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ABSTRACT

The advances of high-throughput sequencing offer
an unprecedented opportunity to study genetic vari-
ation. This is challenged by the difficulty of resolving
variant calls in repetitive DNA regions. We present a
Bayesian method to estimate repeat-length vari-
ation from paired-end sequence read data. The
method makes variant calls based on deviations in
sequence fragment sizes, allowing the analysis of
repeats at lengths of relevance to a range of pheno-
types. We demonstrate the method’s ability to
detect and quantify changes in repeat lengths from
short read genomic sequence data across geno-
types. We use the method to estimate repeat
variation among 12 strains of Arabidopsis thaliana
and demonstrate experimentally that our method
compares favourably against existing methods.
Using this method, we have identified all repeats
across the genome, which are likely to be poly-
morphic. In addition, our predicted polymorphic
repeats also included the only known repeat expan-
sion in A. thaliana, suggesting an ability to discover
potential unstable repeats.

INTRODUCTION

DNA repeats are ubiquitous in most eukaryotic genomes.
Among them, ‘short tandem repeats’ (STRs), or ‘micro-
satellites’, are repeat sequences that have units between 2
and 6bp. The repetitive structures of STRs make them
highly prone to errors due to slippage during DNA repli-
cation and repair, generating new alleles with variable

numbers of repeat units. STRs are generally much more
polymorphic than other kinds of mutations such as copy
number variation and single-nucleotide polymorphisms
(SNPs) (1). Because of their high variability, STRs are
often used as molecular markers for population analysis,
forensic analysis and genealogical DNA testing.

The length variability of STRs is associated with pheno-
typic variation in many species, with the extremes
exemplified by ~40 genetic disorders in humans (2-9).
These disorders are commonly caused by repeat ‘expan-
sion” where the number of repeat units in a single repeat
tract progressively increases during inter-generational
transmission and progeny development. Expansions are
found predominantly in tri-nucleotide repeats (TNRs),
but tetra-, penta- and hexa-nucleotide expansions have
also been discovered (10-13). Analysing the variability
of STRs is an important step to understand mechanisms
that lead to STR instability.

The advances of high-throughput sequencing (HTS)
have generated enormous amounts of sequence data at
low costs, providing an unprecedented opportunity to
study genetic variation. However, making STR variation
calls from HTS data is challenging for two main reasons:
(1) the amplification of STR loci during sequencing is also
subject to slippage, creating copy number errors in read
data; and (ii) the low information content of repetitive
sequence reads makes it difficult to align them reliably
(14-16). Until now, methods have required that at least
one read needs to be longer than the full repeat tract, with
the ends of the read aligned to the flanks of the repeat.
This severely restricts the capacity of methods to charac-
terize repeat lengths bounded by the capability of many
current sequencing technologies.

‘Paired-end’ sequencing is increasingly becoming the
strategy of choice, in which two (short) reads are
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sequenced from the two ends of a sequence fragment. In
addition to sequence information, paired-end reads
provide relative, longer-range positional information to
allow for higher specificity in analyses. In this article, we
present STRViper, a method that exploits paired-end in-
formation for the detection of STR variation from deep
sequencing data. STRViper uses Bayesian inference to
analyse STR variation by leveraging diverging fragment
sizes, and by explicitly recognizing the causes of such. The
method only requires that one or more fragments contain
the STRs of interest, and hence can be used to study STRs
that are longer than the reads produced. Moreover, the
Bayesian framework allows the incorporation of other
sources of information to support inference.

Here, we show that STRViper can reliably identify STR
variation in both simulated and real HTS data. STRViper
outperforms the few methods that can be applied to make
length-variant calls. Each alternative method falls short of
taking advantage of the rich information available in
paired-end data that STRViper leverages in a statistically
robust manner. In addition, we decipher a large number of
loci with repeat variation in the Arabidopsis thaliana
genome, which can be used for further genetic analyses.
Furthermore, with reliable variant calls in hand, we
explore the notion of STR ‘variability’. Using this,
STRViper predicts the polymorphic repeats across a
population of genomes and uncovers several polymorphic
repeats including the locus of the only known repeat ex-
pansion in A. thaliana. We anticipate this ability will
enable researchers to suggest candidates for loci at
which new unstable repeat sequences can be discovered.

