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Abstract

Proteins evolve through two primary mechanisms: substitution, where mutations alter a pro-
tein’s amino-acid sequence, and insertions and deletions (indels), where amino acids are
either added to or removed from the sequence. Protein structure has been shown to influ-
ence the rate at which substitutions accumulate across sites in proteins, but whether struc-
ture similarly constrains the occurrence of indels has not been rigorously studied. Here, we
investigate the extent to which structural properties known to covary with protein evolution-
ary rates might also predict protein tolerance to indels. Specifically, we analyze a publicly
available dataset of single—amino-acid deletion mutations in enhanced green fluorescent
protein (eGFP) to assess how well the functional effect of deletions can be predicted from
protein structure. We find that weighted contact number (WCN), which measures how
densely packed a residue is within the protein’s three-dimensional structure, provides the
best single predictor for whether eGFP will tolerate a given deletion. We additionally find
that using protein design to explicitly model deletions results in improved predictions of func-
tional status when combined with other structural predictors. Our work suggests that struc-
ture plays fundamental role in constraining deletions at sites in proteins, and further that
similar biophysical constraints influence both substitutions and deletions. This study there-
fore provides a solid foundation for future work to examine how protein structure influences
tolerance of more complex indel events, such as insertions or large deletions.

Introduction

Evolutionary change in proteins occurs via two broad classes of events: amino-acid substitu-
tions and insertions/deletions (indels). These evolutionary events are typically subject to strong
purifying selection, such that they can only occur if the resulting protein sequence can still fold
and function properly. The influence of biophysical constraints on the rate of amino-acid sub-
stitution has been well-characterized, and several structural properties indicating protein
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tolerance to substitution events have been identified [1]. For example, residues within the pro-
tein core are less likely than are residues on the protein surface to undergo substitutions [2-5]

Similarly, residues with more amino-acid contacts evolve more slowly that do sites with fewer

contacts [6-10].

By contrast, the fundamental properties governing protein tolerance to indel events are
comparatively understudied. Previous efforts in comparative sequence analysis have suggested
that indels preferentially occur in disordered and/or loop regions and are less common in
regions with secondary structure [11-15]. Furthermore, indel events may be more likely to
occur on a protein’s surface, where residues are more exposed to solvent, rather than in a pro-
tein’s core [13, 14]. Thus, constraints on indel events appear to mirror those on substitution
events, in that amino-acid substitutions are most frequent in unstructured regions and on the
protein surface [1]. In spite of these observations, however, the fundamental structural proper-
ties which govern whether indel events are tolerated remain largely uncharacterized, ultimately
hindering a complete understanding of how protein structure influences protein evolution.

Recently, Arpino et al. [16] experimentally determined the functional consequences of sin-
gle deletions in enhanced green fluorescent protein (eGFP) by systematically deleting individ-
ual residues from eGFP and then assaying for function. Similar to observations from prior
computational studies [12, 17], Arpino et al. found that most functional deletion mutants were
located in unstructured loop regions, as opposed to in highly structured regions comprised of
B-sheets and a-helices. In addition, Arpino et al. observed that non-functional mutants were
more likely to occur in buried regions than were functional mutants [16].

Using the data from Arpino et al., we investigate here how well quantities known to co-vary
with amino-acid substitution rates can predict the functional consequences of deletions in
eGFP. Specifically, we consider relative solvent accessibility (RSA) and weighted contact num-
ber (WCN). RSA, which ranges from 0 to 1 [18], measures how exposed a given residue is to
solvent, with 0 representing a fully buried residue and 1 representing a fully exposed residue.
WCN is a measure of packing density [19]. Residues with high WCN have many residue con-
tacts and are thus tightly packed, and residues with low WCN have few contacts with other
amino acids in the protein. RSA correlates positively with evolutionary rate and WCN nega-
tively [1]. We additionally consider whether tolerance to deletions can be predicted from
computational protein design [20]. Finally, we consider secondary structure (SS), which has
previously been suggested as the dominant constraint on indel events [11-15].

