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Abstract: The number of Endometrial Carcinoma (EC) diagnoses is projected to increase substantially
in coming decades. Although most ECs have a favorable prognosis, the aggressive, non-endometrioid
subtypes are disproportionately concentrated in Black women and spread rapidly, making treatment
difficult and resulting in poor outcomes. Therefore, this study offers an exploratory spatial epidemio-
logical investigation of EC patients within a U.S.-based health system’s institutional cancer registry
(n = 1748) to search for and study geographic patterns. Clinical, demographic, and geographic charac-
teristics were compared by histotype using chi-square tests for categorical and t-tests for continuous
variables. Multivariable logistic regression evaluated the impact of risks on these histotypes. Cox
proportional hazard models measured risks in overall and cancer-specific death. Cluster detection
indicated that patients with the EC non-endometrioid histotypes exhibit geographic clustering in
their home address, such that congregate buildings can be identified for targeted outreach. Further-
more, living in a high social vulnerability area was independently associated with non-endometrioid
histotypes, as continuous and categorical variables. This study provides a methodological frame-
work for early, geographically targeted intervention; social vulnerability associations require further
investigation. We have begun to fill the knowledge gap of geography in gynecologic cancers, and
geographic clustering of aggressive tumors may enable targeted intervention to improve prognoses.

Keywords: endometrial cancer subtypes; racial disparities; geospatial; environmental mechanism;
social vulnerability

1. Introduction

Endometrial carcinoma (EC) is the most common cancer of the female genital tract [1].
It is categorized into five frequent histological subtypes (histotypes), which describe the his-
tological characteristics and biological behavior of the tumor: endometrioid, serous, mixed,
and clear-cell carcinoma, and carcinosarcoma [2]. While endometrioid is the most common
histology, representing about 75% of all EC, histotype-specific cancer incidence differs by
population, where Black women in the US have lower survival and are disproportionately
diagnosed with the aggressive non-endometrioid histotypes [2,3]. Prior risk stratification
systems show that Black women in the U.S. have poorer outcomes, as they are diagnosed at
a later stage [4] with higher grade [5] and more aggressive non-endometrioid histology [6].
Although Black women often present with more advanced stages of disease, higher-grade
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tumors, and aggressive histotypes, their survival is significantly lower for all histotypes
even after stratifying by age, stage, and grade [7–9].

To improve EC incidence, treatment, and severity outcomes, prior studies on racial
disparities have only analyzed biological factors, such as age or Body Mass Index (BMI),
in isolation. For example, age is associated with cancer risk, where older individuals are
overall at an increased risk for cancer, including EC [10]. Obesity has inflammatory com-
ponents that are related to many major chronic diseases, including endometrial cancer [8].
BMI is a strong risk factor for the most prevalent endometrioid histotype, where higher
BMI tends to be associated with lower-grade and earlier-stage tumors but is a weaker and
more contradicted risk factor for the less prevalent but more aggressive non-endometrioid
histotype [11]. While the focus on biological risks is essential, it does not fully explain
the racial disparities that are observed. Another potential driver of disparities is access
to healthcare. However, there is some evidence that demonstrates that this too is not
enough to explain the racial differences that exist [8,12,13]. What else may be driving these
outcomes? Furthermore, of these other potential risks, what is detectable such that it can
be modified or included in risk stratification for patients so that clinicians can provide
improved personalized care [14,15]? In the United States, it is known that there exists a
racially patterned landscape, such that Black people are disproportionately exposed to a
range of carcinogenic social and environmental risks [13,16,17]. How might this landscape
be associated with tumor biology in endometrial cancer? This study presents an exploratory
spatial epidemiological investigation of this question, as currently, the interactions of bio-
logical, sociodemographic, and environmental mechanisms driving the outcome disparities
remain poorly understood [15].