MATERIALS AND METHODS
STRViper estimates repeat-length variation

We developed our method on the simple basis that each
paired-end sequence fragment will suggest a difference in
length between the repeat in the donor genome (from
which the fragment originates) and that in the reference
genome (to which the two reads are aligned) when the two
ends are aligned to the flanking regions of the repeat. To
some extent, a difference can be explained by the a priori
variation in fragment sizes. Our statistical model recog-
nizes this explanation, but as more fragments are
observed, it increasingly relies on the tendencies in the
data, i.e. the lengths of fragments, when the linked pair
is aligned to the reference sequence.

For a repeat, let uA represent a change in length (in
nucleotides) relative to a reference genome sequence,
where u is the repeat unit (e.g. three for TNRs; see
Figure 1). We estimate A from a set X of paired-end frag-
ments with observed (reference sequence) lengths
X1,X2,...,X,, cach ‘spanning’ the repeat. More specific-
ally, we place a probability distribution over A and use
Bayes’ rule to understand how X influences the estimate
(and the confidence) (see Equation 1).
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Figure 1. Insertions and deletions cause changes in how reads align to a
reference sequence. A fragment with length / is sheared from the donor
genome and the two ends are sequenced. The linked sequence reads are
then mapped to the reference genome. An insertion (left) or a deletion
(right) between the two reads in the donor genome will result in an
increase or a decrease (respectively) of the observed fragment size x.

Because fragment sizes are assumed to be normally
distributed (and the meanp and variance o describing
the density representing the library are given), observed
fragment lengths p(X|A) are also normal. We also note
that p(A) is the length variation known a priori to
evidence, which can include predictions made by other
tools.

STRViper processes sequence data from a SAM/BAM
file generated by a read aligner such as BWA (17), Bowtie
(18) or Stampy (19). For a given STR, it examines the sizes
of specific fragments that span the STR, and the fragment
statistics of the library. If the fragment statistics (the mean
and standard deviation) of the library is unavailable, the
tool will estimate that from all concordant read pairs.
STRViper then estimates repeat-length variation by
Bayesian inference as described above. The method
accounts for the uncertainties of various information
sources.

The confidence of variation calls reported by STRViper
depends on sequencing depth and the deviation in
fragment size. As we demonstrate in Results section,
the statistics required for confident calls are practical
and within the capacity of current sequencing
technologies.

Details of variation estimation

For an STR locus, let A represent the difference in repeat
unit number between the STRs in the donor and in the
reference genomes. That is, a positive (or negative) A in-
dicates an insertion (or deletion) of A repeat units in
the donor genome. Such an insertion/deletion (indel)
causes a change of size uA, where u is the size of a
repeat unit. Consider a fragment of size / that encompasses
the repeat region is amplified. The two reads from the two
ends of the fragment are not fully within the repeat region
and hence can be reliably mapped to the reference
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genome. Because of the indel between the two reads, the
distance between two ends of the two reads when mapped
to the reference genome is x =/ — uA (Figure 1). We refer
to this as the ‘observed fragment size’.

Assume a library of paired-end reads is sequenced from
the donor genome and the fragment size is normally
distributed with mean p; and variance o7. Because of
the above linear modification, the observed size of frag-
ments spanning an STR also has a normal distribution
with mean u; — uA and variance o7, i.e.:

1 B (x — prtul)?

We wish to estimate A from a collection X of fragments
with observed size x1,x,, .. X, that encompass the STR. To
use Bayesian statistics, we place a probability distribution
over the variation A. We further assume that the prior
probability distribution py(A) is a normal distribution
with mean o and variance o7 [It will become clear later
that this prior probability distribution is a conjugate prior
of p(A)]. By applying Bayes’ theorem, we have the poster-
ior probability distribution of A given the observed
fragment sizes:

PALY) = a ] [p(xilA)po(A) 3)
i=1
where o is a normalization factor independent of A,

so that [% p(A|X)dA = 1. Because p(x;|A) ~ N(u—
uA,07) and po(A) ~ N(10,03), we have:
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where the constants o’ and «” absorb the factors independ-
ent of A. Here the exponent is a second-order polynomial,
which indicates that the posterior distribution p(A|X) is
also a normal distribution with some mean pu, and
variance o?.
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By equating the coefficients in Equations 4 and 5, we
obtain:
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Equations 8 and 9 give an estimate of the variation A of
an STR by combining information from a prior estimate
(o and 05) and the observed sizes xi, x; .. x,, of fragments
spanning the STR. Here w, represents the most likely
value about A and o2 measures its certainty. As o2 mono-
tonically decreases as n increases and o7 decreases, we can
obtain a confident prediction with a large n (high
coverage) and a small o7 (less variable fragment size).

