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Metabolite profiles from biological samples suffer from both technical variations and subject-specific variants. To
improve the quality of metabolomics data, conventional data processing methods can be employed to remove
technical variations. These methods do not consider sources of subject variation as separate factors from biolog-
ical factors of interest. This can be a significant issue when performing quantitative metabolomics in clinical trials
or screening for a potential biomarker in early-stage disease, because changes in metabolism or a desired-metab-
olite signal are small compared to the total metabolite signals. As a result, inter-individual variability can interfere
subsequent statistical analyses. Here, we propose an additional data processing step using linear mixed-effects
modelling to readjust an individual metabolite signal prior to multivariate analyses. Published clinical metabolo-
mics data was used to demonstrate and evaluate the proposed method. We observed a substantial reduction in
variation of each metabolite signal after model fitting. A comparison with other strategies showed that our pro-
posed method contributed to improved classification accuracy, precision, sensitivity and specificity. Moreover,
we highlight the importance of patient metadata as it contains rich information of subject characteristics,
which can be used to model and normalize metabolite abundances. The proposed method is available as an R

package Imm2met.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Metabolites are the low molecular weight compounds that partici-
pate in the network of chemical reactions supporting cell growth and
function [1-3]. It is now widely accepted that metabolomics or metabo-
lite profiling can elucidate metabolic and physiological statuses of living
systems in response to genetic conditions, pathological stimuli and en-
vironmental stress [4,5]. Metabolomics facilitates a deeper understand-
ing of pathophysiological stages, mechanisms of diseases, and drug
responses. Furthermore, the technology is becoming a valuable tool
for the identification of more specific and sensitive diagnostic and prog-
nostic disease biomarkers [6]. Thus, metabolomics is being exploited in
several aspects of both modern or traditional biomedical research.
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Metabolomics analysis aims to identify and quantify all possible me-
tabolite species from bodily fluids (such as serum, plasma, saliva and
urine) or tissue samples. The analysis focuses on small molecules with
molecular weight <1 kDa [7]. With the recent advancements of both
mass spectrometry (MS) and nuclear magnetic resonance (NMR),
approximately 100-1000 different small molecules can be routinely de-
tected and quantified. Nonetheless, metabolomics conducted in clinical
research usually suffers from high dimensionality, small sample sizes,
and low signal-to-noise ratios [8]. The consequences of such issues in-
clude the loss of statistical power, low confidence in biomarker identifi-
cation, and poor reproducibility. Moreover, quantitative metabolomics
in clinical trials or in the discovery of disease-onset biomarkers is highly
challenging due to a small change in metabolism.

The analysis of metabolomics data is a considerable challenge be-
cause the intensity of a metabolite signal from MS or NMR is the combi-
nation of the desired signal from an analysis, undesired signals from
inter-subject differences, and noise from technical analysis [9,10]. The
key sources of signal contamination from technical analyses are per-
sonal errors, batch effects, fluctuation of instrumental sensitivity,
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changes of mobile-phase compositions, and column degradation or loss
of chromatographic performance over time. To overcome these, a num-
ber of approaches have been proposed, including normalization by the
median, the sum of squares, regression of abundances in each sample
[11], the use of quality assurance/quality control through samples or in-
ternal standards [10,12-14] and standard reference materials [15,16].
Using these strategies to standardize metabolite abundances prior to
univariate or multivariate analysis greatly enhances the quality of meta-
bolomics data as well as biological interpretation. Although these ap-
proaches can largely remove undesired signals from the dataset,
biological factors such as diet, medication, physical activity, genetic
background and demographic diversity [9] remain a significant chal-
lenge in data analysis, and can be misleading regarding the outcome
of phenotypic detection.