Spatial epidemiology offers geographically contextualized approaches to measure
dimensions of small areas, such as neighborhoods, and of individuals within these areas.
Such analyses usually rely on mapping patient residential addresses as points on a map
in a Geographic Information System (GIS) and then adding other relevant layers, ranging
from community level social determinants of health to individual locations of risks (e.g.,
violent crime, hazardous facilities). This geographic context surrounding where a patient
with endometrial cancer lives can then be quantified and integrated in modeling with
their individual-level characteristics [18]. GIS has been widely utilized in cancer epidemi-
ology, but less so specifically in the study of endometrial cancer [19,20]. Furthermore,
even fewer studies have used GIS to investigate spatial patterns of potential etiological
variables in tumor biology. Instead, most have focused on other aspects of the Cancer
Control Continuum, such as prevention, early detection, diagnosis, etc. [21]. Recently,
however, there has been growing interest in the neighborhood-level associations linked to
racial disparities in breast cancer biology, particularly the role of neighborhood deprivation
and molecular mechanisms [22]. Building from this framework, this study explored associ-
ations between endometrial tumor biology and two widely utilized, and widely accessible,
geographic datasets that can be proxies for different aspects of neighborhood deprivation:
the Environmental Protection Agency’s (EPA’s) Toxic Release Inventory (TRI) [23] and the
Centers for Disease Control and Prevention (CDC) Social Vulnerability Index (SVI) [24,25].
The TRI is a dataset of facilities that handle toxic chemicals monitored by the EPA. Each
record lists the amounts of all reportable chemicals at a geographic location, including
the x,y coordinate and all associated variables (For a complete list of variables reported
in the TRI, see: https://www.epa.gov/system/files/documents/2021-10/tri-basic-data-
file-documentation-ry2020_100721.pdf, accessed on 19 January 2022), and can be mapped
using GIS. The TRI has been widely used in cancer literature to investigate the role of envi-
ronmental hazards on disease [26–28]. While the TRI can be used to investigate chemical
exposure and disease outcome, drawing from environmental justice and environmental
racism research, it can also be used as a marker of racially patterned aspects of neighbor-
hood deprivation [29]. In this study, we used this dataset to explore if and perhaps how
it may be associated with tumor biology. The second exploratory dataset we used was
the SVI. It is a composite area-based measure of 15 census variables at the county and
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census tract levels covering four themes: socioeconomic status, household composition and
disability, minority status and language, and housing type and transportation. The cancer
literature has used SVI to assess the resiliency and vulnerability of different communities
to external stress [30,31]. In this study, it was used as a marker of the geographic context of
socioeconomic conditions in the patients’ residential area. Overall, associations between
tumor type and geographic context, such as neighborhood deprivation, have not been
studied in EC. We suggest that markers of neighborhood deprivation risks can be associ-
ated with histotype and the underlying biology. We sought to examine the association of
endometrioid versus non-endometrioid histology and survival with an individual’s social
and physical environment.

2. Materials and Methods
2.1. Study Population

We collected data from 4039 patients diagnosed with endometrial cancer, including
endometrioid and non-endometrioid subtypes, between 1998 and 2021 at University Hos-
pitals Cleveland (UH) Seidman Cancer Center from the institutional cancer registry, with
follow-up for 22 years. All patients were treated with primary surgery including hys-
terectomy and bilateral salpingo-oophorectomy. Additionally, Patients considered to be
at high-risk for recurrence, including those with non-endometrioid subtypes or advanced
stage (FIGO stage II or III), were offered adjuvant chemotherapy or pelvic radiation. These
individuals were matched with the Ohio Cancer Incidence Surveillance System (OCISS)
from 1992 to 2018 in order to obtain outcome data for overall and cancer-specific survival.
Records were excluded if they did not have a complete street address and, of these, if the
residential address listed was outside of Ohio. The fifteen counties comprising the Case
Comprehensive Cancer Center (CCCC) catchment area were used to define the study area.
All residential addresses that were located within these counties were geocoded and within
this dataset, addresses that did not have high positional accuracy were removed, resulting
in a dataset of 3582 women. Only 1748 women could be linked by diagnosis date between
the two datasets, and 836 were excluded due to missing data (Figure S1). While we were
unable to use the full original dataset, the proportions of race (Black or White women) and
disease stage (stage I or higher stage) are similar between both datasets.

