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Abstract

Circular RNAs (circRNAs), which are single-stranded closed-loop RNA molecules lacking terminal 5" caps and 3’
poly(A) tails, are attracting increasing scientific attention for their crucial regulatory roles in the occurrence and
development of various diseases. With the rapid development of high-throughput sequencing technologies,
increasing numbers of differentially expressed circRNAs have been identified in bladder cancer (BCa) via exploration
of the expression profiles of BCa and normal tissues and cell lines. CircRNAs are critically involved in BCa biological
behaviours, including cell proliferation, tumour growth suppression, cell cycle arrest, apoptosis, invasion, migration,
metastasis, angiogenesis, and cisplatin chemoresistance. Most of the studied circRNAs in BCa regulate cancer
biological behaviours via miRNA sponging regulatory mechanisms. CircRNAs have been reported to be significantly
associated with many clinicopathologic characteristics of BCa, including tumour size, grade, differentiation, and
stage; lymph node metastasis; tumour numbers; distant metastasis; invasion; and recurrence. Moreover, circRNA
expression levels can be used to predict BCa patients’ survival parameters, such as overall survival (OS), disease-free
survival (DFS), and progression-free survival (PFS). The abundance, conservation, stability, specificity and detectability
of circRNAs render them potential diagnostic and prognostic biomarkers for BCa. Additionally, circRNAs play crucial
regulatory roles upstream of various signalling pathways related to BCa carcinogenesis and progression, reflecting
their potential as therapeutic targets for BCa. Herein, we briefly summarize the expression profiles, biological
functions and mechanisms of circRNAs and the potential clinical applications of these molecules for BCa diagnosis,
prognosis, and targeted therapy.
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Background

Circular RNAs (circRNAs) are single-stranded closed-
loop RNA molecules without terminal 5° caps and 3’
poly(A) tails [1]. Although circRNAs were first discov-
ered in viruses in 1976, they were initially regarded as
functionless by-products of aberrant RNA splicing and
consequently did not receive considerable scientific
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attention for decades [2, 3]. CircRNAs are produced
from precursor mRNAs mainly by lariat-driven
circularization and intron pairing-driven circularization,
resulting in three types of circRNAs: exonic circRNAs
(ecRNAs), exon-intron circRNAs (elciRNAs), and in-
tronic circRNAs (ciRNAs) [4-7]. With the rapid devel-
opment of high-throughput sequencing technologies,
increasing numbers of differentially expressed circRNAs
have been identified in normal and malignant human
cells [8]. Numerous circRNAs exist widely in tissues,
serum, and urine, and their expression profiles are cell
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type-specific, tissue-specific, or developmental stage-
specific [9-12]. Increasing evidence suggests that cir-
cRNAs are involved in the occurrence and development
of various diseases, such as cardiovascular diseases [13],
diabetes [14], neurological dysfunction [15], and cancer
[16-19]. In particular, circRNAs have been reported to
play pivotal roles in the development and progression of
cancer and might function as cancer biomarkers and
novel therapeutic targets [20, 21]. CircRNAs perform
regulatory roles at the transcriptional and posttranscrip-
tional levels; for example, they modulate gene transcrip-
tion [6], act as microRNA (miRNA) sponges [22],
interact with RNA-binding proteins (RBPs) [23], and can
be translated into peptides [24].

Bladder cancer (BCa) is the most common malignant
tumour of the urinary system, and its incidence is in-
creasing worldwide [25]. BCa is divided into three main
pathological types: bladder urothelial carcinoma (BUC),
squamous cell carcinoma and adenocarcinoma, with
BUC accounting for >90% of all cases of BCa [26]. To
assign risk, BUC can be further categorized into muscle-
invasive BCa (MIBC) and non-muscle-invasive BCa
(NMIBC), with NMIBC accounting for approximately
75% of all cases [27]. Recently, the treatment of BCa has
achieved great advances worldwide. Apart from trad-
itional surgical resection, chemotherapy, and radiother-
apy, immunotherapy is a promising method for BCa
treatment [28, 29]. However, postoperative recurrence
and distant metastasis make five-year survival rates for
advanced BCa still low [30, 31]. Therefore, identifying
potential therapeutic targets and biomarkers for BCa is
of great importance.

An increasing number of studies have shown that dif-
ferential expression of circRNAs is associated with the
carcinogenesis and progression of BCa. In this review,
we summarize the expression profiles, biological func-
tions and mechanisms, and clinical significance of BCa-
related circRNAs.

Biogenesis, function, and study approaches of circRNAs
Biogenesis of circRNAs

CircRNAs are produced from pre-mRNAs and are
thought to be the result of exon-skipping events.
Although the specific mechanism of circRNA biogenesis
is still unidentified, two widely accepted models of cir-
cRNA circularization can explain the back-splicing pro-
cesses known as lariat-driven circularization and intron
pairing-driven circularization [4]. In the lariat-driven
circularization model, circularization requires covalent
binding between the splicing donor and splicing
acceptor to form an exon-containing lariat, resulting in
the formation of ecRNAs [32]. In the intron pairing-
driven circularization model, circularization is generated
by base pairing between reverse complementary
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sequences. Alu repeats, originally characterized by the
action of the Arthrobacterluteus restriction endonucle-
ase, are repetitive complementary sequences located in
flanking introns and are highly abundant and exist in
more than 10% of the human genome [4, 33]. Introns
consisting of Alu repeats are more likely to pair with
each other, leading to circularization of exons and pro-
duction of diverse circRNAs [34]. Unlike ecRNAs, elciR-
NAs retain introns that are not spliced out completely
[6]. CiRNAs are generated from intron lariats that es-
cape the process of intron debranching and degradation
[5]. In addition, circRNA biogenesis has been reported
to be regulated by a number of proteins, such as RBPs
[23], enzymes [35], and transcription factors [36]. RBPs
are crucial regulatory factors that interact with specific
binding sites in flanking intronic sequences of precursor
mRNAs to promote or suppress circRNA formation. For
example, quaking (QKI) is an RBP that induces exon
circularization and then facilitates the biogenesis of cir-
cRNAs when it binds to intronic QKI binding motifs
[23]. In addition, another RBP, muscleblind (MBL), has
been reported to interact with its own pre-mRNA, lead-
ing to the formation of circMBL [37]. Adenosine deami-
nase acting on RNA (ADAR1), a kind of RNA-editing
enzyme, was reported to negatively regulate the forma-
tion of circRNAs by reducing the RNA pairing structure
of flanking introns and backsplicing [35]. Moreover, the
nuclear RNA helicase DHX9 can reduce the formation
of circRNAs by downregulating Alu element-induced
intron pairing [38]. Finally, the transcription factor
Twistl was found to bind the Cul2 promoter to select-
ively promote the expression of Cullin2 (Cul2) circular
RNA during the epithelial-mesenchymal transition in
hepatocellular carcinoma [36]. In brief, the biogenesis of
circRNAs and the regulatory mechanisms involved in
circularization remain vague. More research is needed to
help us understand the circRNA circularization pro-
cesses in depth.

Functions of circRNAs

CircRNAs were initially regarded as functionless by-
products of aberrant RNA splicing [2, 3]. With the rapid
development of high-throughput sequencing technolo-
gies, an increasing number of circRNAs have been found
to be involved in physiological and pathological pro-
cesses by acting as miRNA sponges [22], interacting with
RBPs [23], regulating transcription or splicing [37, 39],
and translating proteins [24]. Among these biological
processes, circRNAs most commonly exert their func-
tion by sponging miRNAs in tumour cells. For example,
ciRS-7 (circ_Cdrlas) serves as an miRNA sponge of
miR-7, resulting in decreased miR-7 function and upreg-
ulation of miR-7 target genes [40]. In addition to acting
as miRNA sponges, some circRNAs may also serve as
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protein sponges or decoys to interact with RBPs. For in-
stance, circ_Foxo3 was found to block cell cycle progres-
sion by binding to the cell cycle proteins cyclin-
dependent kinase 2 (CDK2) and cyclin-dependent kinase
inhibitor 1 (p21) [41]. In addition, circ-PABPN1 was
found to bind to human antigen R/ELAV-like protein 1
(HuR) and prevent HuR from binding to PABPNI1
mRNA, resulting in the inhibition of PABPN1 transla-
tion [42]. Some circRNAs have also been identified to
regulate gene transcription or selective splicing. Circ_
EIF3] and circ_PAIP2 have been reported to promote
the transcription of PAIP2 and EIF3] by interacting with
U1l snRNPs [6]. Additionally, circ_Mbl was reported to
compete with linear MBL mRNA for selective splicing
[37]. Finally, increasing evidence has demonstrated that
some circRNAs can exert their functions by translating
proteins. Due to the absence of 5'-cap and 3'-poly(A)
structures, circRNAs were initially considered to be un-
translatable [43]. Recently, translatable circRNAs con-
taining internal ribosome entry sites (IRESs) were found
to be translated into proteins in a cap-independent man-
ner [44-46]. For example, circ-ZNF609 was reported to
be translated into a protein that controls myoblast pro-
liferation [24]. In addition, circFXBW?7 can be translated
into a novel 21-kDa protein to suppress the tumorigen-
esis of glioma [47].