Linear mixed-effects models (LMMs) are considered robust and
powerful tools for analyzing data with complex, correlated structures
and multiple sources of variation [17]. An individual parameter in the
LMM model represents either a fixed or a random effect. A fixed effect
is an average effect of a particular experimental factor that is constant
across an entire population [18]. A random effect is unobserved random
variation associated with individual subject that is randomly selected
from a population [18,19]. The method explicitly incorporates both
fixed effects and random effects, which accounts for unwanted sources
of variation in individual measurements. LMM fitting has had great suc-
cesses in univariate analysis for the identification of genes or metabo-
lites significantly affected by a factor of interest [20-24]. However,
using an LMM approach for processing metabolomics data has not
been thoroughly exploited. The method proposed by De Livera et al. ap-
plies the LMM method to remove undesired variation [9,10]. However,
this approach requires nonchanging metabolites (metabolites that are
not changed or affected by factors under study) of a particular experi-
ment beforehand. The studies from Westerhuis et al. [25] and Liquet
etal. [26] use a multilevel approach, comparable with the LMM method,
in conjunction with partial least squares-discriminant analysis (PLS-
DA) and sparse PLS-DA (sPLS-DA) to examine the treatment effect
from repeated measures experiment. This approach separates be-
tween-subject variation from within-subject variation before applying
the multivariate approaches to the within-subject variation matrix,
which is assumed to represent the treatment effect [26]. However,
sources of subject variation are not explicitly delineated. In contrast,
the LMM approach enables subject metadata, which includes informa-
tion such as demographics, medication status, food intake and other
subject characteristics, to be fully utilized and flexibly incorporated to
form LMMs.

In this study, we propose the use of LMMs as an additional data pro-
cessing step for adjusting an individual metabolite signal in metabolo-
mics data. We highlighted the core benefit of the LMM approach
which allows the formulation of various random effect terms to cope
with a variety of unobserved random variance. We demonstrated the
benefit of the LMM approach using patient metadata to model a meta-
bolomics data matrix. Predictive power of discriminative features se-
lected from PLS-DA (and OPLS-DA) with and without the use of
LMMs, and from multilevel PLS-DA, was evaluated and compared. All
studies were performed using published clinical metabolomics data.

2. Materials and Methods
2.1. Datasets

Two published metabolomics datasets were used in this study to
demonstrate and evaluate the utility of the proposed LMM method.
The first study was that of Liesenfeld et al. [27], a dataset of adipose tis-
sue samples from 59 colorectal carcinoma (CRC; including both colon
and rectal cancer) patients with tumor stages ranging from I-IV. Two
types of adipose tissues, subutaneous adipose tissue (SAT) and visceral
adipose tissue (VAT), were dissected from the same patient. In this

study, the authors report primary metabolites and lipids measured
using gas chromatography time-of-flight mass spectrometry (GC-TOF
MS) and liquid chromatography qTOF MS (UPLC-QTOF MS). The data
is available through the Metabolomics Workbench [28] with assigned
Project ID: PRO00058; Study ID: ST0O00081. We used 158 annotated
lipids from both VAT and SAT in 59 patients and the patients' metadata
is summarized in Table 1. The second dataset was obtained from Wikoff
et al. [21] where they performed metabolite profiling of matched malig-
nant and non-malignant lung tissues from 39 early stage adenocarci-
noma patients. The data is available through the Metabolomics
Workbench [28] with assigned Project ID: PR0O00305; Study ID:
ST000390. A total of 462 metabolites were measured by GC-TOF MS,
183 of which had annotated chemical structures. The metadata of this
study are given in Table S-1. Both datasets were pre-processed as de-
scribed previously [21,27] and log2-transformed prior to use in this
study.

2.2. Linear mixed-effects models

The standard formulation of an LMM?2® is described in eq. 1:
Yij = Bo + to; + 2BXi + € (1)

We denote the abundance of the j# metabolite for the i sample as
yiji; wherei = 1,2,... , thenumber of samples (n),j = 1,2, ... , the number
of metabolites (m), B is the overall mean or baseline level of metabolite
abundance across the whole population (intercept), t; is the random
effect of the i sample (or an individual's variation) and €;jis the random
error of the model associated with samples and metabolites. The levels
of metabolites are the consolidation of between-subject variation or un-
observed random variables and the fixed effects, which account for the
effect of the factor of interest (e.g. treatment) and the effects of other
known endogenous factors (e.g. age and gender ). These factors are rep-
resented as Xy; where k = 1, 2, ..., the number of fixed effects (p) and 3
is the coefficient or the level of effect associated with factor Xj.