2.2. Demographic Characteristics

Relevant variables available from our institutional cancer registry include histology,
height, weight, FIGO stage, race, and residential addresses (subsequently geocoded to X-,
Y-coordinates). Patients were categorized as having endometrioid versus non-endometrioid
histotypes. The non-endometrioid category comprises several histotypes, including serous,
clear cell, or mixed carcinoma, and carcinosarcoma.

The OCISS database contains statewide cancer surveillance data for incidence and
survival of cancer by the National Program of Cancer Registries. All cancer cases diagnosed
among Ohio residents, except for basal cell and squamous cell carcinoma of the skin, are
reported to OCISS. The OCISS database follows the data standards and data dictionary
of the North American Association of Central Cancer Registries and includes clinical
characteristics at diagnosis (stage, grade, and cancer site), demographics (age, sex, and
race), date of diagnosis, primary treatment information, vital status follow-up, and cause
of death.

2.3. Geospatial Analyses

Patient residential addresses with complete model data were available for 912 unique
patients, with high positional accuracy. Each individual was geocoded to their point
level locations. Spatial epidemiological cluster detection techniques, Local Moran’s I
(LMI) [32], Gi* [33], and GeoMEDD [34] were used to investigate geographic patterns
of non-endometrioid subtypes within the CCCC area in ArcMap (v = 10.7.1) [35]. Local
Moran’s I and Gi* have been used widely in detection of cancer clusters [19,28,36,37], while
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GeoMEDD is a new approach developed in COVID-19 spatial syndromic surveillance [34].
Local Moran’s I and Gi* operate on aggregate geographic units, such as census tracts, in
this case. GeoMEDD output is based on the boundary of point level cases based on user-
defined space–time relationships, which identify granular concentrations, such as at a street
segment or building level. While GeoMEDD reports only the presence of geographical areas
that meet user-specified spatial and temporal relationships (but not significance thresholds),
LMI and Gi* compare the observed spatial pattern of disease with the null hypothesis of
complete spatial randomness (CSR) as generated by 999 Monte Carlo simulations [28,38].
Local Moran’s I and Gi* were calculated for the rate of non-endometrioid subtypes by
census tract, with neighbors defined as having shared boundaries and vertices (1st order
queen contiguity matrix). The output from these techniques is multiple clusters of varying
sizes and significance thresholds of p ≤ 0.01. For example, some clusters may be p = 0.01,
while others may be p = 0.0025, etc. Therefore, results are reported for all clusters as p ≤ 0.01.
It should also be noted that these significance values are pseudo p-values, as spatial cluster
detection inherently relies on multiple testing procedures [39].

Neighborhood deprivation proximate to each address was integrated within a Geo-
graphic Information System (GIS). The Centers for Disease Control and Prevention (CDC)
Social Vulnerability Index (SVI) approximated social conditions using 15 census variables
at the census tract level (Figure 1) [24]. Each census tract was ranked by percentiles ranging
from 0 to 1 with greater values indicating greater social vulnerability [24]. For each patient,
an 800-m buffer was drawn circling their address at diagnosis and the average SVI score
for the year 2018 was individually coded. The Environmental Protection Agency’s (EPA)
Toxic Release Inventory (TRI) served as another marker of risk in the home environment of
each patient [23]. Geographic X, Y coordinates pinpointed each facility’s location. Using
the 800-m buffer, the number of TRI facilities as well as the mean and median chemical
release values reported by these facilities for the years 2000, 2010, and 2020 were calculated
for each patient (Figure 1). This buffer size was selected for this exploratory analysis based
on its widespread use as a walkable distance in numerous studies on utilization of the
neighborhood environment [40,41].

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 4 of 12 
 

 