Our results demonstrate that WCN is the best single predictor of whether a deletion will be
tolerated at a given site in eGFP. RSA and protein design are good predictors, as well, but they
perform somewhat worse than WCN. Interestingly, while secondary structure is a significant
predictor of functional status, we find it to be less informative than WCN, RSA, and protein
design. Combining multiple predictor variables yields even better performing models, with
models jointly considering RSA, WCN, and protein design generally performing the best.
Opverall, in eGFP, the structural context of a residue appears to be a crucial factor in determin-
ing tolerance to deletion of that residue.

Materials and methods
Functional data and calculation of structural properties

All functional data corresponding to each mutant was taken from Arpino et al. [16]. In brief,
Arpino et al. [16] made tri-nucleotide deletions in the eGFP coding sequence using a transpo-
son-mediated directed evolution tri-nucleotide deletion experimental approach [21, 22]. Their
approach produced mutants with either a single amino-acid deletion, multiple adjacent
amino-acid deletions, or an amino-acid deletion with an adjacent non-synonymous (i.e.
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missense) mutation. Arpino et al. specifically analyzed a subset of resulting mutants, categoriz-
ing each as functional or non-functional if, when expressed in E. coli, eGFP’s fluorescent green
phenotype was preserved. In total, 87 unique mutants were assayed, of which 42 were func-
tional and 45 were non-functional. In the following, we refer to deletion mutants as tolerated
or functional if the resulting mutant fluoresced, and as non-tolerated or non-functional if the
resulting mutant did not fluoresce.

Here we re-analyzed a subset of the original 87 mutants. Specifically, we identified two
mutants with different nucleotide-level deletions but with the same translated product, so we
only included one of these two in our analyses. We additionally excluded four non-functional
mutants whose mutations had produced an early stop codon, as well as any mutants with two
amino-acid changes. Finally, we excluded all mutants with deletions in the N-terminus, C-ter-
minus, or the eGFP chromophore. Our final dataset consisted of 72 total deletion mutants, 34
of which were functional and 38 of which were non-functional.

We computed all structural quantities using the eGFP crystal structure with PDB identifier
4EUL. We calculated the solvent-accessible surface area (ASA) for each deleted residue using
DSSP [23]. To obtain relative solvent accessibility (RSA), we normalized ASA values to the
maximum solvent accessibility for each amino acid in a Gly-X-Gly tripeptide, as given in
Table 1 in Ref. [18]. We calculated the side-chain weighted contact number (WCN) as defined
by Marcos and Echave [9]. Side-chain WCN is defined as

N
1
WON =3 (1)

i#

where r;; is distance between the geometric center of the side-chain atoms of residue i and the
geometric center of the side-chain atoms of residue j in a protein that is N residues long. For
glycine residues, we considered the C, carbon instead of the geometric center of the side
chain. Although previous studies have often calculated WCN using C, atoms as the reference
center point, recent work has shown that using the center of mass of the entire side-chain
results in stronger correlations between WCN and evolutionary variability [9, 10], and there-
fore we use side-chain WCN throughout this study as well. Finally, we used secondary struc-
ture (SS) classifications (alpha-helix, beta-sheet, or loop) as assigned previously [16].

Modeling deletion mutations with protein design

We based all protein design work on the eGFP crystal structure with PDB identifier 4EUL.
eGFP’s structure consists of a beta-barrel composed of eleven beta sheets surrounding an
alpha helix which contains eGFP’s chromophore, the structural component that produces the
protein’s characteristic green fluorescent phenotype. Because the chromophore interferes with
commonly available protein design software, we had to first design a protein structure in
which the mature chromophore was replaced with the original three amino acids
(Thr65-Tyr66-Gly67) that autocatalytically form the chromophore.