The workflow of metabolomics data analysis is illustrated in Fig. 1
[30]. For the proposed data processing step, each measured metabolite
is fitted to an LMM. The effects of experimental factors and known sub-
ject variations are assumed to have a fixed effect on a population. Ac-
cordingly, both the factors of the study and subject characteristics
explicitly form the fixed-effects part of the model. Meanwhile, other un-
observed or uncontrolled random factors are included in the random ef-
fects. In general, the random-effect term can be formulated in different
forms as described in Bates et al. [29]. The random effect is assigned de-
pending on the grouping factor and the assumption of the study. In our
context, the random-effect formulation uses the paired structure of the
data to indicate a random intercept, where mean levels of metabolites

Table 1
Metadata of patients (n = 59) with colorectal carcinoma.
Variables Values
Age, mean + SD 62.92 + 13.71
Sex, n (%)
Female 16 (27)
Male 43 (73)
BMI, mean 4 SD 27.14 £ 438
Tumor stage, n (%)
Stage | 9 (15)
Stage Il 23 (39)
Stage Il 16 (27)
Stage IV 11 (19)
Tumor location, n (%)
SAT: Colon 26 (44)
SAT: Rectum 25 (42)
VAT: Colon 33 (56)
VAT: Rectum 34 (58)
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Data pre-processing

Data processing:

Data analysis and interpretation

e Univariate analysis
* t-test and ANOVA
+ Multivariate analysis

i * Peak picking * Normalization * PCA, PLS-DA, OPLS-DA
MS l * Peak alignment « Scaling | * Machine learning method
| * Retention time | * Centering | | * support vector machines
correction * Transformation (SVM) and random forest (RF)

* Pathway-based analysis
* Network-based analysis
-+ Visualization

Data processing with LMM

Fig. 1. Metabolomics data analysis workflow. For the general analysis workflow, the main steps include data pre-processing, data processing, and statistical analysis and biological
interpretation. Data pre-processing, such as noise reduction, peak matching and retention time correction, is to manage raw/original signals acquired from mass spectrometry (MS)
platforms. Data processing includes normalization, scaling, centering and transformation. In this study, the LMM method (in red) is proposed as an additional step performed after the
conventional data processing tasks. The processed data matrices are subsequently assessed to probe metabolite biomarkers discriminating between experimental conditions by a
variety of statistical approaches, including univariate analysis, multivariate analysis and machine learning methods. The downstream analysis of the statistical outputs employs
pathway-based analyses, network-based analyses and visualization tools to aid biological interpretation of the statistical results.

are treated as different among individuals. This random-effect term is
considered the simplest form [29] and was used in this study.

The LMM approach is flexible to formulate a variety of the random-
effect terms specific for the experimental design and assumption of
each study, such as single and multiple random-effect terms, nested,
crossed, correlated and uncorrelated random effects [29]. Herein, we
additionally investigated and compared different formulations of the
random-effect terms to model metabolomics data matrices of adipose

4-fold CV with 5 repeats

tissue and lung tissue samples. Detailed information and discussion re-
garding this investigation is included in Supplementary file S-1.