Approaches for circRNA studies

To date, genome-wide annotation of circRNAs, experi-
mental validation of circRNAs, and overexpression/sup-
pression of circRNAs are the main approaches to
explore the functional implications of circRNAs. First,
ribo-RNA-seq profiles rRNA-depleted total RNAs, in-
cluding both poly(A) (linear) and nonpoly(A) (circular)
RNAs. In addition, p(A)- RNA-seq profiles only non-
poly(A) RNA. Ribo-RNA-seq or p(A)-RNA-seq com-
bined with RNase R, which digests linear RNAs and pre-
serves circRNAs, is more suitable for biochemical
enrichment detection of circRNAs [48]. In addition, bio-
informatic mapping was used to identify RNA-seq reads
uniquely mapped to back-splice junctions (BS]Js) via a
number of algorithms [49]. In addition to RNA-seq pro-
filing, microarray technology is also used for circRNA
annotation [50]. Second, a series of experimental ap-
proaches, including PCR [51], northern blotting [5], and
RNA fluorescence in situ hybridization (FISH) [6], are
widely used to validate the existence of circRNAs [49].
Finally, overexpression/suppression of circRNAs are
gain/loss of function used to annotate circRNAs’ func-
tion. Overexpression of circRNAs can be achieved in
trans by overexpression plasmids, which contain
circRNA-producing exons and their flanking intronic se-
quences with intronic complementary sequences [52]. In
theory, manipulation of the endogenous promoter with
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the CRISPR/Cas9 genome engineering system or re-
placement of the weak intronic RNA pair with a strong
one can lead to overexpression of both circular and lin-
ear RNAs from a gene locus in cis [49]. RNAi-mediated
degradation [53] and the RNA-guided, RNA-targeting
Casl3 system [54] represent strategies for circRNA
knockdown. The CRISPR/Cas9 genome engineering sys-
tem targeting circRNA-forming exons or disrupting in-
tronic RNA pairs are strategies for circRNA knockout
[55, 56]. In conclusion, improvements in methods to
study circRNAs without affecting their residing genes
and the wide employment of improved experimental ap-
proaches will be able to provide new insights into the
biogenesis and functional implications of circRNAs in
the future.

Research on and discovery of circRNAs in BCa

A full review was performed using Web of Science to
search for reports with the key words (“circular RNA” or
“circRNA”) and (“bladder cancer” or “bladder urothelial
carcinoma” or “bladder neoplasm” or “bladder tumor” or
“bladder tumour”) published over the past 10 years
(January 2009—March 2020). Research regarding the dis-
covery and characterization of circRNAs has increased
annually, while protein-coding gene (mRNA) discovery
research has remained stable (Fig. 1a). Similar trends are
observed in the contexts of oncology in general (Fig. 1b)
and BCa specifically (Fig. 1c). These findings suggest a
growing focus on circRNAs and their roles in tumori-
genesis. Collectively, related research has resulted in the
validation of 55 BCa-related circRNAs (27 upregulated
and 28 downregulated) in the past 10 years (Fig. 1d).

A variety of methods have been developed to study the
structures and functions of circRNAs. RNA sequencing
(RNA-seq) [32] and microarray technology [50] are
widely used for the identification of new circRNAs and
the quantification of circRNA expression. Reverse
transcription-polymerase chain reaction (RT-PCR) [51]
and Northern blot [57] are two approaches used to fur-
ther verify circRNAs. In addition, FISH can be used to
analyse the subcellular localization of circRNAs [58].

To better study the biological functions and applica-
tions of circRNAs, numerous circRNA-associated public
databases have recently been developed to facilitate cir-
cRNA analyses. These online databases are currently
used for circRNA identification, prediction, localization,
characterization and functional analysis and provide
tools for investigating the interactions of circRNAs with
targets. For example, CircBase contains circRNA infor-
mation from different species [59]. CircRNADisease and
Circ2Traits provide disease-associated circRNA annota-
tions [60, 61]. Other databases and their common uses
are listed in Table S1.
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CircRNA expression profiles in BCa

With the rapid development of high-throughput se-
quencing technologies, a large number of novel dys-
regulated circRNAs have been identified in BCa cell
lines and tissues, most of which are differentially
expressed between BCa tissues and adjacent normal
tissues, indicating the important roles of these cir-
cRNAs in BCa development and progression. Primary
expression profiles obtained via ribosomal RNA-
depleted RNA-seq and circRNA microarrays have
been widely employed for the discovery of novel cir-
cRNAs [32, 59, 62]. For example, according to cir-
cRNA microarray data from 4 paired BCa tissues and
adjacent normal bladder tissues, Zhong et al. identi-
fied 3243 circRNAs in total and 469 circRNAs that
were differentially expressed in BCa compared with
normal tissues, 285 of which were significantly upreg-
ulated, while 184 were downregulated [63]. Li et al.
identified 16,353 circRNAs that were expressed in 3
paired BCa and adjacent normal tissues, 571 of which
were differentially expressed; 47 circRNAs were sig-
nificantly upregulated, and 524 circRNAs were down-
regulated [64]. Zheng et al. identified 67,358
circRNAs that were expressed in 1 pair of BCa and
adjacent normal bladder tissues, and circ_HIPK3 was
verified to directly bind to miR-124 and inhibit miR-
124 activity [65]. In another study, RNA-seq data

from BCa tissues of 9 different grades and adjacent
normal bladder tissues revealed a total of 316 (205
upregulated and 111 downregulated) and 244 (109
upregulated and 135 downregulated) dysregulated cir-
cRNAs in high-grade BCa vs. normal tissue and in
high-grade BCa vs. low-grade BCa, respectively; 42 of
these circRNAs overlapped [66]. In addition, second-
ary bioinformatic analyses based on Gene Expression
Omnibus (GEO) databases are frequently performed
to identify differentially expressed circRNAs [67]. By
performing a comprehensive bioinformatics analysis of
RNA-seq data from 457 NMIBC samples, Okholm
et al. identified 15,223 unique circRNAs that were
supported by at least two reads in at least two differ-
ent samples, and 113 abundant circRNAs were differ-
entially expressed between high- and low-risk tumour
subtypes; furthermore, the expression of 13 circRNAs
correlated with progression [68]. Among 11 studies,
the microarray dataset GSE92675 from the platform
GPL19978 was the most commonly used database for
secondary bioinformatic analyses intended to identify
novel circRNAs for further research [69-79]. BCa-
related circRNAs identified by RNA-seq and micro-
array analyses are listed in Table 1.