To generate this pre-maturation structure, we first designed an eGFP structure with the
chromophore removed, using RosettaModel [20, 24]. We subsequently used Rosetta’s relax
protocol [25, 26] to optimize and re-pack the side-chains. We created 100 structures in Rosetta
using the relax protocol and selected the best model as the template for design based on total
score, with the best score being the most negative. We used the following commands for the
relax protocol:

-database /path/to/rosetta database

-s 4EUL no_cro.pdb
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-ignore unrecognized res

-use_input_ sc
-constrain relax to start coords
-nstruct 100

-relax:fast

-overwrite

-out:file:scorefilerelax scorefile.fasc
-out:path:pdb./output pdbs/

To re-insert the three chromophore-forming residues (Thr65-Tyr66-Gly67) into the struc-
ture, we identified the most likely secondary structure that these residues would form using
Psipred [27, 28], which predicts secondary structure elements from the primary sequence.
Based on the secondary structure information, we built the insert with a helical backbone, using
the RosettaRemodel protocol [24]. In addition to inserting these three residues, we also designed
two residues on either side of the insertion to accommodate any major structural changes cre-
ated by the insertion. We specified the following flags for this remodeling procedure:

-database /path/to/rosetta database

-s 4EUL no cro relaxed.pdb

-remodel :blueprintdesign blueprint.txt
-run:chainA

-num_trajectoryb

-save_topb

-exl

-ex2

-extrachi cutoffl

-use_input_ sc

-linmem ig1l0

-remodel:use pose relax
—out:file:scorefiledesign protocol.fasc
-out:path:pdb./output pdbs/
-remodel:hb srbbl.0

-overwrite

We built five separate models using this protocol. We selected the best candidate based on
overall score and visual inspection as our wild-type template for modeling the deletion
mutants.

For each of the 72 selected deletion mutants, we used Modeller [29] to create 25 initial
rough models of the deletion. We then refined these models using the Rosetta relax protocol,
specifying the following flags:
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-database /path/to/rosetta database
-lpdb list.txt

-ignore unrecognized res

-use input sc
-constrain relax to start coords
-flip HNQ

-no_optHfalse

-nstruct 4

-relax:fast

-overwrite
-out:file:scorefilescorefile.fasc
-out:path:pdb./output pdbs/

We performed four independent relaxations for each modeler structure, so that we ended
up with 100 final structures corresponding to each mutant (25 Modeller models x 4 relaxed
structures each). We used the mean Rosetta score for each of the 100 structures as a predictor
of deletion tolerance. We chose to generate 100 structures per mutant to balance computa-
tional accuracy and cost, in line with existing protocols for assessing the effect of single-point
substitutions such as ddG_monomer [30].

Below, we explain the critical flags, which tailor Rosetta’s functionality for a given analysis,
used in the Rosetta protocols employed here. Additional information on flags used in these
protocols can be found at the Rosetta Commons website (http://www.rosettacommons.org).
For the Rosetta Remodel protocol, we used the flags —ex1 and —ex2 increase rotamer sam-
pling for both y; and y, dihedral angles, respectively. The flag ~use input sc specifies
that Rosetta should sample side-chain rotamers from the input structure. This flag is useful for
re-designing sequences that are similar to the natural input sequence. The ~1inmen ig10
flag implements a linear-memory interaction graph for better computational performance
[20], and the -num_trajectory flag specifies the level of centroid sampling. The
remodel:hb srbbflag, used for building helices, activates scoring of the helix secondary
structure during the centroid mode part of the design process. This particular flag is is critical
for rebuilding the chromophore residues in the helical region of eGFP [24]. For the Rosetta
relax protocol, we specified the flag ~constrain relax to start coordstoadd
constraints to the backbone-heavy atoms that reduce large movements away from the input
structure. In addition, we used the flag ~relax: fast to set the number of cycles in the
protocol.

Statistical analysis of functional status

We used two different machine learning approaches, logistic regression and a support vector
machine (SVM), to predict functional status using structural predictors. We employed both
machine learning approaches for all models examined. We considered WCN, RSA, SS, and/or
the mean score from protein design as our structural predictors. The mean score is calculated
as the average Rosetta score from each of the 100 modeled structures per mutant.