We developed the R package Imm2met to process a metabolomics
matrix with the LMM approach. The package was implemented on a lin-
ear model-fitting procedure of the Ime4 package [29]. The format of the
random-effect term follows Ime4 formulas [29]. The output from LMM
fitting is a matrix of processed metabolite profiles, which accounts for
the given fixed effects and the subject-specific random effects. This is to
ensure that the metabolite signals of the factor under study are minimally

[ Metabolomics Data J

Training set
' |
- No LMM - Fitting | | ML - Spllttlng
processing LMMs variation
v v v
Multivariate analysis
= PLS-DA on MO, LMM and ML
* OPLS-DA on M0 and LMM
Discriminative features
(VIP > 1) 1 1 1
[ PLS model PLS model PLS model
A J v v
Model evaluation ]‘

F

Fig. 2. Flowchart of prediction evaluation. The original data (adipose tissue data or lung cancer data) was first partitioned into training and test sets with a repeated 4-fold cross validation
(CV). This step was iterated five times to generate 20 groups of training and test data sets. There were three different approaches to process the training sets: MO, LMM and ML. PLS-DA was
performed after MO, LMM and ML. OPLS-DA was performed only after MO and LMM. Then, the discriminative features (VIP > 1) from each method were used to construct a PLS
classification model and its prediction performance was evaluated by a corresponding test set.
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confounded by individual variation. The resulting matrix can be used fur-
ther in multivariate methods such as PLS-DA and OPLS-DA. Moreover, the
coefficients of fixed effects together with statistical significances by chi-
square test are returned. R package Imm2met, online documentation,
and tutorial is available at https://github.com/kwanjeeraw/Imm2met.

2.3. Evaluation of class prediction performance

A flowchart of the prediction evaluation process is given in Fig. 2.
First, each dataset was partitioned into training and test sets with a re-
peated k-fold cross validation [31] (k = 4). This approximately gives
75% of the dataset as a training set and the remaining 25% as a testing
set. Data partitioning was repeated five times resulting in 20 groups of
training and test sets. We investigated differences between three data
processing approaches as I) the original data with no extra processing
(MO), II) the data fitted with an LMM approach (LMM), and III) the
data processed with a multilevel-based approach (ML). The MO- and
LMM-processed training sets were subsequently analyzed with PLS-
DA and OPLS-DA. The ML-processed training sets were subjected to
only PLS-DA as implemented in the mixOmics package. The discrimina-
tive features from each strategy were selected for training and building
a PLS classification model, where its class prediction was assessed by the
corresponding test set afterwards. The significant features were se-
lected based on variable importance in projection score (VIP>1),
which represents the contribution of individual feature to group separa-
tion [32].

We measured and compared the performance metrics in terms of
accuracy, precision, sensitivity and specificity among the different
methods. The performance values of each PLS classification model are
the average estimates of 20 subsets of training and test data. All analyses
were performed using R (https://www.r-project.org/). The evaluation
processes were carried out using the caret package [33]. The mixOmics
package [34] was applied for PLS-DA and multilevel-based PLS-DA.
OPLS-DA was performed with the ropls package [35]. Two published
metabolomics datasets: adipose tissue data and lung cancer datasets
were used to evaluate the proposed LMM approach.

3. Results and Discussion

3.1. Application of an LMM approach in analyzing adipose tissue data from
colorectal cancer patients

We applied the LMM method, a flexible approach that incorporates
metadata, to readjust the signal of metabolite intensity. This is an addi-
tional data processing step from conventional metabolomics data anal-
ysis (Fig. 1). We demonstrated the proposed method with lipid profiles
of adipose tissue samples. The metadata information of 59 patients
(Table 1) was used to formulate LMMs. From the original study
[27,28], the authors predominantly investigated differences in metabo-
lite compositions in VAT and SAT. We also assumed that the total signal
of a metabolite measured experimentally may be influenced by intra-
subject factors or subject characteristics [36]. Hence, we considered tis-
sue type, age, BMI, sex, tumor location and tumor stage as the fixed ef-
fects. The coefficients of these factors were estimated during LMM
fitting (Table S-2). Patient identifier (Id) was assigned as a random-ef-
fect term in the model, assuming mean levels of metabolite abundances
are varied among patients because of other unobserved factors. This
strategy is particularly useful for explicit adjustment of multiple sources
of biological factors. It is more flexible than other methods such as the
ML method which exclusively considers subject characteristics as a ran-
dom subject effect [25,26].

