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Abstract
Purpose of review In this review, we aim to discuss the role of the bone marrowmicroenvironment in supporting hematopoiesis,
with particular focus on the contribution of the endothelial niche in dictating hematopoietic stem cell (HSC) fate.
Recent findings Evidence gathered in the past two decades revealed that specific cell types within the bone marrow niche
influence the hematopoietic system. Endothelial cells have emerged as a key component of the HSC niche, directly affecting
stem cell quiescence, self-renewal, and lineage differentiation. Physiological alterations of the bone marrow niche occurring in
aging have been described to be sufficient to promote functional aging of young HSCs. Furthermore, a growing body of evidence
suggests that aberrant activation of endothelial-derived signaling pathways can aid or trigger neoplastic transformation.
Summary Several groups have contributed to the characterization of the different cell types that comprise the complex bone
marrow environment, whose function was long perceived as an undiscernible sum of many parts. Further studies will need to
uncover niche cell-type-specific pathways, in order to provide new targets and therapeutic options that aim at withdrawing the
microenvironmental support to malignant cells while sparing normal HSCs.

Keywords BMniche . Endothelial cells . Hematopoiesis . Aging .Myeloid leukemia

Introduction

For many years, the bone marrow (BM) niche was considered
an inert scaffold for hematopoietic stem cells (HSCs), but in
the past two decades, it has been recognized as a complex and
dynamic tissue providing the right Bsoil^ to ensure the fulfill-
ment of the HSC potential. Many molecular and cellular com-
ponents contribute to this plastic environment. In this review,
we discuss the recent advances that had shed light on the
complexity of the BM niche; in particular, we will focus on
the role of the endothelial niche, which sustain HSCs through-
out their lifespan, since the emergence of definitive HSCs
during embryonic development. Furthermore, we aim at
reviewing how the process of aging re-shapes the BM

endothelial niche and consequently affects hematopoie-
sis, impairing tissue homeostasis. Advancing age is ir-
refutably accompanied by an increased incidence of can-
cer, thus making critical the discussion on how alter-
ations of the BM microenvironment may instruct and/
or support the emergence of aberrant disease-initiating
leukemia stem cells (LSC). Here, we will examine sev-
eral lines of evidence that associate the genetic changes
in BM non-hematopoietic cells and the leukemia-
induced BM niche remodeling with the emergence of
leukemia cells endowed with stem cell-like properties.

The Hematopoietic Stem Cell Niche

In the mouse embryo, definitive HSCs emerge in the aorta-
gonad-mesonephros (AGM) region around embryonic day (E)
11 [1], as a result of endothelial-to-hematopoietic transitions
[2–4]. These HSCs then migrate to the fetal liver, where they
undergo a considerable expansion [5]. Eventually, HSCs col-
onize the BM concurrently with marrow vascularization
(E16.5) [6]. The BM niche thereafter provides a critical mul-
ticellular microenvironment throughout adult life, regulating
HSC quiescence, proliferation, mobilization, and lineage dif-
ferentiation. In addition to endothelial cells, other cell types
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are determinant for the life-long regeneration of the blood
system, including perivascular mesenchymal stem cells
[7–9], adipocytes [10], mature osteoblasts [11•, 12•], non-
myelinating Schwann cells [13], sympathetic nerves [14,
15], and hematopoietic-derived differentiated cells such as
megakaryocytes [16, 17], granulocytes [18], and regulatory
T cells [19, 20].