We conducted logistic regressions using the g1m () function in the statistical language R
[31] with the argument family =binomial to specify the logistic link function. For SVM,
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we implemented a supervised support vector machine algorithm using the R package e1071
[32]. Our SVM used a radial basis kernel with default parameters, that is, y = 1/d, where d is
the dimension of the data, and the default cost of constraint violation is set to C = 1.

For each machine learning approach, we performed 10-fold cross-validation for each
model. For each dataset, all points in the nine other datasets were used as a training dataset to
train a model. We then used the trained model to predict the functional consequence (toler-
ated or non-tolerated) for the remaining mutants. We obtained Receiver Operating Character-
istic (ROC) curves for each model by pooling all of the predictions from the ten test datasets
and plotting the true positive rate versus the false positive rate in this pooled dataset. We used
the Area Under the Curve (AUC) value for each resulting ROC curve to assess the predictive
power of each model. We call these AUC values the cross-validated AUC. Finally, for each
model, we performed the 10-fold cross-validation 100 times, and we calculated the mean and
standard error of the cross-validated AUC for each model.

All scripts and data from this study are freely available at https://github.com/wilkelab/
eGFP_deletion_prediction.

Results

Variation in structural properties between non-tolerated and tolerated
deletions

To examine the relationship between protein structure and tolerance to deletion, we used
functional data for 72 single amino-acid eGFP deletion mutants from Arpino et al. [16] (see
also Fig 1). We refer to a given deletion mutant as tolerated and/or functional if the mutated
eGFP exhibited a fluorescent phenotype, and we refer to a given deletion mutant as non-toler-
ated and/or non-functional if the fluorescent phenotype was lost.

To characterize the structural environment of each deletion, we measured relative solvent
accessibility (RSA) and weighted contact number (WCN) in the original eGFP structure for
each of the 72 deleted residues. We additionally categorized each deleted residue as either beta
sheet (sheet), alpha helix (helix), or loop (loop), based on the annotations previously provided
[16]. We also used computational protein design to predict structures for each of the 72
mutant eGFPs. Since the eGFP structure contains a chromophore, which interferes with stan-
dard modeling approaches, we first used RosettaRemodel [20, 24] to generate a model of the
eGFP structure without its mature chromophore (Fig 2A). We then used a pipeline consisting
of Modeller [29] and Rosetta relax [25, 26] to design 100 models for each of the 72 mutant
eGFPs (Fig 2B). We used the mean Rosetta score over these 100 models as a measure of how
energetically (dis)favored a given deletion is, and we refer to this score as mean score through-
out this work.

We first examined the distributions of each structural property between tolerated and
non-tolerated deletion mutants. All structural quantities we considered displayed distinct
distributions between mutant classes. In particular, deleted residues that resulted in non-
functional mutants had, on average, lower RSA (Fig 3A, ¢ test, P = 1.030 x 10~°) and higher
WCN (Fig 3B, t test, P = 2.998 x 1077) than did residues that resulted in functional mutants.
Further, most functional mutants had deletions in unstructured loop regions, whereas most
non-functional mutants had deletions in highly structured beta sheets (Fig 3C, y* contin-
gency table, P = 3.642 x 10™°), as previously observed [16]. Finally, when comparing mean
scores from protein design across mutant classes, we found that, on average, functional
mutants had lower (more negative) scores (Fig 3D, t test, P = 2.084 x 107%) than did non-tol-
erated mutants.
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Fig 1. Tolerated and non-tolerated deletions in enhanced GFP (eGFP). The eGFP backbone is shown in cyan, and the
chromophore responsible for florescence is shown in green. (A) Tolerated deletions. (B) Non-tolerated deletions. The C, carbon of
each deleted residue is represented by a sphere. Deletions that resulted a functioning protein (tolerated deletions) are colored yellow
(A) and deletions that resulted in a non-functional protein (non-tolerated) are colored red (B). Tolerated deletions seem to be
clustered towards the top and bottom of the structure, whereas non-tolerated deletions occur throughout the protein.

https://doi.org/10.1371/journal.pone.0164905.g001

Prediction of functional status

The systematic variation in structural properties between tolerated and non-tolerated deletions
suggested that protein structure was a viable metric for predicting tolerance to deletions. We
therefore assessed how well these structural properties could directly predict the functional sta-
tus of a given mutant. We constructed a series of logistic regression models using various com-
binations of the four structural predictors RSA, WCN, secondary structure (SS), and mean
score.