Incorporating other sources of information

Bayesian inference allows STRViper to incorporate other
sources of information into estimation of variation length.
This information is encapsulated in the prior probability
distribution pg(A) ~ N(io,05)—the prediction of the
variation size ‘before’ running this analysis. Such informa-
tion can be from expert knowledge or other predictions
such as that based on intrinsic sequence properties (20) or
based on short reads using split reads and read depth
coverage signatures. The current STRViper implementa-
tion inputs prior predictions in a Variant Call Format
(VCF) file, allowing it to be conveniently added to an
analysis pipeline with existing tools such as Samtools
mpileup (21), Dindel (22) and 1obSTR (23). If no prior
prediction is available, STR Viper uses a bland distribution
(o = 0 and oy = 10) as the prior prediction.

Simulate STR variation

We first evaluated the performance of STRViper using
partially simulated data. We simulated several short read
data sets based on the genome of the model organism
A. thaliana. We obtained the reference accession
Columbia (Col-0) genome from release TAIR10 (herein
called the reference genome). We then generated three
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donor genomes, namely, Sim-1, Sim-2 and Sim-3, with
differing levels of variation by implanting SNPs and
short indels into the reference genome. The SNP and
indel rates for Sim-2, which are 0.06 and 0.01, respectively,
were obtained from the comparative analysis of the
Arabidopsis strain Bur-0 genome assembly (24) relative
to the reference genome. The mutation rates for
simulating Sim-1 and Sim-3 were set to 0.5 and 1.5 times
that of Sim-2, respectively.

We identified 3685 STRs from the reference genome
using TRF (25). For each STR, we computed the variabil-
ity score (VARscore) using server SERV (20). We scaled
the VARscore by a factor and then sampled an STR vari-
ation from the obtained value. The scaling factors for
simulating STR variation in Sim-1, Sim-2 and Sim-3
were in the ratios 1:2:3. Simulated variation for SNPs,
non-STR indels and STRs in the three genomes is
described in Table 1.

We then simulated short reads from the three simulated
donor genomes based on Illumina sequencing technology.
We generated to 100-folds coverage of paired-end reads
with read length of 50bp and mean fragment size of
200 bp. The error rates for substitutions and indels were
set as 0.005 and 0.0005, respectively. To illustrate the per-
formance of STRViper-based fragment size distributions,
we generated four read libraries with differing fragment
size standard deviation: 10, 15, 20 and 25. These values are
consistent with a number of real HTS data sets available
such as that reported in (26) (standard deviation of 13)
and (24) (between 17 and 25).

Experimental analysis of STRViper results on real data

We next applied STRViper to a set of real data and ex-
perimentally validated its predictions. We obtained read
data for 12 A. thaliana accessions (Ler-0, Po-0, Ct-1,
Sf-2, Rsch-4, Tsu-0, No-0, Hi-0, Edi-0, Wil-2, Oy-0
and Can-0) sequenced by the Wellcome Trust (27)
(ENA:ERP000565). Each accession was sequenced with
two Illumina paired-end libraries with read lengths 36
and 50bp, respectively, to between 30- and 60-fold
coverage. The average fragment sizes for the two libraries
were 200 and 400 bp. The fragment size standard deviation
of these libraries ranged between 7 and 20 bp.

Seeds for 11 Arabidopsis accessions (all of the above
except for Can-0) were obtained from the European
Arabidopsis Stock Centre or Arabidopsis Biological
Resource Centre. We used seed stocks N76427 (80 acces-
sions from 1001 genome project), N22660 (96 strains from
Nordborg collection), CS76310 (261 strains from Beck
and Schaal collection) and the strains sequenced by the
Wellcome Trust Centre. DNA from 10-day-old seedlings
was extracted and used for polymerase chain reaction
(PCR) analysis of the indels predicted by STRViper. We
tested 58 TRNs for variability across 11 strains. The
primers used for the analysis and additional information
are available in Supplementary Table SI. Under standard
conditions, PCR was carried out, the fragments were
separated on agarose gels and the images were visually
inspected to score indels. A couple of representative
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Table 1. Summary of variation in the three synthesized genomes

Genome Rates Number Of Mean STR
SNP Indel Varied STRs Indel (bp)
Sim-1 0.03 0.005 2257 3.047
Sim-2 0.06 0.010 3079 6.022
Sim-3 0.09 0.015 3199 9.356

Columns 2 and 3 show rates of SNP and indels, column 4 shows the
number of varied STRs (of 3685) and column 5 shows the average STR
indel size.

images representing insertions and deletions are shown
in Supplementary Figure S2.