Initially, we investigated how the additional data processing with
LMM fitting affects metabolite abundances. It can be seen that variance
of a metabolite across all patients was substantially reduced and outliers
were corrected after LMM fitting (Fig. 3a and Fig. S-1). The use of within
group relative log abundance (within group RLA) [9] plots is to examine

overall variation of patients. These plots were obtained by first comput-
ing the median of each metabolite within each tissue type, then
subtracting the median from each metabolite within groups and illus-
trating as subject-wise boxplots [9,10]. Here, LMM fitting helped mini-
mize patient variation as the subject-wise boxplots after LMM fitting
had a median closer to zero and showed less variability within tissue
type (Fig. 3b). To evaluate the performance of LMM fitting, we first
employed principle component analysis (PCA) to observe intrinsic var-
iability structure of the data before and after LMM fitting. The PCA score
plot of data fitted with LMM (Fig. 3d) depicted better separation be-
tween SAT and VAT with 6% increase in explanation of variation on
PC1 in comparison with the original data (Fig. 3c). These results sug-
gested that accounting for both fixed and random effects to refine a me-
tabolite signal could clearly improve the explanation of variance on PC1
generally capturing the maximum variation of the data.

Next, we performed PLS-DA on the LMM and MO datasets. In total,
there were 69 and 66 significant metabolites or discriminative metabo-
lites (VIP > 1) that were identified in the LMM and MO datasets, respec-
tively, in which 60 metabolites were commonly identified in all
processed datasets (Fig. S-2 and Table S-3). Nine unique metabolites
were captured in the LMM dataset, whereas there were six distinct me-
tabolites from the MO dataset. Fig. 4 presents an overview structure of
those metabolites solely identified in the LMM dataset. Within the
same tissue, metabolite variance was clearly minimized, such that the
pattern of a metabolite between two tissues became more distinct
after LMM fitting.

In addition, we investigated the changes in VIP scores of those
unique metabolites from the LMM and MO datasets (Fig. S-3). Among
them, the VIP score of cholesterol showed the largest increases from
the original signal (0.52 arbitrary units higher). The VIP scores of SM
(d40:2) and Acylcarnitine C18:1 were the second and the third largest,
respectively. Before LMM fitting, cholesterol signals were randomly
mixed and indistinguishable (Fig. 4, Cholesterol). One could assume
that cholesterol was neither different between the tissue types nor ob-
scured by other factors, and was therefore not identified by PLS-DA in
the MO dataset. Moreover, cholesterol was not recognized as signifi-
cantly different between two tissues from the ML dataset following by
PLS-DA (ML-PLS-DA). Though ML approach is a data processing step
to cope with confounding variables, this approach does not explicitly
decompose sources of subject variations like the LMM approach. Con-
versely, after processing data through LMM, differences in cholesterol
signals between SAT and VAT were enhanced, in which the cholesterol
in VAT was more abundance than SAT (coefficient of VAT = 0.05 and
p-value = .05, Table S-2).

In the original study, Liesenfeld et al. (2015) observed higher inflam-
matory signaling along with free-arachidonic acid levels in VAT than in
SAT [27]. Arachidonic acid has been previously shown to regulate cho-
lesterol metabolism [37]. Furthermore, it has been reported that meta-
bolic dysfunction of lipid metabolism influences hormonal pathways,
inflammation, and tumor progression [27,38]. High serum cholesterol
levels have been associated with CRC [38-40] and other cancers such
as prostate cancer [41] and breast cancer [42]. Wang et al. (2017) re-
cently proposes that the activation of reactive oxygen species (ROS)
and the mitogen-activated protein kinase (MAPK) pathway by low-
density lipoprotein cholesterol (LDL) can elevate intestinal inflamma-
tion and CRC progression [39]. Thus, cholesterol is highly likely to play
an important role in CRC development. As the cholesterol signal was
found to significantly discriminate between VAT and SAT in our method,
this suggested that the systematic adjustment of mixed effects in each
metabolite could indeed increase sensitivity and a chance to identify im-
portant metabolites.