2.3. Geospatial Analyses 
Patient residential addresses with complete model data were available for 912 unique 

patients, with high positional accuracy. Each individual was geocoded to their point level 
locations. Spatial epidemiological cluster detection techniques, Local Moran’s I (LMI) [32], 
Gi* [33], and GeoMEDD [34] were used to investigate geographic patterns of non-endo-
metrioid subtypes within the CCCC area in ArcMap (v = 10.7.1) [35]. Local Moran’s I and 
Gi* have been used widely in detection of cancer clusters [19,28,36,37], while GeoMEDD 
is a new approach developed in COVID-19 spatial syndromic surveillance [34]. Local Mo-
ran’s I and Gi* operate on aggregate geographic units, such as census tracts, in this case. 
GeoMEDD output is based on the boundary of point level cases based on user-defined 
space–time relationships, which identify granular concentrations, such as at a street seg-
ment or building level. While GeoMEDD reports only the presence of geographical areas 
that meet user-specified spatial and temporal relationships (but not significance thresh-
olds), LMI and Gi* compare the observed spatial pattern of disease with the null hypoth-
esis of complete spatial randomness (CSR) as generated by 999 Monte Carlo simulations 
[28,38]. Local Moran’s I and Gi* were calculated for the rate of non-endometrioid subtypes 
by census tract, with neighbors defined as having shared boundaries and vertices (1st or-
der queen contiguity matrix). The output from these techniques is multiple clusters of 
varying sizes and significance thresholds of p ≤ 0.01. For example, some clusters may be p 
= 0.01, while others may be p = 0.0025, etc. Therefore, results are reported for all clusters 
as p ≤ 0.01. It should also be noted that these significance values are pseudo p-values, as 
spatial cluster detection inherently relies on multiple testing procedures [39].  

Neighborhood deprivation proximate to each address was integrated within a Geo-
graphic Information System (GIS). The Centers for Disease Control and Prevention (CDC) 
Social Vulnerability Index (SVI) approximated social conditions using 15 census variables 
at the census tract level (Figure 1) [24]. Each census tract was ranked by percentiles rang-
ing from 0 to 1 with greater values indicating greater social vulnerability [24]. For each 
patient, an 800-m buffer was drawn circling their address at diagnosis and the average 
SVI score for the year 2018 was individually coded. The Environmental Protection 
Agency’s (EPA) Toxic Release Inventory (TRI) served as another marker of risk in the 
home environment of each patient [23]. Geographic X, Y coordinates pinpointed each fa-
cility’s location. Using the 800-m buffer, the number of TRI facilities as well as the mean 
and median chemical release values reported by these facilities for the years 2000, 2010, 
and 2020 were calculated for each patient (Figure 1). This buffer size was selected for this 
exploratory analysis based on its widespread use as a walkable distance in numerous 
studies on utilization of the neighborhood environment [40,41].  

 

Figure 1. For each patient, an 800-m buffer was drawn circling their address at diagnosis and the
average SVI score for the year 2018 was individually coded. The Environmental Protection Agency’s
(EPA’s) Toxic Release Inventory (TRI) serve as another marker of risk in the home environment of
each patient [23]. Geographic X, Y coordinates pinpoint each facility’s location. Using the 800-m
buffer, the number of TRI facilities as well as the mean and median chemical release values reported
by these facilities for the years 2000, 2010, and 2020 were calculated for each patient.
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2.4. Statistical Analysis

Clinical, demographic, and environmental characteristics were compared by histotype
(endometrioid versus non-endometrioid) using chi-square tests for categorical variables
(i.e., FIGO stage and race) and t-tests for continuous variables (i.e., age, BMI, SVI, the
total number of TRI releases (TRI density), and the number of TRI facilities (TRI count)).
Normality was measured using both visual density and Q-Q plots as well the Shapiro-Wilk
statistical approach. We categorized the variables SVI, TRI density, and TRI count for our
modeling of outcomes. SVI quartiles were utilized, where the highest quartile captured the
greatest social vulnerability. Both TRI variables were categorized as having no facilities
or releases (0) or any facilities or releases (>0). Multivariable logistic regression models
were used to evaluate the impact of health, social, and physical environmental risks of
histotypes. All multivariable models were adjusted for age, BMI, FIGO stage, and race.

A survival analysis employing Cox proportional hazard models and a log-rank test
compared risk of overall death (219 deaths, 693 survival) and cancer-specific survival
(72 deaths, 840 survival). Both univariate and multivariable analyses were employed
for survival outcomes, where multivariable models were adjusted for age at diagnosis
(continuous), BMI (obese vs. non-obese), FIGO stage (stage I vs. higher stage), and race
(Black vs. White). All statistical analyses were performed using R and two-sided statistical
tests were employed, where statistical significance was defined applying a threshold of
p = 0.05. Given this analysis was exploratory, multiple comparisons were not considered.