For the computational analyses, we considered an indel
of size at least 9 bp as variation. We then compared the
variation detected by these tools with the variation
observed from gel electrophoresis.

Analysis of STR variability

The variation of each STR locus for 12 strains was
estimated by STRViper. The 12 repeat lengths for the
STR from 12 strains, together with the STR length of
the reference genome Col-0, made up a sample of 13
lengths. We calculated the unbiased standard deviation
of the sample as the variability measure of the STR.

Correlation of genomic properties with STR variability
was determined by the Pearson correlation test. The test
returned a coefficient indicating the level of correlation
between the property and variability, and a P-value
indicating statistical significance of the observed correl-
ation (the probability of chance explaining it).

Variability of STRs in genomic regions was compared
using the Mann—Whitney U-test (a.k.a. Wilcoxon rank-
sum test). For each region, we compared the variability
of STRs placed in such a region against those placed
anywhere else. A positive (or negative) U-value indicates
that STRs in the particular genomic regions have higher
(or lower) variability than those placed in other regions.
Again, the P-value is the probability that the observed
difference in variability distributions can be explained by
chance.

Availability of tool

STRViper is implemented in Java, allowing it to be
deployed on most computing platforms. It accepts the
standard BAM/SAM format and hence can be easily
placed into an existing analysis pipeline. We also provide
scripts to parse other data formats such as VCF as well
as outputs from Tandem Repeats Finder (25). The
tool is freely available at http://bioinf.scmb.uq.edu.au/
STRViper.

RESULTS
Expected accuracy of repeat-length variation calling

We comprehensively benchmarked STRViper’s perform-
ance on controlled, partially simulated data sets,
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generated under a variety of conditions (see “Materials and
Methods’ section). We synthesized three genomes, referred
to as Sim-1, Sim-2 and Sim-3, in increasing order of evo-
lutionary divergence by introducing SNPs and indels into
the reference genome accession Col-0 (TAIR10) using
mutation rates from a comparative genomics analysis of
four diverse A. thaliana genomes (24). We further imposed
repeat-length variation according to the variability scores
provided by SERV (20). Variation statistics is summarized
in Table 1.

We simulated the sequencing of the three genomes using
Illumina paired-end technology (see ‘Materials and
Methods’ section). As the performance of STRViper is
dependent on sequencing depth and fragment size distri-
bution, we varied these for each run. Specifically, for each
genome, we generated four 100-fold coverage libraries
with fragment size standard deviations of 10, 15, 20 and
25bp, respectively, and applied STRViper to each of
them. These standard deviations were observed from
analysing short read data sets sequenced by (24) and (27).

We compared the performance of STRViper on these
data sets with two existing STR variation detection
methods, 1o0bSTR (23) and RepeatSeq (28). We also
included two general indel-calling methods, namely,
Samtools (21) and Dindel (22). We also ran MoDIL
(26), but it yielded poor results in STR variation predic-
tion. MoDIL was not specifically designed for repeat-
length variation, and with no available guidance of how
to adapt it to work for this problem, we opted not to
include it in the comparison. We consistently used
Stampy (19) to align reads to the reference genome. Pre-
aligned data are required by all tools except lobSTR,
which uses its own aligner. For each library, we ran
STRViper, l1obSTR, RepeatSeq and Samtools at various
levels of coverage (10-100-fold, in step of 10-fold) to
examine their performance at differing read-depths. (We
ran Dindel only on the 10-, 40- and 100-fold coverage
settings due to its prohibitive computation time.)

We assessed estimates of repeat-length variation using
‘root-mean-squared error’ (RMSE), which measures the
difference in sequence units between the real and
estimated variation sizes. We also computed the ‘sensitiv-
ity” (the fraction of actual STR variants that are reported)
and the ‘positive predictive value’ (the fraction of variant
calls that are correct) of the method. We summarized sen-
sitivity and the positive predictive value by the ‘F-score’,
which is the harmonic mean between them. A small
RMSE and a high F-score are preferred.