For microarray or RNA-seq data analyses, paired t
tests were performed to analyse significant differences.
The false discovery rate (FDR) was applied to determine
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Sample Special Detection GEO Data source  total Number of circRNA circRNAs Ref./
treatment Method  database circRNA  differently expressed (fold validated by PMID
change >2) qRT-PCR

4 paird BCa and BCN  RNAse R CircRNA  GSE92675  CircRNA 3243 469 (285 upregulated, 184 6 27484176

tissues microarray microarray downregulated)

3 paird BCa and BCN  rRNA-depleted RNA-seq  GSE97239  RNA-seq 16,353 571 (47 upregulated, 524 circ_HIPK3 28794202

tissues and RNase R (6154) downregulated)

1 paird BCa and BCN  rRNA-depleted RNA-seq ~ GSE77661  RNA-seq 67, / circ_HIPK3 27050392

tissues 358(27296)

4 paird BC and BCN  / RNA-seq / RNA-seq / 59(7 upregulated, 52 hsa circ 30984788

tissues downregulated) 0018069

2 paird BCa and BCN  RNAse R RNA-seq / RNA-seq 6834 567 40 30745833

tissues

5 paird BCa and BCN  rRNA and RNA-seq  / RNA-seq 88,732(62, 56 (14 upregulated, 42 2 29151929

tissues linear RNA- 788) downregulated)

depleted

4 paird BCa and BCN  rRNA-depleted  RNA-seq  / RNA-seq / 118 (34 upregulated, 84 3 30025927

tissues downregulated)

9 different grades of  / RNA-seq  / RNA-seq / 244 (Hvs L), 316 (H vs N), 7 31545480

BCa and BCN tissues 42 circRNAs overlapped

BCa 5637, T24 and / CircRNA / CircRNA / / circ_CASC15 31072448

SV-HUC-1 cell lines microarray microarray

10 paird BCa and HC  Rnase R CircRNA / CircRNA / 86 (53 upregulated, 33 circ_0137439 31777254

urine samples microarray microarray downregulated)

3 pairs of BCSCs and  / CircRNA / CircRNA 4451 127 (113 upregulated, 14 circ_103809 32065779

BCNSCs samples microarray microarray downregulated)

3 paird BCa and BCN  / CircRNA  / CircRNA / 734 (478 upregulated, 256 8 30983072

tissues microarray microarray downregulated)

3 paird BCa and BCN  Rnase R CircRNA  GSE112719 CircRNA / 80 (37 upregulated, 43 circ_101320 30305293

tissues microarray microarray downregulated)

3 paird BCa and BCN  / CircRNA -/ CircRNA 1038 / 7 29558461

tissues microarray microarray

457 NMIBC samples  / RNA-Seq / Bioinformatics 15,223 / 13 29263845
analysis

4 paird BCa and BCN  / CircRNA GSE92675  Bioinformatics  / 469 (285 upregulated, 184 circ_MYLK 28687357

tissues microarray analysis downregulated)

3 paird BCa and BCN  / / GSE97239, Bioinformatics  / 18 (5 upregulated, 13 3 31169020

tissues GSE92675  analysis downregulated)

4 paird BCa and BCN  / CircRNA  GSE92675  Bioinformatics  / 200 hsa_circ_ 30098434

tissues microarray analysis 0000144

4 paird BCa and BCN  / CircRNA  GSE92675  Bioinformatics  / 408 circ_0058063 30362519

tissues microarray analysis

4 paird BCa and BCN  / CircRNA  GSE92675  Bioinformatics  / 89 (66 upregulated, 23 circ_0001429 30909190

tissues microarray analysis downregulated)

4 paird BCa and BCN  / CircRNA GSE92675  Bioinformatics  / 433 (264 upregulated, 169 circ_CEP128 30134837

tissues microarray analysis downregulated)

4 paird BCa and BCN  / CircRNA GSE92675  Bioinformatics 3423 433 (264 upregulated, 169 circ_CEP128 30939216

tissues microarray analysis downregulated)

4 paird BCa and BCN  / CircRNA GSE92675  Bioinformatics  / 312 (195 upregulated, 117 circ_0058063 32181485

tissues microarray analysis downregulated)

4 paird BCa and BCN  / CircRNA  GSE92675  Bioinformatics  / / circ_VANGL1 30146736

tissues microarray analysis

4 paird BCa and BCN  / CircRNA  GSE92675  Bioinformatics 3243 469 (285 upregulated, 184/ 27363013

tissues microarray analysis downregulated)

4 paird BCa and BCN  / CircRNA  GSE92675  Bioinformatics  / 428 (261 upregulated, 167 hsa_circ_ 32015691
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Table 1 Overview of circRNAs identifed by RNA sequencing and microarrays in BCa (Continued)
Sample Special Detection GEO Data source  total Number of circRNA circRNAs Ref./
treatment Method  database circRNA  differently expressed (fold validated by PMID
change >2) qRT-PCR
tissues microarray analysis downregulated) 0011385

circRNAs circular RNAs, BCa bladder cancer, BCN bladder cancer tissues paired adjacent normal bladder tissues, H high-grade bladder cancer, L low-grade bladder
cancer, N normal tissue, HC healthy controls, BCSCs bladder cancer stem cells, BCNSCs bladder cancer non-stem cells, NMIBC non muscle-invasive bladder cancer

the P-value threshold, and an FDR <0.05 was recom-
mended. CircRNAs (fold changes > 2.0 and P-values <
0.05) have been reported to be significantly differentially
expressed [63, 64]. For RT-PCR or Northern blotting, 3-
actin or GAPDH was used as a reference gene. Mean
values, median expression levels, or concrete data are
used as cut-off values [80—83]. No unified standards are
available to determine thresholds for circRNA detection.

Biological functions and molecular mechanisms of
circRNAs in BCa

CircRNAs regulate the hallmarks of cancer

In 2011, Hanahan and Weinberg proposed ten hallmarks
of cancer that result in the progressive conversion of
normal cells into cancerous cells [84]. Here, we briefly
summarize the well-known circRNAs involved in the es-
sential stages of tumourigenesis and progression in BCa
to examine the correlations between circRNAs and the
hallmark features of cancer (Fig. 2a).

Recently, several oncogenic and antioncogenic cir-
cRNAs have been discovered to regulate cell prolifera-
tion, tumour growth suppression, cell cycle arrest,
apoptosis, invasion, migration, metastasis, angiogenesis,

and cisplatin chemoresistance in BCa cells (Fig. 2b and
Table 2).

Cell proliferation

Tumour cells can sustain active proliferative states via
activation of cell proliferation signalling pathways [84].
The PI3K/Akt/CREB signalling pathway is an important
regulatory pathway of cell proliferation [85]. Circ_
CASC15, derived from the CASC15 gene, promotes cell
proliferation by acting as a miR-1224 sponge to activate
oncogenic CREB1 expression in BCa [86]. Phosphatase
and tensin homologue (PTEN), a negative regulator of
the PI3K/Akt pathway, is highly involved in BCa pro-
gression [87]. Lu et al. found that circ_SLC8AL1 inhibits
BCa cell proliferation, migration, and invasion by upreg-
ulating PTEN expression [88]. Circ_ITCH, generated
from several exons of itchy E3 ubiquitin protein ligase,
suppresses cell proliferation by sponging miR-224 to in-
crease the expression of PTEN in BCa [89] (Fig. 3a).
Consistent with the results regarding BCa, circ ITCH
has also been reported to be downregulated and to sup-
press cell proliferation by inhibiting the Wnt/beta-ca-
tenin pathway in lung cancer [90], colorectal cancer
[91], and oesophageal squamous cell carcinoma [92].
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Table 2 Dysregulated circRNAs in BCa

