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Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has

caused large outbreaks of severe illness in both horses and humans. New approaches are

needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine

amplification and resultant epidemic potential, and predict human virulence phenotype. We

performed whole genome single nucleotide polymorphism (SNP) analysis of all available

VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured

the features of a phylogenetic tree based on multiple sequence alignment, and developed a

high resolution genome-wide SNP microarray. We used the microarray to analyze a broad

panel of VEEV isolates, found excellent concordance between array- and sequence-based

SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with

sequenced genomes. The microarray successfully genotyped VEEV directly from tissue

samples of an infected mouse, bypassing the need for viral isolation, culture and genomic

sequencing. Finally, we identified genomic variants associated with serotypes and host spe-

cies, revealing a complex relationship between genotype and phenotype.

Introduction
Venezuelan equine encephalitis (VEE) virus (VEEV) is a mosquito-borne alphavirus capable of
causing large outbreaks of encephalitis in humans and horses. Major equine-amplified epidemics
dating to the early 20th century have affected hundreds-of-thousands of people and economically
important equids. VEE complex viruses are endemic to South and Central America, Mexico, and
Florida [1]. Although the case-fatality rate of VEEV is low in human infections (usually less than
1%), infection is typically highly debilitating and sometimes results in permanent neurological
sequelae [2]. Moreover, because the disease primarily occurs in isolated rural areas and typical
infections initially present with nonspecific flu-like symptoms, many cases involving spillover
from enzootic cycles go undiagnosed or are mistaken for other febrile diseases such as dengue [3].

Enzootic VEE is also of concern due to its high burden of endemic human disease. For U.S.
war fighters engaged in a conflict in Latin America, either direct exposure to the enzootic cycle
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in rural or suburban regions, as documented in Panama [2, 4], Colombia [5], and Mexico, or
infections in urban settings [3, 6–10] could inflict direct casualties and severely compromise
their ability to fight.

There are three major challenges related to VEE that we believe can be solved using new
approaches: 1) rapidly estimating the origin of a newly discovered VEEV strain; 2) estimating
its equine and/or human amplification, and thus epidemic potential; and 3) predicting the
human virulence phenotype of a newly discovered VEEV strain. Phylogenetic relationships of
a diverse collection of VEEV strains have proved useful for identification of the genetic features
leading to epidemic spread to humans and livestock of this zoonotic pathogen [11, 12]. Here,
we exploit high-throughput technologies to characterize a large panel of strains, including both
virulent and avirulent strains; geographically diverse isolates from South America, Central
America, Mexico, Florida and Texas; and isolates of multiple serotypes from diverse hosts,
including human outbreak strains.

We performed whole genome SNP analysis of all available VEE antigenic complex genomes,
verified that these SNPs accurately recapitulated the phylogeny from whole genome multiple
sequence alignment (MSA), and developed a high-resolution genome-wide SNP microarray.
We analyzed a diverse panel of 133 VEEV isolates on the microarray to validate array-based
SNP calls with previously sequenced strains, and to characterize the SNPs in unsequenced iso-
lates and place them on a phylogeny with sequenced genomes. We explored the relationship
between genome variation and serotype, identified a number of variants non-randomly associ-
ated with these phenotypes, and examined the distribution of these variants across the VEEV
genome.

Methods

Whole genome SNP analysis
We applied the kSNP software to find SNPs in the 144 VEE antigenic complex genomes avail-
able as of June, 2014 [13, 14]. kSNP is an alignment-free method based on examination of k-
mers (oligos of length k) in the genome sequences. We define a SNP locus by a sequence con-
text of length k centered on the polymorphic base, with (k-1)/2 conserved bases on either side.
For this study, we performed SNP analysis with k = 13. Note that, under this definition of SNP
loci, multiple loci (corresponding to different variations of the k-mer context) may overlap the
same positions in a multiple sequence alignment; in this case, each of the multiple loci is only
considered to be present in the genomes in which the (k-1) base context is conserved. This
alignment-free SNP discovery is useful for viruses in which there may be highly divergent and
poorly alignable regions among a large group of sequences, and where conserved regions only
exist among small subgroups of sequences. The kSNP approach is free of the bias that other-
wise results from the choice of a reference sequence, or from considering only a subset of
regions of the genome that can be easily aligned, and can be implemented at scales to hundreds
of genomes. We calculated SNP-based phylogenetic trees using parsimony, maximum likeli-
hood (ML), or neighbor joining (NJ). For NJ, we used the number of SNP allele differences
between pairs of target sequences as the distance metric. We mapped SNP alleles to branches
of the trees using kSNP.