It was initially presumed that the HSC niche comprised
mainly osteolineage cells [21, 22], whereas the BM vascula-
ture served as a critical cellular hub for the regeneration of the
hematopoietic system following myelosuppressive damage
[23]. However, technical advances in imaging and the refine-
ment of cell surface markers enriching for HSCs demonstrated
that quiescent HSCs reside in close proximity to vascular
niches [24, 25], including endothelial cells and perivascular
cells [26]. Furthermore, the conditional deletion of key fac-
tors, such as stem cell-active cytokine (C-X-C motif) ligand
12 (CXCL12, also known as SDF1α) from mineralized oste-
oblasts or Osterix-expressing osteoprogenitor cells [11•], and
of stem cell factor (SCF, known as KITL) from Col2.3-ex-
pressing osteoblasts [12•] has been reported to not significant-
ly affect HSC frequency and function. Notably, these findings
showed that the expression of CXCL12 from cells in the
perivascular region, including endothelial cells and mesen-
chymal progenitors [11•], and of SCF from leptin receptor
(Lepr)-expressing perivascular stromal cells and endothelial
cells [12•] supported HSCs. The hypothesized contribution
of mature osteolineage cells to the maintenance of HSC was
additionally lessened by more recent studies combining
whole-mount confocal immunofluorescence imaging with
3D computational modeling. These studies found that HSCs
preferentially localized in endosteal zones, in close contact
with microvessels [27, 28••], consistent with an ancillary role
for mature osteoblasts in HSC control. Rather, it emerged that
immature osteoprogenitor cells are HSC regulators. These
osteolineage-committed progenitors are comprised in mesen-
chymal stem cells and are often localized in perivascular re-
gions [29].

The Bone Marrow Endothelial Niche

Endothelial cells are specialized cells that form the inner lining
of all blood vessels and support tissue growth and repair [30].
Within the BM microenvironment, endothelial cells are orga-
nized in a hierarchical structure of central, longitudinal arteries
that give rise to smaller arterioles, which transition to the ve-
nous circulation in proximity of the endosteum, and then into
sinusoid vessels that extend back in the BM cavity [27].
Recent data has postulated that the endothelial niche can be
divided into two distinct pro-HSC niches, the arteriolar niche
that is identified by the VEcadherin+ (CDH5) CD31+

Endomucin+/− SCA1high (Ly6a) VEGRF3− (FLT4) surface

phenotype and the sinusoidal niche, identified by
VEcadherin+ CD31+ Endomucin+ SCA1low VEGRF3+

[28••, 31, 32]. In the context of SCF, it has been suggested
the arteriole cells are responsible for the maintenance of the
HSC [33]; however, it is still unclear whether these two sub-
categories play different instructive roles in HSC function in
regard to other known or as of yet discovered pro-HSC factors
[8, 17, 28••, 33–35].

The role of the BM endothelium in regulating the hemato-
poietic system first emerged in the context of hematopoietic
recovery after myelosuppression [31, 35]. Studies in mice re-
vealed that 5-fluorouracil (5-FU) treatment led to an increase in
soluble KITL and plasma vascular endothelial growth factor A
(VEGF-A) levels along with the expansion of Tie2-positive
neovessels in the adult BM. Moreover, inhibition of Tie2 sig-
naling contributed to impaired neoangiogenesis, leading to a
delay in hematopoietic recovery [35]. The critical importance
of vessel maintenance to functionally support HSCs was further
demonstrated by the conditional deletion of Vegfr2 in adult
mice, which was shown to block regeneration of sinusoidal
ECs in sublethally irradiated animals, thus preventing hemato-
poietic reconstitution [31]. Furthermore, inhibition of VEGFR2
using antibodies prevented regeneration of damaged sinusoidal
ECs, thereby interfering with the engraftment of HSCs and
leading to hematopoietic failure in lethally irradiated mice [31].