Name CircBase Sponge Gene Function Types of BCa tissues and BCa cell lines Ref./
ID target PMID
upregulated
circ_ hsa_circ_  miR-486- FOXP4 promoted cell proliferation, invasion, and 94 cases of BCa and the non-cancerous normal 32181485
0058063 0058063  3p inhibited apoptosis tissues; 5637, BIU-87 and RT-112 cell lines
circ_ hsa_circ_  miR-145- CDK6 promoted cell proliferation and migration, 25 pairs of BCa tissues and adjacent normal 30362519
0058063 0058063  5p inhibited cell apoptosis, and decreased cell tissues; T24 and J82 cell lines
cycle arrest
airc_ hsa_circ_ / Wnt/B-  promoted cell proliferation and tumor 50 BCa tissues and adjacent tissues; UM-UC3, 32096177
0017247 0017247 catenin  formation, inhibited apoptosis, and SW780, BIU and J82 cell lines
decreased cell cycle arrest
circ_ hsa_circ_  miR-511 / promoted the self-renewal, migration and 3 pairs of BCa tissues and adjacent normal 32065779
103809 0072088 invasion bladder tissues; T24 and EJ cell lines
circ_FNTA  hsa_circ_  miR-370- FNTA promoted invasion and decreased 41 BCa tissues and adjacent normal bladder 32052578
0084171  3p chemosensitivity to cisplatin tissues; T24, 182, 5637, and UMUC3 cell lines
circ_ hsa_circ_ miR-16 / promoted cell proliferation, invasion and 72 BCa and adjacent healthy tissues; HT-1197 31868205
PDSST 0093398 migration and UMUC3 cells
airc_ hsa_circ_ / LDHA promoted cell growth and invasion 123 BCa tissues and the matched adjacent 31814891
403658 0004383 tissues; SW780, 5637, T24, 182 and RT4 cell lines
circ_ hsa_circ_  miR-142- MTDH promoted cell proliferation, migration, and 116 bladder cancer urine samples and 30 31777254
0137439 0137439 5p metastasis normal samples; T24 and 5637 cell lines
circ_ hsa_circ_  miR-605- VANGL1 promoted cell proliferation, migration, and 87 BCa tissues and 37 normal adjacent tissues; 30146736
VANGL1 0002623  3p invasion T24 and EJ cells
circ_ hsa_circ_  miR- IGFBP2  promoted cell proliferation, migration, and 60 BCa and corresponding paracancerous 31758655
VANGL1 0002623 1184 invasion tissue; J82, T24, EJ, RT-4, UM-UC-3, and TCC cell
lines
circ_ZFR  hsa_circ_ miR-377 ZEB2 promoted cell growth, migration and 104 pairs of BCa tissues and adjacent normal 31746333
0072088 invasion, and decreased cell cycle arrest tissues; UMUC3, T24, 182, 5637, SW780, EJ and
and apoptosis BIU87 cell lines
circ_ hsa_circ_  miR-491- MMP9 promoted cell invasion and metastasis 69 pairs of BCa tissues and matched adjacent 31705065
0001361 0001361  5p normal bladder epithelial tissues; SV-HUC-1, EJ,
UMUCS3, RT4, and 5637 cell lines
circ_ hsa_circ_  miR-223  FGFR2 promoted proliferation, migration, tumor 124, EJ, J82, UM-UC-3, TCC, and RT-4 cell lines 30387298
UVRAG 0023642 formation, and metastasis
circ_ hsa_circ_  miR-490- EGFR promoted cell invasion and metastasis 182 and UMUCS3 cell lines 31455760
0023642 0023642 5p
circ_ hsa_circ_  miR- CREB1 promoteed cell proliferation 67 pair BCa tissues and matched para- 31072448
CASC15 0075828  1224-5p carcinoma tissues; 5637, and T24 cell lines
circ_ hsa_circ_  miR- FGFR3 promoted cell proliferation and migration 32 BCa and adjacent normal tissue; T24, 30999937
0068871 0068871  181a-5p UMUCS3, EJ, and J82 cell lines
airc_ hsa_circ_  miR-132- Sox5 promoted cell proliferation, migration, and 23 BC tissue specimens and 32 normal bladder 30983072
DOCK1 0020394  3p tumour growth tissues; BIU-87, EJ-m3, T24 and 5673 cell lines
circ_ hsa_circ_  miR-145- SOX11 promoted cell proliferation, and decreased 10 pairs of BCa tissues and adjacent bladder 30134837
CEP128 0102722 5p cell apoptosis and cell cycle arrest tissues; RT-112, 5637, BIU-87, TCCSUP and
HEK293T cell lines
circ_ hsa_circ_  miR-145- Myd88 promoted cell proliferation and migration, 40 BCa specimens and blood samples; 293T, 30939216
CEP128 0102722 5p and decreased cell apoptosis and cell J82 and T24 cell lines
cycle arrest
arc_ hsa_circ_  miR-205- VEGFA  enhanced cell propagation and metastasis, 20 pairs of BCa tissues and paired adjacent 30909190
0001429 0001429  5p reduced cell apoptosis, and promoted normal bladder tissues; T24 cells and 5637 cells
tumor growth and lung metastasis
circ_TFRC  has_circ_  miR-107 TFRC promoted the invasion, proliferation and 57 BCa patients tissues compared with adjacent 30782157
0001445 tumor growth, contributed to an EMT normal patients tissues, EJ, T24, 5637, UMUC3,
phenotype BIU87, J82, and SW780 cell lines
circ_ELP3  hsa_circ_ / / promoted cell proliferation, and reduced 18 pairs of tissue samples and 30 bladder 30745833

0001785 apoptosis and chemosensitivity to cisplatin - cancer samples; T24 and 5647 cells
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Table 2 Dysregulated circRNAs in BCa (Continued)
Name CircBase Sponge Gene Function Types of BCa tissues and BCa cell lines Ref./
ID target PMID
circ_ hsa_circ_  miR-30c  SNAIL1/  promoted cell EMT 119 UCB tissues with matched adjacent normal 30305293
PRMTS 0031250 E- bladder tissues; T24, TCC-SUP, 5637, and UM-
cadherin UC-3 cell lines
circ_BPTF  hsa_circ_ miR-31- RAB27A  promoted cell migration and invasive, and 72 pairs of specimens of BCa tissues and 30103209
0000799  5p tumor growth adjacent noncancerous tissues; UM-UC-3 and
T24 cell lines
circ_ hsa_circ_ miR-217 RUNX2  promoted cell proliferation and invasion 21 pairs of BCa tissues and adjacent normal 30098434
0000144 0000144 tissues; T24, EJ, UMUC3, RT4 and 253J cell lines
circ_PTK2  hsa_circ_ / / promoted the proliferation and migration 40 pairs of BCa tissue and blood samples. T24 29125888
0003221 and 5637 cell lines
circ_MYLK  hsa_circ_ miR-29a VEGFA/  accelerated cell proliferation, migration, 32 pairs bladder carcinomas and matched para- 28687357
0002768 VEGFR2  tube formation, and promoted EMT carcinomas; EJ, T24, 5673 and BIU-87 cell lines
circ_TCF25 hsa_circ_  miR- CDK6 promoted proliferation and migration 40 pairs bladder carcinoma tissue and matched 27484176
0041103  103a-3p/ para-carcinoma tissues; 724 and EJ cell lines
miR-107
downregulated
circ_FUT8 hsa_circ_ miR-570- KLF10 inhibited migration, invasion, and 145 BCa tissues and 50 matched adjacent 32072011
0003028 3p metastasis normal bladder tissues; T24, SV-HUC-1, and UM-
UC-3 cell lines
circ_RIP2  hsa_circ_ miR- Tgf-32/  promoted migration, invasion, clone 45 paired BCa and the adjacent normal tissues, 32019579
0005777 1305 smad3 formation and EMT 58 bladder cancer tissues, 5637 and UM-UC-3
cell lines
airc_ hsa_circ_  miR-762 ANP63/ inhibited migration, invasion and 31 BCa tissues and paired adjacent noncancer 31969560
FAM114A2 0001546 TP63 proliferation tissues; T24, 182, 5637, and 293T cell lines
circ_ hsa_circ_  miR-589- / inhibited cell proliferation, migration and 40 pairs of BCa tissues and normal adjacent 31957821
0091017 0091017  5p invasiveness tissues; 5637, EJ, T24, UMUC-3, and RT4 cell
lines
CiRs_6 hsa_circ_ miR-653 March1  suppressed cell growth and increased cell 45 paired bladder cancer and the adjacent 31819015
0006260 cycle arrest normal tissues, 58 bladder cancer tissues; 5637
and UM-UC-3 cell lines
circ_5912  hsa_circ_ / TGF-B suppressesed cell proliferation, invasion 58 BCa tissues and the matched adjacent 31808751
0005912 signaling and migration tissues; T24 and SW780 cell lines
circ_ hsa_circ_  miR-636  KLF9 inhibited cell proliferation and tumor 104 BCa specimens, 64 matched BC and 31821171
PTPRA 0006117 growth adjacent normal specimens; T24 and UM-UC-3
cell lines
circ_Foxo3 hsa_circ_. miR-191- / promoted cell apoptosis 30 BCa tissues and adjacent normal bladder 31802888
0006404  5p tissues; 724, UM-UC-3 and J82 cell lines
circ_ hsa_circ_  miR- HPGD/  suppressed cell proliferation and invasion 97 BCa tissues and matched adjacent normal 31757227
0071662 0071662  146b-3p  NF2 tissues; BIU-87, T-24, EJ-28 and J82 cell lines
circ_ hsa_circ_  miR- STEAP4  inhibited cell invasion and metastasis 168 BCa samples and 40 corresponding 31648990
PICALM 0023919 1265 adjacent normal tissue samples; 724, UM-UC-3,
J82, RT-4, and HEK-293T cell lines
airc_ hsa_circ_  miR- PHLPP2  suppressed cell proliferation and 13 high-grade BCa, low-grade BCa and a nor- 31545480
0137606 0137606 1231 metastasis mal controlpatients tissues; T24 and SV-HUC-1
cell lines
circ- hsa_circ_  miR- p21 inhibited cell proliferation, migration, 68 BCa tissues and the matched normal tissues; 31481066
ZKSCANT 0001727  1178-3p invasion and metastasis T24, UM-UC-3, 5637, and EJ cell lines
circ_ hsa_circ_  miR-27a- cyclin inhibited cell proliferation, cell cycle 42 pairs of BCa tissues and adjacent normal 31255724
NR3C1 0001543  3p D1 progression, and tumor growth bladder tissues; T24, EJ, UMUCS3, J82, and 5637
cell lines
circ_ hsa_circ_  miR- PTEN inhibited cell migration, invasion and 70 pairs of human bladder cancer tissues 31228937
SLC8A1 0000994  130b/ proliferation compared with their adjacent normal tissues;
miR-494 5637, T24, 182, EJ, UMUC, and RT4 cell lines
circ_ hsa_circ_  miR- APAF1 induced cell apoptosis and enhanced 160 BCa tissues; TCCSUP, 5367, T24 and EJ cell 31131537
Cdrlas 0001946 1270 chemosensitivity to cisplatin lines