Tree comparisons
SNPs from the E1, E2, E3, and capsid genes were extracted for separate analyses by identifying
those SNPs that occurred within the specified gene regions (Table 1). We constructed a full
genome MSA using the MUSCLE software [15], and built parsimony trees from the MSA,
from all SNPs, and from SNPs in each gene. We compared the MSA and gene-based trees to
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the all-SNPs tree by treating all trees as unrooted and examining the splits of isolates into pairs
of groups on either side of each internal branch in the tree. For each tree we used the Perl script
CompareTree.pl [16] to calculate the fraction of splits shared between the MSA or gene-based
tree and the all-SNPs tree; this serves as a metric of similarity between the tree topologies. We
also used Dendroscope [17] to generate tanglegrams, which display pairs of trees side by side
with lines interconnecting corresponding taxa. To minimize the numbers of crossing lines
between trees without changing the tree topologies, we performed a series of equivalent branch
rotations using the algorithm in [18] before generating tanglegrams. The pattern of crossing
lines remaining provides a direct visualization of the differences in tree structures.

Microarray probe design
We designed microarray probes for every SNP locus. Our probe design strategy maximized
sensitivity and specificity based on extensive prior lab testing on a Roche NimbleGen microar-
ray platform, where we demonstrated 99.52% SNP allele call rates and 99.86% accuracy [19].
After testing seven alternative probe design strategies, we determined that maximum sensitivity
and SNP discrimination accuracy resulted if the SNP base was at the 13th position from the 5’
end of the probe (the end farthest from the array surface), probes were between 32 and 40
bases long, and lengths were chosen to equalize hybridization free energy (ΔG) to the extent
possible within the allowable length range. We found that probes shorter than 32 bases had
high false negative rates, and longer probes did not discriminate well between alleles. We found
that ΔG was a better predictor of hybridization than the melting temperature Tm. Probe candi-
dates with hybridization free energy below ΔGmin = -43 kcal/mol were shortened until either
their free energy exceeded ΔGmin or they reached the minimum 32 bases. Probes were designed
around the SNP on both the plus and minus strands, for all observed SNP alleles, and all sur-
rounding sequence variants.

Probes for the plus and minus strands were not the reverse complements of one another
because the SNP does not lie at the center of the probe. We included probes for all observed
alleles on each strand, yielding at least four probes per SNP locus for biallelic SNPs. In addition,
we captured any sequence variation outside of the conserved k-mer SNP context in multiple
alternative probes for each allele, so that some biallelic loci had more than 4 probes. Finally, we
trimmed probes from the 3’ end to remove any N’s or other ambiguous bases, and omitted
them altogether if doing so resulted in a probe shorter than 32 bases. When a probe was a sub-
sequence of any other, only the shorter of the two was kept. SNP microarrays were fabricated
using the 12-plex 135K Roche NimbleGen array format with 89% of the probes tiled in
duplicate.

Array hybridization to VEEV cDNA samples
The VEEV cDNA samples were fluorescently labeled and hybridized to VEEV SNP arrays as
described previously [20]. Briefly, fluorescent labeling of samples was performed using the

Table 1. Gene regions from which SNPs were extracted.

Gene Coordinates on TC-83 genome

E1 10000–11327

E2 8563–9843

E3 8386–8574

Capsid 7562–8396

All SNPs 1–11446

doi:10.1371/journal.pone.0152604.t001
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NimbleGen One-Color DNA Labeling Kit (Roche). One μg VEEV cDNA was added to Cy-3
labeled random primers, followed by isothermal amplification at 37°C using Klenow polymer-
ase. Labeled DNA was purified via isopropanol precipitation and resuspended in water for
microarray hybridization. DNA samples were prepared for hybridization using the NimbleGen
Hybridization Kit LS (Roche). Three μg of labeled DNA was hybridized to each array, incubat-
ing for 40–45 hours at 42°C. Arrays were washed using the NimbleGenWash Buffer Kit
(Roche). The fluorescent signal on the array was scanned using a 2 μm Roche MS200 fluores-
cent scanner. Array feature intensities were generated using the NimbleScan software available
from Roche NimbleGen.

Selection of VEEV isolates for microarray experiments
Based on temporal and geographic range, outbreak associations and prior sequences generated
at UTMB, we identified, propagated, and isolated RNA for microarray experiments from 134
of the most representative strains. To enable comparison of array- and sequencing-based geno-
typing methods, we included 81 isolates that had previously been sequenced in the set of strains
tested on the array. Three of the previously sequenced isolates and one unsequenced isolate
were run on duplicate arrays, for a total of 138 arrays. The serotype, passage history, year and
location of collection, and host of each strain are listed in S1 Table.