Pioneering work from our group demonstrated that endothe-
lial cells have the capacity to release angiocrine factors to sup-
port the in vitro self-renewal and in vivo reconstitution of long-
term (LT) HSC pool after myeloablation [36••]. Specifically,
activation of Akt-mTOR pathways in endothelial cells upregu-
lated stem cell active angiocrine factors that supported the ex-
pansion of HSCs. Conversely, MAPK signaling in endothelial
cells shifted the balance towards HSC differentiation, thus sug-
gesting that the endothelial niche could support both self-
renewal and lineage-specific differentiation of HSCs [37]. The
expression of Notch ligands Jagged-1 and Jagged-2 by BM-
derived endothelial cells (BMECs) also regulates HSC prolif-
eration and quiescence [37, 38•, 39]. Endothelial-specific dele-
tion of Jagged-1 using VE-cadherin-Cremice resulted in a sig-
nificant decrease in the number of phenotypic LT-HSCs at
steady state, and in inhibited hematopoietic regeneration after
sublethal irradiation [38•]. Notably, Jagged-2 expression in
BMECs was dispensable for maintaining the capacity of hema-
topoietic stem and progenitor cells (HSPCs) to repopulate under
steady-state conditions, but contributed to their recovery in re-
sponse to myelosuppressive injury, by activating Notch 2 [39].
Recently, the activation of Notch pathway has also been de-
scribed as a positive regulator of vascular growth in adult bone.
In particular, a new capillary subtype, defined as a rare
CD31highEndomucinhigh or BType H^ endothelium has been
implicated in osteogenesis and in chondrocyte maturation [32,
40]. This endothelial cell subset was enriched in the bone
metaphysis and at the endosteal surface and marked the distal
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end of CD31+Endomucin− arterioles. However, an independent
multivariate flow cytometry analysis of adult BM utilizing in-
travital injection of VE-cadherin and endothelial reporter mice
demonstrated that both arterioles and sinusoids were CD31high,
and that all VEGFR3+ sinusoids and a subset of arterioles were
Endomucinhigh [41]. Similarly, a novel endoglin (CD105)-ex-
pressing endothelial cell subpopulation was described in human
BM upon regeneration after chemotherapeutic injury. These
CD105-expressing endothelial cells were a rare fraction of
CD31+ endothelial cells in steady-state adult BM but increased
significantly (13–19-fold change increase) upon administration
of 5-FU. These findings confirmed a relative increase of this
subset in the regenerative phase after myeloablation, thus lead-
ing to designate these endothelial cells Bhuman regeneration-
associated ECs^ (hRECs). hRECs harbor several similarities to
the recently identified Type H endothelium in mice, including
localization to the bone surface and reduced frequencies during
aging [32, 40, 42].

Overall, these findings are particularly noteworthy in
relation to the myelosuppressive preparative regimens for
hematopoietic stem cell transplantation (HSCT). Indeed,
pre-conditioning regimens for blood malignancies and au-
toimmune disorders can cause systemic endothelial dam-
age and have been associated with HSCT-related compli-
cations, including acute graft-versus-host disease, through
endothelial apoptosis and pro-inflammatory cytokine pro-
duction [43, 44, 45•]. Chronic inflammatory signaling is a
renewed factor implicated in impaired HSC repopulation
potential [46–48]. Therefore, strategies aimed at limiting
pro-inflammatory responses that affect HSC maintenance
and BM endothelial niche integrity may be an attractive
option to preserve long-term HSC function following he-
matopoietic injury. To this aim, we have recently identified
the canonical NF-kB pathway as an extrinsic mediator of
HSC function within the adult BM endothelial niche.
Endothelial-specific inhibition of canonical NF-kB signal-
ing using a dominant negative IkB-SS construct expressed
under Tie2 promoter elements resulted in a profound in-
crease in HSC self-renewal and regenerative potential [49].
More notably, the infusion of exogenous [50••, 51] NF-
kB-inhibited BMECs in irradiated mice resulted in a sig-
nificant radio-protective effect that mitigated hematopoietic
damage [49]. Furthermore, we have demonstrated that co-
infusion of young BMECs with whole BM transplants can
shepherd the transplant to the BM microenvironment
resulting in an increase in the engraftment potential of a
limited number of donor hematopoietic cells, as well as
restore the functionality of transplanted aged donor cells
[52••]. Taken together, these findings underline the consid-
erable potential of therapeutic approaches targeting the en-
dothelial niche, either by the direct modulation of niche-
specific signaling or by infusion of ex vivo expanded
cellular therapeutics.