The plots in Figure 2 present the RMSE and F-score for
the chosen methods on the three genomes. Among these
tools, STRViper’s performance largely depends on the
fragment size variance, whereas all other methods are
indifferent to this. Therefore, we showed STRViper’s
performance on four libraries of each genome, while the
others’ on one library—the one with fragment size
standard deviation of 15. As expected, STRViper’s per-
formance increases (lower RMSE and higher F-score)
with tighter fragment size distribution and higher
coverage. Most methods increase in accuracy with
greater coverage. We note that Samtools” F-score peaks
at coverage of 20-30-fold, and starts to deteriorate when
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the coverage reaches 70-fold. This is consistent with ob-
servations of an earlier review (29).

Sim-1 contains repeat-length variation averaging only
3 bp, at which generic methods Dindel and Samtools are
effective, generally more so than STRViper. STRViper
requires a tight fragment size library (standard deviation
of 10) and high coverage (100-fold) to match their results.
Sim-2 contains STR variation ~6 bp. Here, with fragment
sizes with standard deviation <20, STRViper estimates
repeat-length variation as well as, or better than Dindel
and Samtools, at coverage of >40. STRViper has better
F-score at lower fragment size deviation. With yet greater
repeat-length variation of ~9 bp in Sim-3, STRViper out-
performs other methods at near all settings. Both Dindel
and Samtools detect the occurrence of variation in repeat-
length well (F-score) for all settings, but fail to estimate
the extent of variation (RMSE).

Based on Bayesian inference, STRViper allows other
(preferably independent) sources of information to be
incorporated. We examined the performance of
STRViper when using STR variation calls from Samtools
and Dindel as the prior distribution (see Equations 8 and
9). Figure 3 presents the performances of STRViper with
the incorporation and compares them with that of
Samtools, Dindel and STRViper (with a bland prior).
Figure 3 shows the results based on genome Sim-2 with
sequence fragment size with standard deviation of 20, a
setting where Samtools, Dindel and STRViper perform
comparatively. We note that STRViper can leverage the
predictions from Samtools and Dindel to improve upon
its performance even further.

Running times

Table 2 presents the average running times of the chosen
methods on differing coverage depths. We ran these
methods on a cluster of computers, and report here the
aggregate CPU times. It is fair to note that Samtools and
Dindel seek to locate all indels throughout the donor
genomes, while STRViper, lobSTR and RepeatSeq
focused only on the 3685 specified STRs. Besides,
lIobSTR performed its own alignment, whereas
STRViper, Samtools and Dindel processed data from a
BAM file containing aligned reads. The reported times
in Table 2 do not include the alignment times, which
were ~10 CPU hours per 10-fold using Stampy. lobSTR
was still the fastest method if mapping times are taken into
account, mainly because its mapping algorithm is much
more time-efficient than Stampy—IlobSTR only attempted
to align reads encompassing an STR, while Stampy
aligned all reads. Once reads were aligned, RepeatSeq
was the fastest. However, both IobSTR and RepeatSeq
performances were poor on moderate variation sizes.
STRViper needed <4min to process 10-fold coverage
reads, which is 10 and 4000 times faster than Samtools
and Dindel, respectively.

Comparing STRViper performance with other tools
through experimental analysis

To compare the performance of STRViper with other
tools on real data, we obtained the raw short-read
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Table 2. Average running times of STRViper, lobSTR, RepeatSeq,
Samtools and Dindel

Nucleic Acids Research, 2014, Vol. 42, No. 3 el6

Table 3. Detection of experimentally observed STR variation by
STRViper and other methods including Gan et al., 2011

Method 10-fold 40-fold 100-fold Method TP TN FP FN F-score

STRViper 3.86 min 15.50 min 36.50 min STRViper 142 316 47 43 0.742

lobSTR 8.70 min 34.52 min 1.55h lobSTR 24 349 8 167 0.212

RepeatSeq 0.50 min 1.02 min 1.45min RepeatSeq 0 354 0 194

Samtools 42.00 min 3.37h 14.30h Samtools 38 344 16 150 0.306

Dindel 10.88day 46.24day 204.57day Dindel 36 346 27 139 0.280
Gan et al. 50 346 11 141 0.392