Yang et al. Molecular Cancer (2021) 20:4

Table 2 Dysregulated circRNAs in BCa (Continued)
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Name CircBase Sponge Gene Function Types of BCa tissues and BCa cell lines Ref./
ID target PMID
circ_ hsa_circ_  miR- / inhibited cell proliferation, invasion and 94 pairs of BCa tissues and adjacent normal 29694981
Cdrlas 0001946  135a migration, and tumour growth tissues; EJ and T24 cell lines
circ_ hsa_circ_ miR-626 EYA4 suppressed cell proliferation and 50BC tissues and matched adjacent normal 31101108
ACVR2A 0001073 metastasis epithelial tissues; T24, UM-UC-3, RT4, J82, 5637,
HT-1376, and TCCSUP cell lines
airc_ hsa_circ_  miR-197- / suppressed cell proliferation, migration, 20 BCa and normal samples; EJ, 5637, 724, and 30972190
0002024 0002024  3p and invasion UMUC-2 cell lines
circ_CDYL  hsa_circ_ / C-MYC  inhibited cell growth and migration 30 pairs of BCa tissues and paired surrounding 30968727
0008285 normal bladder tissues; EJ and T24T cells
circ_ hsa_circ_ miR-762 / inhibited cell invasion and metastasis 125 BCa tissues and 68 paired cancer tissues 30867795
LPAR1 0087960 and adjacent non-tumorous tissues; 5637 and
T24 cell lines
circ_MTO1 hsa_circ_  miR-221 / inhibited cell EMT and metastasis 117 bladder cancer tissues and the matched 30551873
0007874 adjacent tissues; UMUC3, SVHUCT, T24, J82 and
5637 cell lines
circ_ hsa_circ_  miR- G3BP2 inhibited cell proliferation, migration, 82 BCa tissues and 56 pairs of BCa tissues and 30458784
FNDC3B 0006156  1178-3p invasion, tumorigenesis and metastasis adjacent noncancerous tissues; 724 and UM-
UC-3 cell lines
circ_ hsa_circ_  miR- B4GALT3 inhibited cell proliferation, migration, 84 cases of BCa tissues including 30 paired BC 30312173
UBXN7 0001380  1247-3p invasion, and tumor growth tissues and adjacent nontumor tissues; SV-HUC-
1, T24 and UM-UC-3 cell lines
circ_HIPK3 hsa_circ_  miR-558 HPSE inhibited cell migration, invasion, and 44 pairs of bladder cancer tissues and paired 28794202
0000284 angiogenesis, tumor growth, and adjacent normal bladder tissues; UMUC3, and
metastasis T24 cell lines
circ_ hsa_circ_  miR-182- p27 inhibited cell proliferation, and impairs 47 BCa tissues and their adjacent normal 30285878
BCRC3 0001110 5p tumor growth, and increased cell cycle bladder tissues; EJ, 724, and SV-HUC-1 cell lines
arrest
circ_ hsa_circ_  miR-101  EZH2 promoted cell apoptosis and inhibited cell 24 pairs of fresh bladder cancer tissues and 29270748
BCRC4 0001577 viability surrounding normal adjacent bladder tissues;
UMUC3 and T24 cell lines
circ_ITCH  hsa_circ_ miR-17, p21, inhibited cell proliferation, migration, 72 pairs of BCa tumor and normal tissues; 29386015
0001141  miR-224 PTEN invasion and metastasis, induced cell cycle  UMUC3, T24, J82, 353J, 5637, TCC, EJ and RT4

arrest and cell apoptosis

cell lines

circRNAs circular RNAs, BCa bladder cancer, EMT epithelial to mesenchymal transition

Hsa_circ_0000144, which is produced through back-
splicing of the SLAMF®6 first intron, facilitates BCa cell
proliferation by upregulating the expression of RUNX2,
which promotes cellular malignancy in BCa [71, 93].
Liang et al. also suggested that circ_0058063 facilitates
BCa cell proliferation and invasion via the circ_0058063/
miR-486-3p/FOXP4 axis [76]. Circ_0071662 has been
identified to suppress BCa cell proliferation and invasion
by upregulating the tumour suppressor genes HPGD
and NF2 [94]. Song et al. revealed that the hsa_circ_
0137439/miR-142-5p/MTDH axis contributes to the
promotion of BCa cell proliferation and migration [81].
In addition, hsa_circ_0091017 has been found to inhibit
BCa cell proliferation and migration [95]. Yu et al. pro-
posed that circ_PDSS1 may promote proliferation, inva-
sion and migration by inhibiting the tumour suppressor
miR-16 [96]. Circ_PTK2 has also been reported to pro-
mote BCa cell proliferation and migration [97].

Apart from sustaining proliferative signals, cancer cells
continuously evade the growth-suppressive effects of the
tumour suppressor pathway [84]. TP63 is a member of
the p53 family of transcription factors, and its ANp63
isoform is the major tumour-suppressing isoform in
BUC cell lines and primary tumours [98]. Liu et al. re-
ported that circ. FAM114A2 inhibits tumour growth by
regulating ANP63 [99]. In addition, the tumour suppres-
sor Kriippel-like factor 9 (KLF9) has been reported to in-
hibit tumour growth by modulating p53 [100]. In one
investigation, He et al. found that circ_PTPRA inhibits
BCa cell proliferation in vitro and tumour growth
in vivo by upregulating KLF9 [101] (Fig. 3b). Circ_
BCRC3 has also been identified to function as a tumour
suppressor, inhibiting BCa tumour growth through the
miR-182-5p/p27 axis [102]. Su et al. showed that ciRs-6
suppresses BCa growth by elevating the expression of
Marchl, a tumour suppressor gene that encodes an E3
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ubiquitin-ligating enzyme [103]. Furthermore, ZEB2 has
been reported to play oncogenic roles in BCa [104, 105].
According to Zhang et al., circ_ZFR facilitates BCa cell
growth, migration and invasion by upregulating the ex-
pression of this gene [82].

Additionally, dysregulation of cell cycle regulators con-
tributes to limitless tumour cell growth and proliferation
[84]. C-MYC and C-MYC-induced genes play crucial
roles in cell cycle control and cell growth [106]. For ex-
ample, circ_CDYL induces cell cycle arrest by downreg-
ulating C-MYC and C-MYC-induced gene expression in
BCa cells [107]. Cyclin D1, a key cell cycle-related pro-
tein, is believed to regulate the G1-to-S phase transition
[108]. As reported by Zheng et al., circ_NR3C1 can in-
duce GO/G1 arrest by suppressing cyclin D1 expression
and subsequently inhibits cell cycle progression in BCa
[109]. P21, a direct regulator of the cell cycle, plays a
vital role in inducing growth arrest in the G1 phase by
suppressing the activity of cyclin D-CDK2/4 complexes
[110]. Bi et al. proposed that circ_ZKSCANI acts as a
tumour suppressor to promote cell cycle arrest via the

circ_ZKSCAN1/miR-1178-3p/p21 axis [111]. Circ_
Cdrlas has also been found to mediate cell cycle arrest
to exert anti-oncogenic functions in BCa cells by restor-
ing p21 activity [112] (Fig. 3c). Among cell cycle-related
CDKs, CDK6 has been identified as a major oncogenic
driver of progression from G1 phase to S phase [113].
Circ_TCF25 promotes proliferation and migration by in-
creasing CDK6 expression [63]. Sun et al. also discov-
ered that circ_0058063 enhances BCa cell proliferation
and migration abilities via the circ_0058063/miR-145-
5p/CDK6 pathway in BCa [72].