3. Results

Among the 912 women with endometrial cancer, 649 (71.2%) had the endometrioid
subtype and 263 (28.8%) had non-endometrioid subtypes (Table 1). Chi-square tests and
t-tests reported significant differences by histotype for age, SVI, TRI density, BMI, FIGO
stage, and race. On average, individuals with the non-endometrioid subtype were older,
had a higher SVI, a lower density of TRI releases, a lower BMI, and a more advanced FIGO
stage (stage II–IV), and were predominantly Black women (Table 1).

Table 1. Demographics of study population by histotype, mean (SD).

Endometrioid
(N = 649)

Non-Endometrioid
(N = 263) p-Value 1

Age 62.63 (10.40) 65.37 (10.80) 5.03 × 10−4 *
SVI 0.42 (0.28) 0.47 (0.30) 0.01 *

TRI Count 0.35 (1.43) 0.51 (3.05) 0.41
TRI Density 881.15 (6741.13) 220.138 (1493.28) 0.02 *

BMI (mean (range)) 35.51 (13.13–87.58) 33.39 (16.95–79.53) 2.82 × 10−3 *
FIGO stage, stage 1 count (%) 527 (81.20%) 160 (60.84%) 1.79 × 10−10 *

Race 4.28 × 10−10 *
Black 64 (10.12%) 69 (25.57%)
White 585 (89.88%) 194 (74.43%)

1 A t-test was performed for age, SVI, TRI count, TRI density and BMI. A chi-square test was performed for FIGO
stage and race. * p-value < 0.05.

The three geospatial techniques identified similar statistically detectable geographic
clusters of non-endometrioid histotype rates located in two high social vulnerability areas
of Cuyahoga County as well as in more rural areas of northeast Ohio (p < 0.05). GeoMEDD
identified clusters ranging in size from areas of a neighborhood to individual congregate
living facilities. Furthermore, there were five individual addresses with at least three
patients who had non-endometrioid subtype tumors. These are not duplicate records, rather
they are indicative of congregate living facilities such as nursing homes and apartments.
In some census tracts with low populations, it can be these individual point locations that
drive the rate for the tract. In these cases, it is not neighborhood-level conditions that may
be associated with the more aggressive tumor subtype, but rather women at older ages
concentrated by buildings.
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The results from a multivariable logistic regression model are presented in Table 2
and were adjusted for covariates (Table 1). The models measured the association of en-
dometrioid vs. non-endometrioid histotype with either the social variable, SVI, or the
environmental variables, TRI count and TRI density, adjusted for age, BMI, FIGO stage,
and race. SVI was associated with histotype both as a continuous variable (OR = 2.14;
95% CI = 1.26, 3.63; p = 4.70 × 10−3; data not shown) and as a categorical variable
(OR = 1.77; 95% CI = 1.16, 2.72; p = 0.008) comparing high SVI to the reference, low
SVI (Tables 2 and S1). Under the categorical variable model, women with the greatest
social vulnerability index have a 77% increased risk of non-endometrioid EC compared to
women residing in areas with minimal social vulnerability. Neither of the TRI variables
were significantly associated with endometrioid or non-endometrioid histotypes in these
multivariable models (Tables 2 and S1).

Table 2. Multivariable Models that Associate Histotype with Categorical Variables.

Full Model SVI Full Model TRI Count Full Model TRI Density

OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value

SVI
Middle-Low 1.25 (0.80, 1.95) 0.34

TRI
Count
High

0.85 (0.48, 1.47) 0.58
TRI

Density
High

0.99 (0.51, 1.84) 0.98

SVI
Middle-High 1.00 (0.64, 1.55) 0.99

SVI High 1.77 (1.16, 2.72) 0.008 *

Adjusted for age, BMI, FIGO stage, and race. * p-value < 0.05.