Aging of the Bone Marrow Niche and its
Effects on Hematopoiesis

It is generally believed that aging results in the progressive
decrease of stem cell reservoirs; although, when looking at the
hematopoietic system, aging entails complex and somehow
counterintuitive alterations. While the absolute number of
phenotypically defined HSCs increases with age, aged HSCs
exhibit decreased self-renewal and reconstitution capacity [53,
54, 55•, 56–59]. In particular, aged LT-HSC show a myeloid-
biased differentiation potential compared with young HSC,
and diminished lymphoid potential [54, 55•, 56, 57].

Aged HSCs express elevated levels of genes associated
with nitric oxide (NO)-mediated signal transduction, stress
response, inflammation [53], as well as with myeloid lineage
differentiation, cell cycle [60, 61] and proliferation (including
TGFβ and ERK/MAPK pathways) [56, 60]. In contrast,
downregulated genes often include those involved in the pres-
ervation of genomic integrity, such as chromatin remodeling,
DNA repair [53] and DNA replication. Cycling aged HSCs in
mice have shown elevated levels of replication stress associ-
ated with cell cycle defects [62], reduced cell polarity, and
adhesion to the BM niche [63, 64]. In all, most observations
in regard to the aging of the hematopoietic system have fo-
cused on cell intrinsic changes in HSCs which can portend to
leukemic transformation, but whether BM niche age-
associated alterations further exacerbate or even are sufficient
to initiate blood disorders is still unclear.

Recent evidence has demonstrated that cell extrinsic alter-
ation can support the onset of HSC aging phenotypes. Indeed,
it has been shown that the myeloid lineage skewing of aged
HSCs is associated to increased secretion of the pro-
inflammatory CC-chemokine ligand 5 (CCL5, also known
as RANTES) by aged stroma [65]. Similarly, reduced expres-
sion of secreted matrix protein osteopontin (OPN) in aged
stroma confers aging-associated phenotypes to HSCs, includ-
ing loss of cell polarity and impaired engraftment potential
[66]. Additionally, it has been demonstrated that loss of BM
innervation by the sympathetic nervous system can promote
premature aging of young HSCs [67]. In line with these find-
ings, our group has recently demonstrated that in both in vitro
and in vivo settings, aged BMECs can instruct an aged phe-
notype in young HSCs, whereas young BMECs can partially
rejuvenate aged HSC function [52••]. These data suggest that
aged BMECs could be primed to negatively affect HSC func-
tion, but that exposure to angiocrine factors from young
BMECs can aid in improving aged HSC function. Indeed, it
has been demonstrated that aged BMECs have compromised
function in regulating hematopoietic niche cells and that it is
possible to rejuvenate their functional readout by mitigating
the activation of endothelial Notch signaling; however, these
studies were unable to restore the full functional capacity of
HSCs [42]. These findings strongly suggest that deleterious
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changes in aged BM microenvironment inefficiently sustain
HSC homeostasis which may lead to aged-related hematopoi-
etic disorders (Fig. 1), providing intriguing models to specu-
late that a Bpre-malignant^ niche might induce aged HSCs to
undergo malignant transformation into tumor cells.

The Leukemic Bone Marrow Niche

As previously discussed, a growing body of evidence demon-
strates the critical interactions between healthy HSCs and their
niche. Several groups have explored the concept of niche-
initiated disease in animal models, showing that alterations of
specific BM microenvironment components are sufficient to
initiate or set the stage for leukemia. For the scope of this
review, we will discuss in more detail experimental models of
age-related myeloid disorders, including myeloproliferative
neoplasms (MPNs), myelodysplastic syndrome (MDS), and
acute myelogenous leukemia (AML). While several studies
provided remarkable proof-of-concept in mice, it is still unclear
whether a single alteration within the BMmicroenvironment is
sufficient to trigger leukemia in humans, although few groups
have recently made indirect observations that support this hy-
pothesis. One of the first striking model of niche-initiated dis-
ease was the mesenchymal osteoprogenitor-specific deletion of
the miRNA processing endonuclease Dicer1 under the Osterix
promoter, which induced impaired osteoblast differentiation
[68]. Abnormal osteoprogenitor cells were thus implicated in
defective HSC function and in key features of human MDS,
including peripheral cytopenia, dysgranulopoiesis, dysplastic
megakaryocytes, and the emergence of AML [68].
Interestingly, the osteoprogenitor-specific deletion of Sbds, the

gene mutated in Shwachman-Bodian-Diamond Syndrome, a
condition characterized by BM failure and leukemia predispo-
sition, largely phenocopied Dicer1 deletion [68]. Consistent
with this experimental model, decreased expression of
DICER1 was detected in mesenchymal stromal cell-derived
osteoprogenitors from MDS patients compared to healthy indi-
viduals, along with a reduction of SBDS [69].