On the other hand, four metabolites of triglyceride (TG) and two me-
tabolites of phosphatidylcholine (PC) lipid families were exclusively
identified in the MO dataset (Table S-3). The VIP scores of those metab-
olites slightly decreased after LMM fitting, however these scores varied
between 0.92 and 1.00, which were still considerably high (Fig. S-3).
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Fig. 3. Effects of LMM fitting represented by various plots. (a) Variance of metabolites from both adipose tissues, before (black) and after (colored) LMM fitting. (b) Within-group RLA plots.
(c) PCA score plots of adipose tissue samples before and (d) after LMM fitting.
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Fig. 4. Variation of nine significant metabolites exclusively identified in the LMM dataset before and after LMM fitting. Changes of VIP scores after LMM fitting (AVIP): Cholesterol; AVIP =
0.52, SM (d40:2); AVIP = 0.43, acylcarnitine; AVIP = 0.32, SM (d18:1/16:1); AVIP = 0.28, PE (p-38:4) or PE (0-38:5); AVIP = 0.25, TG (50:4); AVIP = 0.20, SM (d40:1) AVIP = 0.11,

plasmenyl-PE (38:3) AVIP = 0.06, PC (30:1) AVIP = 0.02.

3.2. Metabolite concentrations relevant to endogenous factors

After performing PLS-DA on the LMM of the adipose tissue data,
there were nine unique metabolites (cholesterol; sphingomyelin (SM)
species; acylcarnitine; phosphatidylethanolamine (PE) species; triacyl-
glycerol (TG) species and phosphatidylcholine (PC) species) captured
in the LMM dataset (Fig. 4). The intra-group variance was minimized
whereas inter-group variation became more distinct after LMM fitting
to manage confounding variables. As reported by numerous studies, dif-
ferences in physiological conditions such as age, gender and BMI were
found to have influences on metabolite levels [43-45]. In addition to
disease states, prescribed medication and environmental factors, the
study from Thevenot et al. (2015) [43] identified that the concentra-
tions of 108 urine metabolites of various classes (such as amino acids,
organic acids, acylcarnitines, steroids and lipids) were correlated with
age, BMI or gender. Correlations of age [46,47], BMI [48] and gender
[49] to several lipid species (e.g. PC, PE and SM) are also present in sev-
eral plasma and serum lipid profiling studies. It can be seen that be-
tween-subject variations of metabolite levels are expected in clinical
metabolomics. Therefore, data processing such as the LMM method is
needed to eliminate other sources of unrelated variation.

3.3. Comparing prediction performance between methods

We measured classification accuracy, precision, sensitivity and spec-
ificity to compare performance of the LMM, MO and ML methods. Accu-
racy indicates overall aspects of the test performance. Precision
represents the proportion of positive predictions that are correct, so
high precision can mean a lower number of false positives. Sensitivity
reveals how many actual positive cases can be detected, also implying
the number of false negatives. Specificity is the proportion of actual neg-
ative cases correctly returned.

For adipose tissue data, all three data processing approaches contrib-
uted to considerably high prediction performance with an average value
higher than 90% (Fig. 5). This is because the dataset is from obviously
histologically different tissue types. Though, for all performance metrics,
the proposed LMM method exhibited an improvement over the MO and
ML methods. Surprisingly, the MO-PLS-DA also performed better than
the ML-PLS-DA in all prediction performance aspects. For PLS-DA on
the LMM, MO and ML -processed datasets, accuracy, precision and
specificity were significantly different between the LMM and ML
method (p <.05). Mean differences between the LMM and MO methods
and the LMM and ML methods were about 1%-4%. Large differences



K. Wanichthanarak et al. /| Computational and Structural Biotechnology Journal 17 (2019) 611-618 617

(a) accuracy precision (b) accuracy precision
Wilcoxon, p Wilcexon, p Wilcoxon, p=0.14 Wilcoxon, p = 0.15
0.19 0.0088 0.09 0.01 - - .
10097 < - T T s == i
I = I ok 7 s I Sl =I5
50 50+
3"3‘ 0 0+
E sensitivity specificity sensitivity specificity
= Wilcoxon, p Wilcoxon, p Wilcoxon, p=0.42 Wilcoxon, p = 0.21
0.2 0.017
089 —"— _014 1004 - T a T
100+ T L
& T T T T - E 1= 7 +
50+ 50+
0+ 0-
MO LMM ML MO LM ML MO LMM MO LMM