For each logistic regression model, we inferred an ROC curve and calculated the Area
Under the Curve (AUC) to assess the model’s predictive ability. AUC ranges from 0 to 1,
where 0.5 indicates a model that performs no better than random chance and 1 indicates a
model with perfect prediction ability. We additionally performed multiple rounds of 10-fold
cross-validation for each model, computed an AUC value for each round of cross-validation,
and recorded mean and standard error of this cross-validated AUC for each model. We used
the cross-validated AUC as the primary measure of model performance.

We first used RSA and WCN individually as single predictors of functional status. Both
WCN and RSA were significant predictors of deletion tolerance (Table 1), each performing
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Fig 2. Visualization of the computational modeling pipeline. Colors represent variation between structural models produced by each
protocol. (A) Generating an eGFP structure without chromophore. We first removed the chromophore and used Rosetta relax to optimize the
pared-down structure. We then chose the lowest scoring model (best representative structure) from the 100 relaxed structures and
reinserted the missing residues using RosettaRemodel. Finally, we picked the lowest scoring model from this protocol as the template for
further analysis. (B) Generating deletion mutants. For each individual deletion mutant we considered, we first generated 25 structures using
Modeller. We then refined these structures with Rosetta relax, generating four relaxes structures for each of the 25 Modeller structures.
Finally, we calculated the mean score over these 100 models and used this score as a predictor of functional status for each mutant.

https://doi.org/10.1371/journal.pone.0164905.9002

better than random chance. WCN proved to be a much stronger predictor than was RSA, with
a mean cross-validated AUC of 0.820 for WCN versus 0.681 for RSA.

We next included residue secondary structure (SS) classification in our logistic regressions.
Secondary structure for a given residue had three possible values: beta-sheet (sheet), alpha-
helix (helix), or loop (loop). The mean cross-validated AUC for a model with SS as a single pre-
dictor was 0.706, indicating that the location of residue in a given structured or unstructured
region was a stronger predictor of deletion tolerance than was RSA but a weaker predictor
than was WCN. Interestingly, the model AUC with SS as a single predictor was much higher
than was this model’s corresponding mean cross-validated AUC value (Table 1). By contrast,
model AUC and cross-validated AUC were very similar for models using WCN or RSA as pre-
dictors. This discrepancy suggested that SS models may have been more sensitive to the train-
ing set used and further that WCN and RSA were more consistent predictors compared to SS.

Finally, we used the mean score of the 100 designed structures as a single predictor of func-
tional status. Mean score proved to be a better predictor of deletion tolerance than both RSA
and SS, but WCN was still the best predictor of tolerance to deletion of a residue (Table 1).
Therefore, when each predictor was considered individually, WCN emerged as the strongest
predictor of functional status.