To test the array’s ability to genotype viruses directly from tissue samples, six day-old CD-1
mice were infected with VEEV vaccine strain TC-83 [21] via the intracranial route. Each
mouse was infected with 104 PFU in a 20 μL volume. Three biological replicate mice were
infected and sampled. Brains were harvested two days later and homogenized in a 1:10 w/v
solution. The suspension was clarified by centrifugation and stabilized in Trizol (Life Technol-
ogies). RNA was extracted and purified using the Direct-zol RNAMiniPrep kit (Zymo
Research, Irvine, CA) according to the manufacturer’s instructions. Whole cDNA was synthe-
sized, fluorescently labeled, and hybridized to the SNP microarray as described above.

Data from microarray experiments is available at the Gene Expression Omnibus (GEO)
repository under accession GSE79530.

Allele calling from SNPmicroarray data and concordance calculations
We used our previously developed analysis software to call alleles at each locus for each sample
analyzed on SNP microarrays. The software fits a linear model of strand and allele effects to the
log intensity data from all probes for the locus, and calls the allele as the one with the largest
coefficient in the fitted model. Separating the strand and allele effects is necessary in order to
compensate for the differing hybridization efficiencies often seen between forward and reverse
strand probes.

Because our definition of a SNP locus requires conservation of the 6 bases on either side of
the polymorphic base, array probes for one locus may hybridize to genomes in which a similar
locus context is present. That is, loci that are considered to be different in the sequence analysis,
but have 13-mer contexts that are identical except at one or two positions, may be difficult to
distinguish by microarray probes. Therefore, our current array analysis software does not
attempt to determine whether a locus is present or absent, and instead makes an allele call for
every locus.

For isolates that had genome sequences available, we computed the concordance rate
between the allele calls from the array and the genome sequence, defined as the percentage of
loci present in the genome for which the array calls agreed. We also computed the numbers of
allele differences between each array sample and each genome, and determined whether the
closest genome was in fact the genome sequence for that strain.
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Analysis of phylogenetic relationships and evolution of VEEV strains
from SNPmicroarray data
We used the genotype data from genomic sequences to create maximum parsimony phyloge-
netic trees, using Parsimonator (https://github.com/stamatak/Parsimonator-1.0.2). We gener-
ated 100 trees using different random number seeds, and selected the most parsimonious (that
is, the tree requiring the smallest total number of nucleotide substitutions) for downstream
analyses.

Phenotype/genotype associations
We identified variable positions in the MSA and used these loci as an initial set for building
decision tree classifiers, using the recursive partitioning algorithm implemented in the R func-
tion “rpart” from the package “mvpart” [22, 23]. The “rpart” algorithm is described in detail in
[24]; briefly, it selects a series of variables (SNP loci) and values (alleles) that split the viral
strains into groups with homogeneous phenotypes. Each split of a group into smaller sub-
groups is chosen to minimize the Gini index, a measure of total subgroup inhomogeneity.

To ensure there were sufficient samples in the training and test sets for each phenotype to
be predicted, we defined a “host type” for each sample by categorizing hosts as “large” (humans
and equids) or “small” (rodents and mosquitos). For each phenotype (serotype and host type),
we built multiple tree classifiers using a 10-fold cross-validation scheme, in which classifiers
were trained with 90% of the isolates and tested with the remaining 10%. The amount of prun-
ing in each decision tree classifier was determined by a complexity parameter; the “rpart” algo-
rithm automatically determined an optimal complexity, defined as the smallest parameter
value that yielded a cross-validation error rate within one standard deviation of the minimum
error rate. We then built a final decision tree for each phenotype with the full set of genomes,
using the optimal parameter to control the complexity of the tree. For each phenotype, we
tested initial locus sets consisting of all polymorphic loci present in the TC-83 reference
genome, as well as restricted sets containing only non-synonymous loci within the genes
encoding structural proteins, or within the envelope glycoprotein genes.

For each classifier, we computed an overall accuracy, defined as the percentage of phenotype
predictions that were correct. We also computed performance metrics for each specific pheno-
type, treating the decision tree as a binary classifier; e.g. for classifying isolates as serotype IAB
vs any other serotype. For each specific phenotype, we counted the true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN), and used them to compute the
accuracy = (TP + TN) / (TP + FP + TN + FN), positive predictive value (PPV) = TP/(TP + FP),
negative predictive value (NPV) = TN/(TN+FN), true positive rate TPR = TP/(TP+FN), and
true negative rate TNR = TN/ (TN+FP).

We also ranked loci according to their strength of association with serotype or host type
according to Fisher’s exact test, as implemented in the R “fisher.test” function. We corrected p-
values for multiple comparisons using the Benjamini-Hochberg method.