Method []mo [ umm [

Fig. 5. Comparison of prediction performance using adipose tissue metabolomics data. (a) Performance metrics of PLS models built from LMM-, MO- and ML- PLS-DA and (b) from LMM-
and MO-OPLS-DA. Wilcoxon signed-rank tests were performed to compare the LMM method to the MO and the ML method. P-values are displayed and the level of significance was set at p
<.05. Mean values of the performance metrics are shown in each bar with error bars as standard deviations.

between mean precision and mean specificity of the LMM compared to
the MO and ML methods were observed (approximately 4%), indicating
that properly accounting for subject variation could assist in reducing
the number of false positives or noise. Regarding OPLS-DA on the
LMM and MO -processed datasets, though there was no significant dif-
ference between the methods, the proposed LMM method showed bet-
ter performance over the MO method. Standard deviations of the MO
and ML methods were higher than those of the LMM method. This im-
plies that the prediction performance of the MO and ML method varies
between subsets of training and test data (i.e. some subjects are not
well representative of the target population), affirming the overfitting
issue of PLS-DA and OPLS-DA [1]. Therefore, an additional processing
step is needed, as it can return a more robust signal as a result of system-
atic adjustment of multiple sources of variation.

We also examined the performance of all three methods on the GC-
TOF MS metabolomics data. The original study observed metabolic dif-
ferences in malignant and matched non-malignant lung tissues [21].
Prediction performance of the MO, LMM and ML approach was approx-
imately 80% (Fig. S-4). Overall, the performance metrics of the proposed
LMM method were higher than the MO and ML methods (except spec-
ificity, for which the ML method slightly outperformed the LMM
method), though there was no statistical significance in these differ-
ences. The largest differences observed were those between mean sen-
sitivity of the LMM and MO, and between LMM and ML, which were
approximately 2% and 1.6%, respectively. This suggested that our pro-
posed approach improves the ability to discover putative discriminants
after individual variation adjustment.

4. Conclusion

The identification of small, yet important, signals among a large pool
of confounding sample variation is a considerable challenge in clinical
metabolomics. Several factors such as technical variance and the preva-
lence of uncontrolled variables such as individual differences in race,
gender, age, diet, and lifestyle, highly influence phenotypic detection.

Appropriate procedures are needed to eliminate or normalize technical
and other sources of unrelated variation. In this study, we proposed an
additional data processing step which uses the LMM approach to ac-
commodate variation in features of interest and individual variances,
and to promote identification of discriminative metabolites in subse-
quent multivariate analyses.

We demonstrated the benefit of the proposed method with pub-
lished clinical metabolomics data. In brief, subject-specific variation
in each metabolite was systematically minimized. The LMM fitting
followed by PLS-DA or OPLS-DA improved overall prediction perfor-
mance of PLS classification models. There were more discriminative fea-
tures reported from LMM-PLS-DA than standard PLS-DA, suggesting
that an additional data processing step increases sensitivity, albeit
with the potential introduction of false positives. Therefore, further ex-
periments are recommended to validate the results. However, at cur-
rent stage, our proposed method exhibited superior performance, as it
demonstrated superior accuracy, precision, sensitivity and specificity
than the MO and ML methods in both UPLC-QTOF MS and GC-TOF MS
datasets (except specificity of GC-TOF MS dataset, for which the ML
method was slightly better than the LMM method). The use of subject
metadata combined with metabolomics data is increasingly being in-
corporated into metabolomics data analysis [28]. The proposed method
enables the full and flexible utilization of subject metadata. It can be
considered as an additional data processing module in the metabolo-
mics data analysis pipeline.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2019.04.009.
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