Apoptosis

Apoptosis, autophagy, and necrosis are major mecha-
nisms leading to controlled cell death that are strictly
controlled by tumour cells [114]. Tumour cells can
evade apoptosis, enabling them to achieve immortality.
Apoptosis protease-activating factor-1 (APAF-1) is a key
regulatory factor that interacts with cytochrome c re-
leased from the mitochondria, thus activating the cas-
pase cascade to execute apoptosis [115]. Circ_Cdrlas,
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also known as ciRS-7 or CDRINAT, has been identified
to induce apoptosis of BCa cells by elevating APAF1 ex-
pression [116]. Forkhead box transcription factor class
03 (FOXO03) is another key factor that participates in
apoptotic processes [117]. Wang et al. showed that circ_
Foxo3 facilitates FOXO3-mediated apoptosis through
miR-191-5p signalling [118]. Proapoptotic effects of
circ_Foxo3 have also been observed in breast carcinoma
biopsies and in cancer cell lines [119]. Consistent with
these findings, Li et al. found by KEGG analysis that
hsa_circ_0018069 may mediate the Foxo signalling path-
way to exert anticancer effects [80] (Fig. 3d). In contrast,
Wu et al. showed that circ_CEP128 promotes cell prolif-
eration and suppresses apoptosis in the context of BCa
by targeting SOX11 [74]. In another study, circ_CEP128
was illustrated to increase cell proliferation and inhibit
apoptosis via the miR-145-5p/MYD88/MAPK signalling
pathway [75]. According to Li et al., circ. BCRC4 en-
hances apoptosis through miR-101/EZH2 signalling
[120].

Invasion, migration and metastasis

Invasion, migration and metastasis of tumour cells
into lymphatic and blood vessels for dissemination
into the circulation eventually results in tumour
colonization of distant organs [121]. MMP9, a mem-
ber of the zinc-dependent endopeptidase family, plays
crucial roles in invasion and migration by degrading
the extracellular matrix in BCa [122, 123]. Liu et al.
reported that circ_0001361, which is derived from
two exons of the FNDC3B gene, increases MMP9 ex-
pression to promote BCa cell invasion and metastasis
[124]. In addition, epithelial-mesenchymal transition
(EMT) is an important mechanism for tumour inva-
sion and metastasis [125]. Chen et al. revealed that
circPRMT5 regulates the SNAIL1/E-cadherin-induced
EMT pathway to promote BUC cell invasion and mi-
gration [62] (Fig. 4a). Su et al. indicated that circ_
5912 suppresses the invasion and migration of BCa
cells via the TGF-B2-induced EMT signalling pathway
[126]. He et al. further revealed that circ_FUT8 sup-
presses the invasion and migration of BCa cells by
regulating Slug and EMT [127]. Moreover, circ_RIP2
promotes BCa proliferation, invasion and migration
by inducing EMT via activation of the miR-1305/
TGF-B2/smad3 pathway [128]. Circ_TFRC has been
reported to upregulate the proliferative and invasive
abilities of BCa cells by activating the EMT signalling
pathway [129]. In addition, FOXP4 promotes the mi-
gration and invasion of breast cancer cells via EMT
[130]. Consistent with these findings, Liang et al. il-
lustrated that circ_0058063 promotes BCa cell prolif-
eration and invasion by upregulating FOXP4
expression [76]. G3BP2, a member of the Ras-
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GTPase-activating protein (RasGAP) SH3 domain-
binding protein (G3BP) family, is significantly overex-
pressed in multiple types of human tumours and con-
tributes to tumour invasion [131, 132]. Circ FNDC3B
has been found to inhibit BCa cell proliferation, mi-
gration and invasion by suppressing the G3BP2 and
SRC/FAK signalling pathways [133]. In contrast, an-
drogen receptor (AR) has been found to mediate BCa
development and progression [134, 135]. Chen et al.
confirmed that AR-mediated circ_FNTA activity can
promote BCa cell invasion via miR-370-3p/ENTA/
KRAS signals [136]. Notably, the critical roles of can-
cer stem cells (CSCs) or cancer-initiating cells in
tumorigenesis have attracted increasing scientific at-
tention [137, 138]. Circ_103809 has been identified to
be highly expressed in bladder CSCs and to promote
the self-renewal, migration and invasion of BCa by
sponging miR-511 [139]. Insulin-like growth factor-
binding protein 2 (IGFBP2) has been found to be re-
lated to cell migration and invasion [140]. Yang et al.
discovered that circ. VANGL1 accelerates BCa cell in-
vasion, migration and proliferation by increasing
IGFBP2 expression [141]. In another study, circ_
VANGL1 was found to accelerate BCa cell invasion,
migration and proliferation by increasing VANGLI1
expression [77]. Liu et al. proposed that circ_ DOCK1
increases the proliferation and migration potential of
BCa cells via the circDOCK1/hsa-miR-132-3p/Sox5
signalling pathway [142]. Lin et al. demonstrated that
circ_LPARI reduces invasion and metastasis via miR-
762 [143]. Finally, Liu et al. verified that circ_UBXN7
suppresses cell growth and invasion by upregulating
B4GALT3 [144].

Increasing evidence has revealed that circRNAs can
act as metastasis activators or suppressors in BCa. The
Wnt/B-catenin signalling pathway is highly involved in
tumour metastasis [145, 146]. Han et al. illustrated that
hsa_circ_0017247 enhances BCa cell metastasis by acti-
vating the Wnt/B-catenin signalling pathway [147]. In
addition, Li et al. proposed that hsa_circ_0137606 can
suppress BCa cell proliferation and metastasis via the
hsa_circ_0137606/miR-1231/PHLPP2 axis [66]. Circ_
ACVR2A has been found to significantly suppress the
proliferation and metastasis of BCa by targeting the
miR-626/EYA4 axis [148]. According to Wu et al. [149],
circ_0023642 suppresses BCa cell invasion and metasta-
sis by modulating the circ_0023642/miR-490-5p/EGFR
signalling pathway. In addition, circ_Z UVRAG suppresses
BCa cell proliferation and metastasis by targeting the
miR-223/FGFR2 axis [150] (Fig. 4b). Li et al. found that
circ. MTO1 inhibits BCa cell EMT and metastasis by
sponging miR-221 [151]. FAK, a well-known tyrosine
kinase, is closely related to metastasis in cancer [152]. Fi-
nally, circ. PICALM, which is generated from exons 9—
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12 of PICALM, has been identified to inhibit metastasis
of BCa by modulating FAK activation and EMT [153].

Angiogenesis

Angiogenesis, the process by which rapidly growing ma-
lignant tissues are continuously supplied with nutrients
and oxygen and cleared of metabolic wastes, is essential
for tumour growth and progression. Without angiogen-
esis, tumours are unlikely to grow beyond a size of 100—
200 um [154]. Vascular endothelial growth factor
(VEGEF), a marker gene of angiogenesis, plays a key role
in inducing angiogenesis during tumour growth and me-
tastasis [155]. VEGFA, the expression of which is
strongly induced by hypoxia, is one of the most potent
inducers of angiogenesis [156]. VEGFR2, the primary

VEGFA receptor, is the key molecule for VEGF signal-
ling in tumour angiogenesis [157]. Circ_0001429 has
been reported to induce angiogenesis to promote BCa
cell growth and metastasis by increasing VEGFA expres-
sion [73]. As illustrated by Zhong et al. [69], circRNA_
MYLK promotes angiogenesis by increasing the levels of
VEGFA and the activity of VEGFR2. Circ_HIPK3 has
also been demonstrated to inhibit angiogenesis of BCa
cells by sponging miR-558 to reduce heparanase (HPSE)
expression [64] (Fig. 4c). In addition, circ_403658, which
is induced by HIF-1a, increases the expression of VEGF
R and EGFR [158]. In addition to the VEGF family, the
fibroblast growth factor (FGF) family is the other best-
studied family of angiogenic growth factors. These fac-
tors could promote the proliferation, differentiation and
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migration of endothelial cells during angiogenesis by
interacting with their corresponding receptors [159,
160]. According to Mao et al., the hsa_circ_0068871/
miR-181a-5p/FGFR3 axis may play a vital role in the
progression of BCa [161].

