	N-3,4-Dichlorobenzyl-24-isobutylphenylpropanamide 13
	N-2,4-Dichlorobenzyl-24-isobutylphenylpropanamide 14
	N-2,5-Dichlorobenzyl-24-isobutylphenylpropanamide 15
	N-2,6-Dichlorobenzyl-24-isobutylphenylpropanamide 16
	General procedure for the synthesis of phenylpiperazine derivatives 1827
	24-Isobutylphenyl-14-phenylpiperazin-1-ylpropan-1-one 18
	14-3-Chlorophenylpiperazin-1-yl-24-isobutylphenylpropan-1-one 19
	14-4-Chlorophenylpiperazin-1-yl-24-isobutylphenylpropan-1-one 20
	14-3,4-Dichlorophenylpiperazin-1-yl-24-isobutylphenylpropan-1-one 21
	14-4-Fluorophenylpiperazin-1-yl-24-isobutylphenylpropan-1-one 22
	24-Isobutylphenyl-14-4-methoxyphenylpiperazin-1-ylpropan-1-one 23
	24-Isobutylphenyl-14-3-methoxyphenylpiperazin-1-ylpropan-1-one 24
	24-Isobutylphenyl-14-m-tolylpiperazin-1-ylpropan-1-one 25
	14-2,3-Dimethylphenylpiperazin-1-yl-24-isobutylphenylpropan-1-one 26
	24-Isobutylphenyl-14-o-tolylpiperazin-1-ylpropan-1-one 27
	24-Isobutylphenyl-1-piperazin-1-ylpropan-1-one trifluoroacetate 29
	General procedure for the synthesis of benzylpiperazine 3034
	14-Benzyl-1-yl-24-isobutylphenylpropan-1-one 30
	14-2-Chlorobenzylpiperazin-1-yl-24-isobutylphenylpropan-1-one 31
	14-3-Chlorobenzylpiperazin-1-yl-24-isobutylphenylpropan-1-one 32
	24-Isobutylphenyl-14-4-trifluoromethylbenzylpiperazin-1-ylpropan-1-one 33
	14-3-Fluorobenzylpiperazin-1-yl-24-isobutylphenylpropan-1-one 34
	Computational studies
	FAAH receptor and ibuprofen amides preparation
	Induced-Fit docking protocol

	Pharmacology
	FAAH assay


	Results and discussion
	Acknowledgements
	Disclosure statement
	References



<<
	/CompressObjects /Tags
	/ParseDSCCommentsForDocInfo true
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 150
	/GrayImageResolution 150
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (sRGB IEC61966-2.1)
	/MonoImageMinResolutionPolicy /OK
	/ImageMemory 1048576
	/LockDistillerParams true
	/AllowPSXObjects true
	/DownsampleMonoImages true
	/PassThroughJPEGImages false
	/ColorSettingsFile (None)
	/AutoRotatePages /All
	/Optimize true
	/MonoImageDepth -1
	/ParseDSCComments true
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 600
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness true
	/CompressPages true
	/GrayImageMinResolution 150
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages true
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.6
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Warning
	/AutoPositionEPSFiles true
	/PreserveOPIComments false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile ()
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/EmbedJobOptions true
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EncodeGrayImages true
	/ColorImageDownsampleType /Bicubic
	/EmitDSCWarnings false
	/AutoFilterColorImages true
	/DownsampleGrayImages true
	/GrayImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 150
	/PDFXRegistryName ()
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Gray Gamma 2.2)
	/ColorImageMinDownsampleDepth 1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ColorImageDepth -1
	/DetectCurves 0.1
	/PDFXTrapped /False
	/ColorImageFilter /DCTEncode
	/TransferFunctionInfo /Preserve
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/ColorACSImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/DSCReportingLevel 0
	/PDFXOutputConditionIdentifier ()
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/PreserveCopyPage true
	/UsePrologue false
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Remove
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
		/PTB <>
		/FRA <>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
		/NOR <>
		/DEU <>
		/SVE <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
		/DAN <>
		/JPN <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/SUO <>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ESP <>
	>>
	/CropMonoImages true
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo false
	/ColorImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.4
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/CropGrayImages true
	/PDFXOutputCondition ()
	/SubsetFonts true
	/EncodeMonoImages true
	/CropColorImages true
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