A survival analysis evaluated the time to overall death for the social and environmental
variables SVI, TRI count, and TRI density as continuous and categorical variables. In models
similar to the multivariable logistic regression model, each of these variables, SVI, TRI count,
and TRI density, were individually measured with adjustment by covariates age, BMI, FIGO
stage, and race. SVI was associated with survival both as a continuous variable (HR = 1.86;
95% CI = 1.17, 2.94; p = 8.33 × 10−3) and as a categorical variable comparing high SVI to
low SVI (HR = 1.67; 95% CI = 1.14, 2.41; p = 7.95 × 10−3) (Figures 2 and S2, Tables 3 and S2).
Neither of the TRI variables were significantly associated with survival in these models
(Tables 3 and S2).

Table 3. Overall Deaths Multivariable Analysis with Categorical Variables.

Full Model SVI Full Model TRI Count 1 Full Model TRI Density 2

Hazard Ratio
(95% CI) p-Value Hazard Ratio

(95% CI) p-Value Hazard Ratio
(95% CI) p-Value

SVI
Middle-Low 3 1.15 (0.76, 1.73) 0.51

TRI
Count
High

0.84 (0.51, 1.35) 0.46
TRI

Density
High

0.97 (0.57, 1.68) 0.93

SVI
Middle-High 4 1.08 (0.73, 1.62) 0.69

SVI High 5 1.67 (1.14, 2.41) 7.95 × 10−3 *

Adjusted for age, BMI, FIGO stage, and race. * p-value < 0.05. 1 Patient Survival low = 630, Patient Death
low = 201, Patient Survival high = 63, Patient Death high = 18. 2 Patient Survival low = 649, Patient Death
low = 205, Patient Survival high = 44, Patient Death high = 14. 3 Patient Survival = 162, Patient Death = 45,
4 Patient Survival = 192, Patient Death = 55, 5 Patient Survival = 156, Patient Death = 73.
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Figure 2. Overall deaths survival analysis hazard ratios. In the overall deaths survival analysis, SVI
high is significant (p = 0.008) when adjusting for age, BMI, FIGO stage, and race. Advanced age,
higher BMI, and Black women have odds ratios greater than or equal to 1 and therefore are at an
increased risk of death.

Additionally, multivariable survival analyses predicted increased likelihood of overall
deaths with SVI. The association of total survival and SVI was significant in models with
SVI as a continuous or a categorical variable (Table S3). Those with the high SVI category
were significantly associated with death compared to those with the low SVI category. The
endometrial cancer-specific deaths model did not replicate the results, which may be due
to a smaller sample size of cancer-specific deaths (Table S3).

4. Discussion

We used a modeling approach to evaluate the association between endometrial cancer
histotype and several community-scale factors for EC cases diagnosed in the CCCC area.
A model was built to assess the relationship of endometrioid versus aggressive/non-
endometrioid histotype and a novel variable, SVI, adjusting for age, BMI, FIGO stage,
and race. SVI was associated with the aggressive non-endometrioid histotype as both a
continuous and a categorical variable. For example, a woman residing in an area with
the highest SVI quartile has a 77% increased risk for developing non-endometrioid cancer
compared to the women living in the area with the lowest SVI quartile. In a race-stratified
analysis, SVI is significantly associated with histotype as both a continuous and categorical
variable in White women (data not shown). No significant association was detected in
Black women, as the current analysis is underpowered, but the SVI odds ratios were in
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the same direction as the analysis with only White women. Given the impact of histotype
on progression, social vulnerability may be indicative of disease severity and should be
considered in the treatment of all women. While other studies have not detected an
association between tumor type and SVI, SVI has been associated with poorer post-surgery
outcomes [42] and less access to treatment [43,44] in cancer patients.

We also geographically clustered endometrial histotype in the CCCC area. Both
endometrioid and non-endometrioid histotype clusters were detected and indicated that
the CCCC area has a racially patterned external environment, as is the case throughout
much of the U.S. [13]. This is the first time (to our knowledge) that endometrial histotype
has been geographically clustered. The mapped output will be used internally to target
clinical intervention and to direct more locally targeted analyses. The SVI data can be used
to create risk stratifications based on where individuals live for more holistic treatments.
Those residing in high-risk areas could receive extra screening that may lead to earlier
diagnosis. Targeted screening could improve health outcomes of individuals with non-
endometrioid EC, as there are fewer early diagnosable symptoms.