The altered differentiation of myeloid and lymphoid pro-
genitors was described in mice with osteoblast-specific con-
stitutive activation ofβ-catenin, leading to the development of
AML [70]. Notably, β-catenin stimulated the expression of
Jagged-1 in osteoblasts, triggering aberrant Notch signaling
in HSC progenitors [70]. These observations were relevant
to human disease, as nuclear localization of β-catenin in os-
teoblasts was found in a cohort of patients with AML orMDS,
associated with concurrent Notch signaling activation in he-
matopoietic cells [70].

Mutations of the protein tyrosine phosphatase SHP2
(encoded by PTPN11), a positive regulator of the RAS path-
way, in mesenchymal stem/progeni tor cel l s and
osteoprogenitors, but not in differentiated osteoblasts or endo-
thelial cells induced MPN [71]. Conversely, the loss of signal-
induced proliferation-associated gene 1 (Sipa1), a RAP1
GTPase-activating protein expressed mainly by mesenchymal
stem/progenitor cells and endothelial cells induced significant
alterations in the BM niche prior to the initiation of MDS/
MPN in mice [72]. Importantly, transplantation of normal
Sipa1+/+ hematopoietic cells in Sipa1−/− recipients was
followed by neoplastic transformation in MDS/MPN, recapit-
ulating the same disease features observed in aged Sipa1−/−

mice, including anemia, increased granulocytes, pronounced
B-lymphopenia, and splenomegaly [72]. Sipa1-deficient

Fig. 1 Representative diagram of the instructive role of the BM vascular
niche towards HSC regulation, demonstrating that the activation of Akt
signaling in young ECs aids HSC function. As aging occurs, the

activation state of EC shifts towards pro-inflammatory pathways, includ-
ing MAPK and NF-kB signaling, leading to impaired HSC function,
while promoting leukemia cell expansion
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niche cells displayed enrichment of G protein signal path-
ways, including Ras and Rap1, and of pro-inflammatory cy-
tokines such as transforming growth factor-β (TGFβ) and
tumor necrosis factor-α (TNFα) [72]. Overall, the global dys-
regulation of inflammatory cytokines in the aged/pre-tumoral
niche appears to be a critical precondition in the pathogenesis
of myeloid disorders.

In another model, loss of canonical Notch signaling in BM
stromal and endothelial cells induced significant alterations of
hematopoiesis. Specifically, the conditional inhibition of the
Notch pathway transcriptional repressor recombination
signal-binding protein for immunoglobulin kappa J region
(RBPJk) inMx1-expressing cells induced aMPN-like disease,
driven by the constitutive upregulation of miR-155 and its
downstream activation of NF-kB signaling. Mx1-RBPJ−/−

mice displayed a significant increase in the levels of inflam-
matory cytokines G-CSF and TNFα in BM MSCs and ECs
[73••]. Notably, endothelial-specific loss of Notch signaling in
Tie2-RBPJ−/− mice led to myeloid cell expansion and inflam-
matory cytokines similar to those observed in Mx1-RBPJ−/−

mice, despite the moderate reduction of RBPJ in endothelial
cells (30%) [73••]. Circulating endothelial progenitor cells
isolated from patients with MPN were reported to display
the same mutation signature detectable in the malignant he-
matopoietic clone, including the activating mutation of the
Janus kinase 2, JAK2V617F [74]. These findings are particu-
larly interesting in the light of recent observations made in
Tie2-JAK2V617F mice, where JAK2V617F was specifically
expressed in hematopoietic cells and endothelial cells [75,
76•]. JAK2V617F-expressing vascular niche promoted the ex-
pansion of JAK2V617F leukemia-initiating cells over JAK2WT