sequence data from (27) for 12 A. thaliana strains (Ler-0,
Po-0, Ct-1, Sf-2, Rsch-4, Tsu-0, No-0, Hi-0, Edi-0, Wil-2,
Oy-0 and Can-0) and estimated variation for the 3685
STRs found in the A4. thaliana genomes. These strains
were sequenced to 30- and 60-fold coverage, with
fragment size standard deviation between 7 and 20bp
(see ‘Materials and Methods’ section). For the purpose
of validation, we selected 58 long TNRs (>50bp) from
11 strains (all above, except for Can-0), amplified the
loci through PCR and compared the fragment lengths
with that of the reference strain (Col-0) through gel elec-
trophoresis. We scored for each strain whether there is a
deletion or insertion or no variation, when compared with
Col-0. After removing ambiguous calls from gel image
data on the 11 strains, we obtained results for 548 of
638 possible sites (blind to predictions), including 91 de-
letions and 103 insertions relative to our reference Col-0
(see Supplementary Table S1). We also applied alternative
methods (IobSTR, RepeatSeq, Samtools and Dindel) on
the same data set, and compared their estimates of vari-
ation against the experimental calls. We include the
repeat-length variation implied by the original genome
analysis of each strain (27).

We observed high agreement between STRViper and
the experimental validation (Table 3). STRViper made
142 correct variant calls (75 deletions and 67 insertions)
and attained an F-score of 0.742. Owing to the read length
limit of the data (only 50 bp), alternative STR variation
detection methods performed poorly on these loci. In par-
ticular, Samtools, Dindel and 1o0bSTR reported only 38, 36
and 24 correct variants, respectively. RepeatSeq did not
report any variant for the 58 loci. Estimates reported by
STRViper included all correct calls from 1obSTR, all but
two of Samtools and all but three of Dindel. The original
annotation detected by a hybrid strategy IMR/DENOM
(27), which combines iterative read mapping and de novo
assembly, reported 50 correct variants (F-score = 0.392).
These 50 variant calls were recovered by STRViper too.
This suggests that STRViper is sensitive, especially on
moderately long repeat tracts.

We refrain from performing an RMSE-based evalu-
ation, but note that for arbitrarily selected gels, there is
strong agreement in estimated levels of variation with
those indicated in the gel images (see Supplementary
Figure S2).

Analyses of STR variability

Encouraged by the accuracy of STRViper, we used the
variation estimates to analyse the ‘variability’ of STRs in

TP: number of true positives, TN: number of true negatives,
FP: number of false positives and FN: number of false negatives.

A. thaliana genomes. For each STR, we took the sample of
the estimated lengths from 13 A. thaliana strains—the
above 12 strains and the reference genome Col-0 (sce
‘Materials and Methods’ section). We then defined vari-
ability of a repeat as the ‘standard deviation’ of the
sample. We obtained the variability of all 3685 STRs
and the subset of 1042 TNRs. The distribution of variabil-
ity approximately follows the F-distribution (see
Supplementary Figure S1). We hypothesize that if a
locus is variable, it is more unstable than repeats in
general. Consistent with this, we picked up the
GAA.TTC repeat in IIL1 gene, which has been found to
be expanded in the Bur-0 accession of Arabidopsis (6)
among the top 10 intronic repeats with highest variability.
The variability of the IIL1 repeat is 16, which was in the
94th and 96th percentiles of the STR and TNR sets, re-
spectively. The simple measure of variability thus clearly
identifies the only known repeat expansion phenotype in
A. thaliana. Further, we randomly picked five genes
(At1g48400, Atlgd7300, Atlg30270, Atlgl3270 and
At5g03710) that are predicted to be harbouring high vari-
ability and analysed their triplet repeats through PCR
analysis across 450 strains (see Supplementary Figure
S3). Consistent with the predictions from STRViper, we
found these genes to be highly polymorphic, indicating
that our analysis based on 13 strains can capture the vari-
ability at the population level at least for the subset of the
tested genomic regions.

Various mechanisms underlying the instability of STRs
have been proposed over the past two decades. The direct
cause of DNA slippage is thought to be the forming of
unusual secondary structures during DNA replication, re-
combination and repair [see (30)]. Nevertheless, many
other factors have been found to be associated with
certain unstable STRs, such as transcription and gene ex-
pression level (31), distance to the replication origin (32),
DNA methylation (33) and histone modifications (34).
However, there has been no study to quantify the associ-
ation of STR instability with these markers, partly due to
the limited numbers of known unstable repeats.