We also performed logistic regressions that incorporated these four predictors in various
combinations. In general, using multiple predictors yielded better performing models, even
though WCN alone outperformed several combinations of other predictors, including a model
using all other three predictors (RSA, SS, mean score) (Table 1). Overall, the best model for
predicting functional status contained the three predictors RSA, WCN, and mean score, yield-
ing a mean cross-validated AUC value of 0.901. This model was significantly better than the
next best model, the model with RSA, WCN, and SS as predictors, which had a mean cross-val-
idated AUC value of 0.885 (¢ test, P < 2.2 x 107'°). In fact, four of the top six logistic regression
models scored by mean cross-validated AUC had mean score as a predictor, and only three
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Fig 3. Structural properties of functional and non-functional deletions. (A) Distribution of RSA among deletions. On average, residues
with tolerated deletions are more exposed than residues with non-tolerated deletions (ttest, P=1.030 x 1073). (B) Distribution of WCN
among deletions. On average, residues with tolerated deletions have lower WCN than residues with non-tolerated deletions (ttest,
P=2.998 x 1077). (C) Secondary structure of deletions. Non-tolerated deletions are colored in blue and tolerated deletions are in red. The
majority of the residues deleted in the loop regions and alpha helix regions are tolerated and result in a functioning fluorescent phenotype.
78.3% and 66.7% of deleted residues are tolerated in loop and helical regions, respectively. However, only a small fraction of residues
(21.6%) deleted in areas of the proteins that make up a beta sheet are tolerated. These relative frequencies are significantly different from
each other (2 contingency table, P= 3.642 x 107°). (D) Distribution of mean scores among deletions. Residues that are tolerant to deletion
have lower scores (i.e., more negative) on average than non-tolerant residues (ttest, P=2.084 x 107).

https://doi.org/10.1371/journal.pone.0164905.9003

had SS as a predictor. All models containing WCN as predictor performed better than did
models without WCN as a predictor.
We next complemented our logistic regressions using a second machine learning approach,
support vector machine (SVM) learning, to predict functional status using the same four pre-
dictors. Again, we performed 10-fold cross-validation on SVM models, and we used the mean
cross-validated AUC to measure prediction accuracy. Except in the case of the model with
WCN, SS, and mean score as predictors of functional status, logistic regression models yielded
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Table 1. Summary of AUC values for logistic regression models. The structural properties analyzed are
RSA, WCN, secondary structure (SS), and mean score. Model AUC indicates the AUC resulting from fitting a
logistic regression to the entire dataset, and mean cross-validated AUC indicates the averaged AUC calcu-
lated from repeated 10-fold cross-validation. Models are sorted in order of descending cross-validated AUC.

Model Model AUC Mean cross-validated AUC * Standard Error
RSA + WCN + Mean Score 0.930 0.901 + 0.0007
RSA + WCN + SS 0.920 0.885 + 0.0009
RSA + WCN + Mean Score + SS 0.923 0.880 + 0.0009
WCN + Mean Score 0.875 0.861 + 0.0003
RSA + WCN 0.876 0.860 + 0.0006
WCN + SS + Mean Score 0.841 0.844 £ 0.0008
WCN + SS 0.872 0.841 +0.0008
WCN 0.833 0.820 + 0.0004
RSA + Mean Score 0.830 0.812+0.0008
Mean Score 0.875 0.800 + 0.0005
RSA + SS + Mean Score 0.850 0.797 £0.0015
SS + Mean Score 0.841 0.788+0.0014
RSA +SS 0.808 0.769 + 0.0011
SS 0.843 0.707 £ 0.0018
RSA 0.699 0.682 + 0.0007

https://doi.org/10.1371/journal.pone.0164905.t001

higher mean cross-validated AUC values compared to SVM. (Fig 4). However, differences
between the two approaches were minor, and results from the SVM analysis largely agreed
with those from the logistic regression analysis (Table 2). The top six scoring models were the
same as those in the logistic regression analysis, although in a slightly different order. Impor-
tantly, the model including the three predictors RSA, WCN and mean score was once again
the best scoring model. With a mean cross-validated AUC value of 0.874, it was significantly
better than the second best model, the model with all four predictors, that had a mean cross-
validated AUC value of 0.869 (t test, P < 5.67 x 10”*). That including secondary structure as a
predictor did not substantially improve models suggests that information contained in second-
ary structure may be effectively captured by more fundamental residue-level properties such as
WCN and RSA.