Follow-up studies using a greater population of endometrial-cancer-specific deaths
are needed to confirm the survival analysis results. Overall, social vulnerability should
be considered in treatment, as it may also be indicative of overall survival. We expect that
improved screening and targeted treatment derived from SVI risk stratifications could decrease
mortality rates, particularly from the high-risk non-endometrioid histotypes [45–48].

While there are significant associations between SVI and both non-endometrioid EC and
survival, the biological mechanism is still unknown. High social vulnerability may be associ-
ated with biological stress responses, as the cancer literature has previously used SVI to assess
the community’s resiliency and vulnerability from external stressors [30,31,49–51]. Future
studies could better define why Black women and women residing in areas of high SVI
are more frequently diagnosed with non-endometrioid EC. There could be a stress-related
biological mechanism, such as changes in DNA methylation or host immune response,
that is driving the increase in non-endometrioid EC diagnosis. Additionally, a particu-
lar component encompassing SVI could drive the association in different communities.
A geographically weighted regression of histotype and SVI could detect distinct clusters
where SVI is more or less predictive [52]. As we were unable to use the full dataset due
to a lack of linkage between institutional and Ohio cancer databases based on diagnosis
dates, we may be able to detect more distinct clusters with a fuller dataset. Further studies
could also detect associations between each of the 15 components encompassing the SVI
measurement to understand if different clusters of histotype are associated with specific
vulnerabilities.

No significant association was detected between either TRI variable, continuous
or categorical, and histotype or death. This may be due to the limited sample size of
individuals with TRI facilities or releases greater than zero. Some women in our sample
resided in regions with TRI facilities and releases greater than zero but not enough to detect
a statistical difference (Figure S3). It may also be that environmental exposures are not
from TRI facilities, as they are regulated, but from non-reporting facilities, which may pose
more of a risk to health [16,53]. Future studies in areas with a variety of TRI exposures are
needed to measure if there is a relationship between TRI facilities or releases and histotype
or death.

5. Limitations

This study offers novel insights into the geographic context of tumor biology in en-
dometrial cancer and spatial methods to search for granular places that can be targeted for
education and intervention; however, it has a number of limitations that should be consid-
ered. Some of these will require further investigation as this line of inquiry develops. First,
the study does not account for the temporal aspect of the exposure–outcome relationship.
We do not know how long the patients lived in their home address nor if the geographic
context of their surroundings in this placed changed over time, specifically in the chosen
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proxies for neighborhood deprivation. We also assume stationarity in the patient home
addresses, which may not be the case. There is evidence to demonstrate that low-income
patients in particular exhibit elevated residential mobility, often forced mobility as in the
case of evictions. Furthermore, we lack knowledge of daily mobility of patients and their
surroundings, such as areas where they spend their time away from the home address that
may be more relevant sources of exposure to risks such as TRI. Despite its importance for
measuring exposure, such “activity space” geography is not a part of the Electronic Medical
Record (EMR). These limitations are a part of a larger concern, the Uncertain Geographic
Context Problem (UGCoP) [54], which our team is addressing [55–57]. Furthermore, we
lacked a replication site. Replicate studies in other cities with a history of a racially pat-
terned environment may be needed to further support our claims [58,59]. In particular,
recent studies have questioned the role of neighborhood, especially how the characteristics
of deprivation, stressors, and social vulnerability influence biological processes that lead to
adverse health outcomes, such as DNA methylation [60]. This study was limited to women
who self-identified as Black or White. Our results cannot generalize to women of other
races and ethnic groups without further analyses.

6. Conclusions

The United States displays a racially patterned external environment that likely im-
pacts health and survival of women with EC. Individuals in our study with the more
aggressive non-endometrioid subtype were predominantly Black women and resided in
areas with higher social vulnerability. These associations represent an opportunity for
improved targeted screening and risk stratification based on a woman’s health characteris-
tics and geographic location. Clinical risk stratification using SVI and other risk variables
can detect who benefits most from extra screening and care. Clinicians may be able to
improve prediction and detection of aggressive EC and decrease poor outcomes if social
and physical factors are included as risk factors.
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