Our analyses establish a strong correlation between
STR variability and repeat purity, length, CG content of
the repeats and of the flanking regions, but not with the
distance to the nearest origin of replication (35) (see
Table 4). The test results are broadly similar for the
STR and TNR sets. We find that STRs in exons and
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Table 4. The (Pearson) correlation (p) between STR variability and
repeat purity, length, CG content, CG content in the flanking regions
and distance to the nearest origin of replication

Property All STRs All TNRs

P P-value p P-value
Purity 0.435 3.2e-170 0.322 1.8e-26
Length 0.231 7.9¢-46 0.242 1.9e-15
CG-content repeats —0.146 6.2e-19 —0.197 1.4e-10
CG-content flanks —0.170 1.5e-25 —0.161 1.7e-07
Distance to ORC —0.001 0.94 —0.028 0.36

Table 5. Repeat-length variability associated with different genomic
regions

Genomic region All STRs All TNRs

Number U-value P-value Number U-value P-value

Exon 660 —20.40 9.1e-93 463 —10.00 1.1e-23
Intron 425 395 79e-05 72 2.71  6.6e-03
5-UTR 356 —6.00 2.0e-09 152 2.36 1.8e-02
3-UTR 111 —3.76  1.8e-04 45 0.03  9.8e-01
Upstream 510 2.09 3.6e-02 114 143 1.5e-01
Downstream 410 142 1.5e-01 112 1.93  5.4e-02
OtherRNA 12 —1.45 1.5e-01 8 —1.25 2.1e-01
Non-functional 1525 13.50 1.le-41 227 5.63  1.8¢-08

Absolute counts, Mann—Whitney U- and P-values are provided for
each genomic annotation.

5’-UTR are significantly less likely to vary, while those in
introns and non-functional regions are significantly more
variable for both the general group of STRs and TNRs
(see Table 5).

To investigate whether genes at variable (or non-
variable) repeat loci are associated with specific roles, we
performed a Gene Ontology enrichment analysis.
Specifically, we used the Mann—Whitney U test again, to
ascertain the difference of variability scores for genes with
a particular term ¢, and the scores for genes without 7. (We
test ¢ if it is assigned to at least one gene that contains a
repeat, either as part of its exons, introns, 5-UTR or
3’-UTR.) First, we test what terms are associated with
genes, with repeats scoring ‘higher’ than expected. As
can be seen in Supplementary Table S2, variable repeats
are associated with many terms related to a range of meta-
bolic processes. Indirectly, variable loci may explore their
roles opportunistically and several of the terms describe
traits and processes that are less critical than say develop-
mental ones. It is perhaps more informative to look at
roles of genes that do not tolerate (to the same degree)
variability of repeat lengths. So, second, we test what
terms are associated with genes at repeat loci that vary
‘less’ than expected (see Supplementary Table S3). Here,
we see DNA and RNA binding and splicing, nuclear or-
ganization including chromatin and development assigned
to these non-variable loci.

DISCUSSION

We have put forward a method that is able to robustly
estimate repeat-length variation, and a strategy to identify
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loci with repeat-length variability. This strategy has high-
lighted genomic properties that suggest there is a link
between the tendency of a repeat to vary in a population
of individual (and related) genomes and that of repeat
instability. Repeat-length, purity and CG content of the
repeats all have an effect on the propensity of the single-
stranded DNA to form unusual conformations (36). It is
well known that longer repeats and greater repeat purity
are more susceptible to instability (37). What we refer to
as variable STRs (including, in particular, TNRs) are stat-
istically enriched in all of the above. However, we do not
find origins of replication to be associated with the expan-
sion of the tetra-nucleotide repeats (CCTG.CAGQG), as
reported for human (32). Strikingly, we find that IILI,
the only known repeat expansion in A. thaliana, is
highly variable. We propose that estimates of variation
as produced by STRViper can more broadly help
discover repeat tracts that are unstable.

We produce and make available estimates of variation
for 12 strains of A. thaliana, each locus also annotated
with the simple variability score we explored (see
Supplementary File S1). We verified the predicted indels
in 58 TNR repeat tracts of 11 strains sequenced by the
Wellcome Trust Centre for Human Genetics (27). Given
our accuracy, we now provide a list of 100 indels that are
likely to be polymorphic between any two strains (see
Supplementary Files S2-S4). Although the use of
microsatellite markers is limited, we believe this list
would be a valuable addition for some researchers
working on genotyping natural variation in A4. thaliana.

Existing methods for indel detection from HTS data
typically use one of three signatures. The ‘depth of
coverage’-based approaches used in CNV-seq (38), the
pipeline in (39) and BIC-seq (40) assume a uniform
coverage of reads across the genome. They expect dele-
tions (or insertions) at a particular location to decrease
(or increase) the numbers of reads mapped to that
location. These approaches are adversely influenced by
the over- or under-sampling caused by the sequencing
bias from current technologies. This depth of coverage
signature is only significantly strong for large indels (size
of >50bp) (41), which is unusual for STR variation. In
repetitive regions, reads can commonly be aligned to
multiple locations, which further complicates the calcula-
tion of coverage.