Covariation among structural predictors

Both logistic regression and SVM analyses revealed that including multiple predictors signifi-
cantly increased prediction accuracy, but also that including all four predictors did not yield
the overall best model. Moreover, secondary structure was the overall weakest predictor, a
finding that seemed surprising and counter to the observation that deletions are most tolerated
in loops and rarely tolerated in beta sheets (Figs 1 and 3C). To gain additional insight into how
the various predictors co-vary and separate tolerated from non-tolerated deletions, we per-
formed a principal component analysis (PCA) of the structural predictor variables and visual-
ized the response (i.e., tolerated or non-tolerated deletion) in principal component space. The
PCA revealed that non-functional and functional mutants largely separated along PC1 (Fig
5A), the axis with most variance in the data. By contrast, PC2 separated sites in helices (high
PC2 value) from sites in other secondary-structure regions (PC2 value near zero).

When looking at the rotation matrix (Fig 5B), we found that WCN and RSA were nearly
perfectly collinear, but with opposite signs (since increasing RSA corresponds to decreasing
WCN), and both were also highly collinear with the secondary structure category “Loop”.
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Fig 4. Comparison of mean cross-validated AUC from SVM and logistic regression models. For each set of
predictor variables, the mean cross-validated AUC value from the corresponding SVM is plotted against the mean cross-
validated AUC value from the corresponding logistic regression model. The dotted gray line represents the line y = x. For
all but one model, logistic regression models with the same predictors have higher mean cross-validated AUC values.

https://doi.org/10.1371/journal.pone.0164905.g004

Thus, loops tended to occur primarily in regions with high RSA and low WCN, meaning the
secondary-structure classification did not provide much additional information beyond what
RSA and WCN had provided. Moreover, we see from Fig 5A that not all deletions in loops
were tolerated, and the non-tolerated deletions occurred at sites with lower RSA and higher
WCN.

Finally, the mean score from protein design was not fully collinear with any other predictor,
even though it was most similar to the secondary-structure category “Sheet”. We believe that
this observation explains why mean score tended to perform better than secondary structure
when added as predictor to models already containing RSA and WCN. As Fig 5A shows, not
all deletions in sheets were non-tolerated, and those with lower (i.e., more negative) mean
scores were more likely to be tolerated.

Discussion

We systematically investigated whether protein structural quantities known to predict evolu-
tionary rate in proteins could also predict tolerance to deletions, using experimental results
from enhanced green florescent protein (eGFP) as a case study. In this context, we chose to
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Table 2. Summary of AUC values for models using a Support Vector Machine (SVM). The structural
properties analyzed are RSA, WCN, secondary structure (SS), and mean score. Model AUC indicates the
AUC resulting from the entire dataset, and mean cross-validated AUC indicates the averaged AUC calculated
from repeated 10-fold cross-validation. Models are sorted in order of descending cross-validated AUC.

Model Model AUC Mean cross-validated AUC * Standard Error
RSA + WCN + Mean Score 0.945 0.874 +0.0011
RSA + WCN + Mean Score + SS 0.943 0.869 + 0.0010
RSA + WCN + SS 0.918 0.864 +0.0014
WCN + SS + Mean Score 0.906 0.860 + 0.0008
WCN + Mean Score 0.910 0.854 + 0.0009
RSA + WCN 0.913 0.842+0.0016
RSA + SS + Mean Score 0.896 0.793+0.0016
WCN + SS 0.868 0.786 +0.0016
RSA + Mean Score 0.872 0.782+0.0019
Mean Score 0.831 0.763+0.0013
WCN 0.820 0.757 £0.0015
SS + Mean Score 0.853 0.755 + 0.0022
RSA +SS 0.821 0.745 + 0.0022
SS 0.763 0.696 + 0.0019
RSA 0.755 0.636 + 0.0025

https://doi.org/10.1371/journal.pone.0164905.t002

examine the predictive value of RSA and WCN, because both are highly predictive of protein
tolerance to amino-acid substitutions [1]. We additionally considered protein design as a
structural predictor, allowing us to examine the influence of several more sophisticated bio-
physical factors, such as Coulomb and hydrogen-bond interactions, which are accounted for
within the Rosetta energy function. We found that models which consider the structural quan-
tities RSA and WCN in conjunction with protein design scores provided the best predictions
for whether a given deletion will be tolerated and yield a functional protein product. Overall,
residues with higher RSA, lower WCN, and more negative mean scores tended to tolerate dele-
tions more than did the converse. Our results therefore demonstrate that structural quantities
known to correlate with evolutionary rate, i.e. RSA and WCN, may also be useful for predict-
ing whether or not a protein will tolerate a deletion. As such, we find that structural consider-
ations impose broad constraints on protein evolution, on single amino-acid substitutions and
deletions alike.