Cisplatin chemoresistance

Although BCa is relatively sensitive to chemotherapy,
decreasing cisplatin chemoresistance is a crucial thera-
peutic strategy for MIBC [162, 163]. RAB27A, a member
of the Rab family, plays pivotal roles in multiple pro-
cesses of tumourigenesis via protein transport and small
GTPase-mediated signal transduction [164]. Moreover,
upregulation of RAB27A expression promotes prolifera-
tion and chemoresistance in BCa [165]. Consistent with
these findings, Bi et al. found that circ-BPTF promotes
BCa progression by increasing RAB27A expression
[166]. APAF-1, a major apoptosis-regulating factor, has
also been found to modulate cisplatin sensitivity [167—
169]. Notably, Yuan et al. revealed that circ_Cdrlas may
increase the cisplatin-induced chemosensitivity of BCa
cells through the circ_Cdrlas/miR-1270/APAF1 axis
[116]. Hypoxia also enhances resistance to therapy, thus
playing critical roles in cancer biology [170]. Further-
more, cancer stem-like cells have been reported to con-
tribute to cisplatin resistance in BCa [171]. Su et al.
identified a specific hypoxia-elevated circRNA, circ_
ELP3, that promotes cisplatin resistance in BCa by tar-
geting cancer stem-like cells [172]. AR has also been
found to mediate cisplatin sensitivity and thereby sup-
press BCa cell growth [173]. Indeed, AR-mediated circ_
ENTA activity decreases cisplatin sensitivity via miR-
370-3p/ENTA/KRAS signals [136].

Molecular mechanisms of circRNAs in BCa

CircRNAs perform regulatory roles mainly by acting
as miRNA sponges [22], interacting with RBPs [23],
and being translated into peptides [24]. Most cir-
cRNAs can regulate BCa-related signalling pathways
via ceRNA-related regulatory mechanisms. The
ceRNA hypothesis specifies that circRNAs can act as
molecular sponges that compete with mRNAs for
binding to miRNAs, thus inhibiting the activities of
the corresponding miRNAs. miRNAs exert their func-
tions through three mechanisms: (1) suppression of
translation by binding to the 3'UTRs of target genes,
(2) activation of translation by binding to the pro-
moters of target genes, and (3) activation of transla-
tion by binding to the 5UTRs of target genes. For
example, circ_ITCH acts as a molecular sponge for
miR-224 in BCa; as miR-224 normally inhibits PTEN
expression by targeting its 3'UTR, circ_ITCH-medi-
ated sponging ultimately leads to upregulation of
PTEN expression in BCa [89]. In addition, circ_
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HIPK3 sponges miR-558, which normally directly
binds to the promoter of the HPSE gene and in-
creases its mRNA expression; thus, circ_ HIPK3-medi-
ated sponging in BCa ultimately negatively regulates
HPSE expression [64]. Finally, Zheng et al. revealed
that circ_. NR3C1 directly sponges miR-27a-3p; as
miR-27a-3p typically interacts with the cyclin D1
mRNA 5’UTR to facilitate nearby initiating ribosome
binding, circ_NR3C1l-mediated sponging downregu-
lates cyclin D1 expression [109] (Fig. 4d). Similarly,
circ_FNDC3B has been reported to suppress G3BP2
expression by sponging miR-1178-3p, which binds to
the 5’'UTR of G3BP2 [133]. It should be noted that
the miRNA sponge function of circRNAs also de-
pends on the abundance of miRNAs/circRNAs [174]
and the number of binding sites for miRNAs con-
tained in each cell [175]. CircRNAs containing many
competing binding sites are more likely to have
miRNA sponge functions [176, 177]. The most well-
characterized circRNA is ciRS-7, which contains more
than 70 miR-7 binding sites. It serves as a miR-7
sponge, leading to decreased miR-7 activity and accel-
erated expression of miR-7-targeted transcripts [178].
Many other circRNAs containing fewer miRNA bind-
ing sites can also serve as miRNA sponges. However,
their miRNA sponging ability may be limited. Thus, it
seems unlikely that all circRNAs can function as
miRNA sponges.

Clinical significance of circRNAs in BCa

The high incidence and mortality of BCa reflect the
need for strategies to improve its early diagnosis, prog-
nosis, and effective treatment. CircRNAs show consid-
erable potential for use as diagnostic and prognostic
biomarkers in BCa. First, circRNAs, as unique endogen-
ous noncoding RNAs, are highly conserved and broadly
expressed in various tissues, including human BCa and
normal bladder tissues [37, 64, 179]. Second, circRNAs
are characterized by high stability due to their cova-
lently closed loop structures and by resistance to RNA
exonucleases or RNase R [180]. Third, the expression
profiles of circRNAs are cell type-specific, tissue-
specific, or developmental stage-specific [9, 50]. Finally,
apart from solid tissues, BCa-related circRNAs can be
detected in blood and urine [81, 97]. RNA-seq [32], cir-
c¢RNA microarrays [50], PCR [51], and Northern blot
analysis [57] are widely used methods for circRNA de-
tection and identification. CircRNAs with potential
diagnostic, prognostic and predictive value in BCa are
summarized in Table 3. As mentioned above, circRNAs
play crucial regulatory roles in BCa and are involved in
various signalling pathways in BCa, including pathways
related to cell proliferation, tumour growth suppres-
sion, cell cycle arrest, apoptosis, invasion, migration,
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Table 3 Utility of circRNAs for the clinical management of BCa
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circRNA name circBase ID Cilinical Sample Utility Ref./PMID
Diagnostic Prognostic Predictive
circRNA-MYLK hsa_circ_0002768 tissue N 28687357
Circ_0058063 hsa_circ_0058063 tissue N 32181485
hsa_circ_0076704 hsa_circ_0076704 tissue N 31169020
hsa_circ_0000144 hsa_circ_0000144 tissue N 30098434
circUVRAG hsa_circ_0023642 tissue N 30387298
circ_0071662 hsa_circ_0071662 tissue N 31757227
circ-ITCH hsa_circ_0001141 tissue N 29386015
circLPAR1 hsa_circ_0087960 tissue N 30867795
circPTPRA hsa_circ_0006117 tissue N 31821171
circUBXN7 hsa_circ_0001380 tissue N 30312173
ciRs-6 hsa_circ_0006260 tissue N 31819015
circ_FAM114A2 hsa_circ_0001546 tissue N 31969560
circ_SLC8A1 hsa_circ_0000994 tissue N 31228937
circ_0068871 hsa_circ_0068871 tissue N 30999937
CEP128 hsa_circ_0102722 tissue v 30134837
circPTK2 hsa_circ_0003221 tissue and blood N 29125888
circCDYL hsa_circ_0008285 tissue V V 29263845,
30968727
circHIPK3 hsa_circ_0000284 tissue N N 29263845, 28794202
circFUTS hsa_circ_0003028 tissue N N 32072011
circRNA_403658 hsa_circ_0004383 tissue N N 31814891
circRNA_000285 hsa_circ_0000285 tissue and serum V v 30509102
circPICALM hsa_circ_0023919 tissue V v 31648990
circ0001361 hsa_circ_0001361 tissue N, N 31705065
circRIP2 hsa_circ_0005777 tissue V v 32019579
CTFRC has-circ-0001445 tissue N \J 30782157
circ-VANGL1 hsa_circ_0002623 tissue N N 30146736
circ5912 hsa_circ_0005912 tissue V v 31808751
circFNDC3B hsa_circ_0006156 tissue N N, 30458784
circ-ZKSCANT hsa_circ_0001727 tissue v v 31481066
circMTO1 hsa_circ_0007874 tissue V v 30551873
circCASC15 hsa_circ_0075828 tissue N N 31072448
Circ-BPTF hsa_circ_0000799 tissue N N 30103209
CircPRMTS hsa_circ_0031250 tissue, serum and urine N N 30305293
hsa circ 0018069 hsa circ_0018069 tissue N N 30984788
circZFR hsa_circ_0072088 tissue N N N 31746333
CircASXLT hsa_circ_0001136 tissue v V v 31966702
circ_0137439 hsa_circ_0137439 urine N N N 31777254

metastasis, angiogenesis, and cisplatin chemoresistance.
Thus, overexpression or knockdown of related cir-
cRNAs might be an effective intervention strategy for
BCa progression. RNA interference (RNAi) [181-183],
CRISPR/Cas9 editing [55], plasmid transfection [184],

and lentiviral vector infection [185] are methods that
can be used to decrease or increase circRNA levels.
Additionally, nanoparticles can be loaded with exogen-
ous circRNAs and used to carry them for targeted ther-

apy [186] (Fig. 5).
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Relationships between circRNA levels and clinicopathologic
characteristics in BCa