The second signature for detecting indels is ‘split reads’,
which is used in Samtools (21), Dindel (22), 1obSTR (23)
and RepeatSeq (28). These methods identify variation
directly from the differences between a read sequence
and the reference sequence, and therefore are sensitive
for detection of novel indels but are limited to short
STRs due to requiring reads longer than the STR in
question. Furthermore, these approaches are dependent
on the mapping of reads containing indels, which is
often unreliable in repetitive regions.

Methods using the third signature ‘paired-end mapping’
include MoDIL (26), BreakDancer (42) and STRViper.
They identify indels from deviant fragment sizes. A key
criticism of paired-end mapping approaches is that they
require a tight distribution of fragment sizes to make
reliable predictions of small indels. However, we have
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demonstrated that,STR variation can be estimated from
realistic fragment size distributions (standard deviation of
20) and sequencing depths (40-fold coverage). STRViper
resembles MoDIL in that both assume a normal distribu-
tion of fragment sizes and make prediction by comparing
this distribution with the distribution of observed
fragment sizes. However, the two methods differ in
many aspects, notably that STRViper uses full Bayesian
statistics that places a distribution over the indel size and
allows the incorporation of indel prediction from other
methods. STRViper is also specifically designed for STR
variation, and hence does not require a computationally
expensive clustering to take place to scale well with the
large sets of short read data.

Variation can be detected de novo, where each genome is
assembled separately, and then compared with each other
and/or the reference genome. Although this approach
reduces the bias from the reference genome, it is compu-
tationally expensive. We note that STRViper improves on
the de novo variant calls published with the original
A. thaliana sequence data set (27).

Paired-end mapping in general, and STRViper in par-
ticular, offers a number of advantages with regard to STR
variation detection. First, reads are not required to be
longer than the repeat of interest; only the fragments
are. Therefore, paired-end mapping analysis is not con-
strained by current sequencing technologies and can
usually be accommodated during library preparation.
Second, the two reads from a fragment spanning the
STR are not necessarily repetitive, and hence their align-
ment can be more reliable. As mentioned above, the re-
quirement for fragment size distribution tightness can be
compensated by deep sequencing data. Our experiments
showed that with a realistic fragment size distribution
(standard deviation between 15 and 20) and an achievable
coverage depth (40-fold), STRViper performed better than
existing methods in detecting STR variation.

The importance of STR instability has been widely
recognized because of its association with severe genetic
disorders and its use as biological markers. Previous work
on analysing STR instability was often limited to
measuring variability across species (20) or from a small
number of individuals (43). HTS data provided a unique
opportunity to study STR variability on a large sample of
individuals. However, such analyses (44,45) were limited
to short STRs (<45 bp), while longer STRs are potentially
more biologically meaningful. STRViper offers a robust
solution to study STRs beyond read lengths, thereby
facilitating genome-wide assessment of STR variability.
The Bayesian statistics framework also allows STRViper
to incorporate sources of information other than paired-
end tags to maximize the reliability of results. The method
is also computationally efficient, which makes it suitable
for analysing such large data sets.

CONCLUSIONS

We have presented STRViper, a novel and statistically
robust method to reliably detect (length) variation in
repeats from HTS data. The method makes use of
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paired-end information, and hence can analyse repeat
tracts of sizes beyond the practical read length of
current sequencing technologies. Thus, the method
enables the study of repeats at sizes of relevance to a
range of phenotypes. It was rigorously evaluated favour-
ably against the limited number of tools that can be used
for this purpose, both on simulated and real data sets.

We applied the method to identify the repeat-length
variation for all STRs in a dozen strains of 4. thaliana.
We performed gel electrophoresis to experimentally test a
subset of the repeat loci, and found a high agreement with
the variant calls, most which are novel. The method was
then applied to delineate repeats that tend to vary across
multiple genomes in a population. This notion of variabil-
ity in a population recovered the only known unstable
repeat locus IIL1. Using PCR analysis, we further
validated the variability detected from the 12 strains, in
450 strains of A. thaliana, covering a diverse group of
genomes.

The introduction of STRViper will add an important
tool to the analysis of the rich source of data from HTS
technologies. It will contribute to the vast applications of
studying genome variation alongside the existing tech-
niques for analyses of SNP and large structural variants.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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