While secondary structure was a significant predictor of functional status following dele-
tion, models with the best predictive power generally did not incorporate secondary structure.
In other words, although deletions in functional mutants were typically in loop regions, and
non-functional deletions occurred primarily in regions with secondary structure, secondary
structure itself may not represent a strong predictor. Instead, secondary structure may in fact
be a proxy for the fundamental residue-level properties, such as packing density, which actu-
ally govern protein tolerance to deletions. This finding mirrors historical trends in our under-
standing of biophysical constraints on amino-acid substitutions: While early work suggested
that secondary structure provided the predominant constraint on evolutionary rate, advances
in the field demonstrated that secondary structure was far less predictive that quantities such
as WCN [1].

We further showed that protein design offers significant predictive power for a deletion’s
functional status. Interestingly, this result contrasts somewhat with identified predictors of
protein substitution rate, where protein design has had minimal predictive ability compared to
WCN or RSA [33, 34]. For deletions, although WCN was still a better single predictor than
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https://doi.org/10.1371/journal.pone.0164905.9005

was protein design mean score, including protein design in multi-predictor models led to con-
sistent model improvement (Tables 1 and 2). Our principal components analysis suggested
that design scores were helpful because they could distinguish sites in a-helices from sites in -
sheets, whereas WCN and RSA could not (Fig 5B). Future work will have to resolve whether
this finding is specific to the beta-barrel structure of GFP or whether protein design is helpful
in predicting tolerance to deletions even in structures without extensive beta sheets.

In this work, we have leveraged an existing experimental dataset [16], consisting of numer-
ous deletions in a single protein, to delineate the biophysical constraints controlling tolerance
to small deletions in proteins. Our work is markedly distinct from much of the prior work
investigating where insertions and deletions (indels) can occur in proteins. Prior work investi-
gating evolutionary pressures on indels have relied largely on sequence alignments and/or
ortholog comparisons [12, 17, 35, 36]. This approach inherently can only identify protein
regions where indels are tolerated, but it cannot comprehensively reveal the evolutionary con-
sequences of indel events. Indeed, in natural sequences, selection will have already purged
non-functional proteins from the evolutionary history and only putatively functional proteins
will remain. By contrast, using an experimental dataset allows us to compare directly the prop-
erties of selectively tolerated vs. non-tolerated deletion mutants.

Importantly, our study considered only the functional consequences of single—amino-acid
deletion mutants, as opposed to insertions and indels spanning multiple amino-acids. It is
therefore possible that the evolutionary constraints we have identified pertain only to a small
subset of indel types, and future work may elucidate how evolution constrains more complex
indel events. For example, proteins appear to feature some amount of structural plasticity,
allowing them to undergo compensatory structural adjustments in response to indels [13, 37-
39]. It is possible that the tolerance to deletions may be specific to the compensatory abilities of
a given protein, or a given protein domain.

We further emphasize that eGFP features a unique beta-barrel structure that differs from
other structural families, such as globular or transmembrane proteins. Large-scale deletion
studies on other protein families would be desirable but do not currently exist. Future studies
will have to shed light on whether the constraints we have identified here pertain to proteins
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from different structural families. However, because WCN and RSA have consistently been
identified as key predictors of protein tolerance to substitution across proteins of widely vary-
ing structures, it is likely that WCN and RSA will emerge as critical predictors of indels for
other proteins, and protein families, as well. We expect that the trends we have identified in
eGFP will form a robust foundation for future work to elucidate how protein structure influ-
ences the evolution of indels, ultimately providing a comprehensive picture of the forces that
govern protein evolution.
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