CircRNAs have been reported to be significantly associ-
ated with many clinicopathologic characteristics in BCa,
including tumour size, grade, differentiation, and stage;
lymph node metastasis (LNM); tumour numbers; distant
metastasis (DM); invasion; and recurrence. Li et al. ob-
served that circ_0018069 is significantly downregulated

in BCa tissues and in T24 and Biu-87 cells and that
circ_0018069 levels are correlated with tumour grade,
tumour stage, and muscular invasion depth in the con-
text of BCa [80]. Circ_0137439 has also been reported to
be significantly upregulated in urine samples from indi-
viduals with BCa. Moreover, hsa_circ_0137439 levels are
correlated with tumour stage and grade, LNM, and his-
tory of MIBC [81]. Furthermore, circASXL1 is evidently
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upregulated in tissues obtained from BCa patients, and
its levels are significantly associated with tumour grade,
tumour stage, lymph node invasion, and DM [187].
Similarly, circ_ZFR is significantly upregulated in BCa
tissues, and its levels are positively correlated with
tumour stage, tumour grade, and LNM [82]. Chi et al.
demonstrated that hsa_circ_0000285 levels are signifi-
cantly reduced in BCa tissues and serum compared to
adjacent tissues and serum from healthy controls and
that this downregulation is associated with cisplatin re-
sistance, tumour size, differentiation, LNM, DM, and
TNM stage [83]. Circ_0001361 has been shown to be
overexpressed in BCa tissues and cell lines, and its levels
in BCa tissues are correlated with pathologic grade and
muscle invasion [124]. Similarly, hsa_circ_0068871 is
overexpressed in BCa tissues and cell lines, and its levels
in BCa tissues are correlated with T stage and N stage
[161]. In contrast, circ_0071662 is downregulated in BCa
tissues and cell lines, and its expression levels are signifi-
cantly associated with LNM and DM [94]. Zhuang et al.
revealed that high hsa_circ_0075828 expression in BCa
tissues and cells is associated with tumour stage [86].
According to Su and colleagues, circ_5912 is signifi-
cantly downregulated in BCa tissues compared with nor-
mal control tissues, and its levels are correlated with
BCa grade, stage, and metastasis [126]. The expression
levels of circ BPTF have been found to be increased in
BCa tissues and cell lines compared with noncancerous
tissues and cell lines, and high levels of circ BPTF are
positively associated with tumour grade [166]. Sun et al.
suggested that circ_CDYL is expressed at low levels in
BCa tissues and cell lines and that its expression levels
are negatively correlated with BCa pathological stage
[107]. In contrast, circ_ CEP128 is significantly upregu-
lated in BCa tissues, and its levels correlate positively
with tumour size, TNM stage and LNM [74]. Circ_
FAMI114A2 has been identified to be downregulated in
both BUC tissue specimens and cell lines, and high circ_
FAM114A2 expression levels are negatively associated
with pathological TNM stage and grade [99]. Similarly,
circ_ FNDC3B is downregulated in BC tissues, and its
levels correlate with pathological T stage, grade, and
LNM [133]. In addition, other circRNAs, such as circ_
FUTS8 [127], circ_HIPK3 [64, 68], circ_ ITCH [89], circ_
MTO1 [151], circ_PICALM [153], circ_PRMT5 [62],
circ_PTK2 [97], circ_ PTPRA [101], circ_RIP2 [128], hsa_
circ_0058063 [76], circ_403658 [158], circ_SLC8A1 [88],
circ. TFRC [129], circ UBXN7 [144], circ VANGL1
[77], circ_ZKSCANI1 [111], and ciRs_6 [103], are also de-
tectable in BCa tissue or blood and are associated with
various clinicopathologic characteristics in BCa (Table 4).
Most studies have reported that there is no relationship
between circRNA levels and gender in BCa. It should be
noted that epidemiological studies show obvious gender
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differences in the incidence and prognosis of BCa [134].
The aetiology of this gender difference has been linked
to sex hormones and their receptors, including estrogen
receptor (ER) and AR [188, 189]. Circ_0023642 and
circ. FNTA are estrogen receptor- and androgen
receptor-mediated circRNAs, respectively. Wu et al.
found that estrogen receptor alpha (ERa) decreased
circ_0023642 levels and subsequently increased miR-
490-5p expression, resulting in decreased EGFR expres-
sion to suppress BCa cell invasion [149]. Similarly, Chen
et al. reported that the AR-regulated circular RNA cir-
¢ENTA competes with the microRNA miR-370-3p to in-
crease the expression of its host gene FNTA, which then
activates KRAS signalling to promote BCa cell invasion
and resistance to cisplatin [136].th=tlb=

CircRNAs as diagnostic biomarkers for BCa

The clinical value of circRNAs as diagnostic biomarkers
has been explored in many studies. The area under the
receiver operating characteristic (ROC) curve (AUC) of
circ_0018069 for BCa diagnosis is 0.709, and the sensi-
tivity and specificity are 97.6 and 46.3%, respectively
[80]. The AUC of a ROC curve generated for urinary
cell-free hsa_circ_0137439 levels is 0.890, with a sensitiv-
ity and specificity of 87.93 and 80.06%, respectively [81].
The AUC for circASXL1 in tumour invasion (T2-T4
tumour) diagnosis is 0.770, with a sensitivity and specifi-
city of 68.6 and 76.9%, respectively [187]. The AUC for
circ_ZFR in BCa diagnosis is 0.8216 [82] (Table 4).

CircRNAs as prognostic biomarkers for BCa

CircRNA levels can also be used to predict patient sur-
vival parameters, such as overall survival (OS), disease-
free survival (DFS), and progression-free survival (PES).
To further analyse the prognostic value of circRNAs in
BCa, we collected information from studies reporting
survival information and evaluated the associations be-
tween circRNA expression levels and OS, DFS, and PFS.
Fourteen upregulated circRNAs were reported to predict
poor OS [69-71, 76, 77, 81, 82, 86, 124, 129, 150, 158,
166, 187], while thirteen downregulated circRNAs were
reported to predict poor OS [83, 89, 94, 101, 103, 111,
126-128, 133, 144, 151, 153]. Kaplan-Meier survival ana-
lysis indicated that higher expression of circ_0137439,
circ. CASC15, and circPRMT5 was associated with
poorer DFS [62, 81, 86]. Two studies revealed that
higher expression of circ. ZKSCAN1 and circ. MTO1
was associated with longer DFS [111, 151]. A study by
Zhang et al. revealed a significantly elevated risk of pro-
gression for patients with high circ_ZFR expression
levels [82]. In addition, patients with high circ_CDYL
and circ_HIPK3 expression were reported to have a re-
duced risk of progression [68].
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Conclusion

Over the past 10 years, the importance of elucidating cir-
cRNA biology to our understanding of tumorigenesis
has become evident. As outlined in this review, consider-
able evidence indicates that circRNAs play key roles in
BCa. To date, fifty-five circRNAs among hundreds of ab-
errantly expressed circRNAs have been identified to be
specifically associated with BCa. Notably, BCa-related
circRNAs have been discovered to regulate cancer-
related biological behaviours via ceRNA regulatory
mechanisms. Existing reports feature methodologies and
study designs that others can use for further investiga-
tion of circRNAs of interest. CircRNAs have been re-
ported to be significantly associated with many
clinicopathologic characteristics of BCa and with BCa
patient survival parameters, and the abundance, conser-
vation, stability, specificity and detectability of circRNAs
render them potential diagnostic and prognostic bio-
markers for BCa. Additionally, circRNAs play crucial
regulatory roles upstream of various signalling pathways
related to BCa carcinogenesis and progression, reflecting
their potential as therapeutic targets for BCa.

Some limitations of previous research on circRNAs
in BCa should be noted. First, the biogenesis of cir-
cRNAs and the regulatory mechanisms involved in
circularization remain vague. More research is needed
to help us understand the circRNA circularization
processes in depth. Second, no unified standards are
available to determine thresholds for circRNA detec-
tion. Third, previous studies on circRNAs in BCa
lacked circRNAs with BCa specificity. More circRNAs
with relative bladder cancer specificity may be further
characterized in future studies. Fourth, almost all re-
ported circRNAs in BCa exert functions via miRNA
sponge mechanisms. The other three classical mecha-
nisms, including sponging of RBPs, regulation of tran-
scription and translation into peptides or proteins,
have rarely been studied in BCa. Fifth, all circRNAs
reported in BCa are currently in the basic research
stage. Further investigation of circRNAs as diagnostic
biomarkers, prognostic biomarkers, or targeted ther-
apy for BCa in well-designed multicentre cohort stud-
ies is necessary.
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