HSCs in competitive BM transplants, and upregulated the
expression of angiocrine factors CXCL12 and SCF compared
to wild-type ECs [76•]. Taken together, the indirect observa-
tions in human leukemia seem to corroborate the hypothesis
that alterations within the non-hematopoietic compartment are
sufficient to aid the emergence of LSC. A question of great
interest is whether BM niche cells harbor the same Bfirst hit^
mutations as pre-leukemic HSCs do, a claim particularly in-
triguing in the case of the vascular niche, in light of the close
ancestral relationship between ECs and HSCs during devel-
opment. Very fascinating aspects of the LSC-niche relation-
ship have latterly emerged, including the composition and
biophysical properties of the extracellular matrix (ECM),
and the leukemic cell response to hypoxia within the BM
microenvironment. CD98, an ECM protein mediating several
integrin-associated adhesive signals, was recently showed to
enable the propagation of AML cells [77]. Loss of CD98 after
tamoxifen treatment of Cd98hcfl/fl;Rosa26-CreER mice
prevented leukemia cells to form stable interactions with
blood vessels in vivo, as well as in in vitro co-cultures of
cKit+ leukemia cells with human umbilical vein ECs
(HUVECs). Moreover, antibody-mediated blocking of

integrin ligand VCAM-1 in endothelial cells had no effect
on the adhesion of CD98-deficient cKit+ leukemia cells, while
it significantly reduced the attachment of wild-type cKit+

cells, suggesting that CD98 is required for VCAM-1/
integrinVLA-4-mediated interactions between leukemia cells
and blood vessels [77]. These results are consistent with pre-
vious work from our group, demonstrating that leukemic cells
cultured in direct cellular contact with primary human ECs
[78] were enriched in LSCs, and exhibited a more aggressive
AML phenotype when transplanted in mice [79•]. Stimulation
of primary ECs with VEGF-A led to increased LSCs expan-
sion, augmented viability after chemotherapy treatment with
Ara-C, and increased adhesion to the endothelium, partially
mediated byVLA-4 [79•]. Other groups recently substantiated
the role of the vascular niche in human AML patient-derived
xenografts (PDX), using unconditioned recipient mice to pre-
vent irradiation-induced toxicity in the BM vasculature. AML
PDX displayed an increased number of ECs associated with
arterioles (CD31+ Sca1high), a loss of ECs associated with
sinusoids (CD31+Sca1low), and increased leakiness in the
BM [80••]. Gene set enrichment analysis (GSEA) of ECs up-
on AML engraftment underlined several altered pathways,
including angiogenesis, and response to hypoxia.
Interestingly, Nox4, a NADPH oxidase involved in the re-
sponse to hypoxia via production of reactive oxygen species
(ROS) and release of NO, was upregulated in ECs, consistent
with increased levels of NO in the BM of AML xenografts
compared with non-transplanted mice or mice engrafted with
normal HSCs [80••].

Conclusions

Understanding the instructive role of the BM niche in normal
hematopoiesis is a stepping stone for the development of new
therapies in aging and blood malignancies. Future studies will
benefit from taking advantage of novel in vivo imaging and
functional assays, as well as from a more systematic analysis
of non-hematopoietic cells from diagnostic biopsies. Mouse
models in the last decade have suggested that a niche cell-
associated sensitivity in the emergence of different neoplasms
may exist and revealed how LSCs hijack the HSC marrow
environment to gain survival benefits. BM inflammation and
alteration of vasculature permeability have emerged as key
factor in the initiation and development of hematological ma-
lignancies. Future work is required to further address the cell
type-specific functions and the associated signaling pathways
and reciprocal metabolic interactions among the niche com-
ponents. Advances in this regard will provide us with putative
targets to reverse age-dependent alterations of HSC number
and function and to predict critical factors involved
leukemogenesis.
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