Results

Whole VEEV genome SNP analysis
To identify single nucleotide variations among VEEV strains, we applied the kSNP software to
144 VEE antigenic complex genomes. We identified 7,926 SNP loci among these strains. The
numbers of SNPs identified in structural protein encoding regions are summarized in Table 2.
The annotations, 13-mer contexts and reference genome alignments for SNPs identified by
whole genome analysis are listed in S2 Table.
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When we reran the kSNP analysis, using as an outgroup four strains of eastern equine
encephalitis virus (EEEV, the closest relative of VEE complex alphaviruses), the total number
of SNP loci increased to 9,486.

Phylogenetic tree construction
We then examined phylogenetic relationships among strains by building trees using different
methods. First, we wished to determine which of the SNP-based tree construction methods
performed best, by comparing the resulting trees to trees based on whole genome multiple
sequence alignment (MSA). We found that the SNP tree built using maximum parsimony (Fig
1) was more similar to the MSA-based tree than those built with NJ or ML. Out of all splits in
the alignment-based tree, 77% were also present in the parsimony tree, compared to only 68%
in the ML tree. Moreover, the parsimony tree had fewer homoplastic SNPs than the ML tree
(1679 versus 2153, respectively, from the dataset using the EEEV outgroup genomes). Homo-
plastic SNP loci are those in which the pattern of shared alleles does not conform to any of the
branches of this tree, as a result of processes such as convergent evolution, homologous recom-
bination, multiple mutations at the same site, or sequencing errors. Maximum parsimony has
been shown to outperformML in phylogenies that display heterotachy, a phenomenon in
which the rates at which different nucleotide positions evolve change over time [25]. In this
case, non-parametric estimation of trees by parsimony is more accurate than parametric meth-
ods such as ML.

Almost all VEEV strains could be uniquely identified by their genotypes according to varia-
tions across the identified SNP loci. Numbers at the interior nodes of the tree in Fig 1 indicate
the number of loci at which a SNP allele is uniquely found in the descendants of the node and
is shared by all of them. Only two sets of genomes were unresolved (i.e., had identical geno-
types across all 7,926 SNPs); these strains are labeled in Fig 1 with italic type. One consisted of
two genomes collected on successive days from Minatitlan, Mexico on August 26–27, 2010:
MX10_91M8 from a mosquito pool and MX10H91_00011 from a sentinel hamster. The other
comprised four genomes, also collected fromMinatitlan in 2010; MX10_94M4, MX10_94M5
and MX10_94M6, collected from mosquito pools on August 26–27, and MX10H95_00014,
collected from a hamster on August 28. These results confirm that sentinel hamsters do
become infected with the variants circulating in mosquito vectors in the area at the same time.
These isolates were members of a larger group of closely related genomes collected in Minati-
tlan, Mexico between July 2008 and late August 2010 from hamsters, mosquitos and two
horses.

Phylogenetic and phenotypic relationships of VEEV strains
To explore the relationship between the phylogenetic groupings of VEEV strains and their phe-
notypes, we examined the maximum parsimony tree shown in Fig 1, in which the genome
annotations and plot symbols are color-coded by serotype and host, respectively. We observed
a number of interesting patterns. First, we extended previous results [26] showing that VEEV

Table 2. Numbers of SNPs identified in VEEV genomes, by gene region.

Gene Number of SNPs

E1 1268

E2 1384

E3 262

Capsid 937

doi:10.1371/journal.pone.0152604.t002
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strains with high overall similarity across the entire genome may exhibit different serotypes.
For example, the epizootic serotype IAB strains and associated vaccine strain TC-83 (purple in
Fig 1) collected from multiple countries from 1938–1973 form a distinct clade of highly similar
isolates; however, this clade also included a serotype ID isolate (R16905) collected in 1977. In
general, we saw that broad phylogenetic groupings were not exclusively associated with partic-
ular serotypes.

Similarly, we found that phylogenetic groupings were not strongly associated with particular
hosts; the broad associations that did appear were likely artifacts of the different sampling strat-
egies used for enzootic (serotype ID and IE) strains, which account for all samples from mos-
quitos and sentinel hamsters, and for epizootic (serotype IAB and IC) strains, which comprise
most samples from equids and humans.

Finally, when we examined the collection dates of samples found in each major clade, we
found that many clades were remarkably persistent. For example, the serotype IAB epizootic
strains (and associated type ID outlier) showed little genetic variation, even though they were
collected over nearly 40 years (1938–1977) across a wide geographic area, from the USA

Fig 1. SNP phylogeny of VEEV isolates by parsimony. Strains are labeled by serotype-country-year
collected-strain-host. Country codes are GA = Guatemala, PE = Peru, NI = Nicaragua, VE = Venezuela,
CO = Colombia, TR = Trinidad, PA = Panama, US = USA, EC = Ecuador, ME = Mexico, BE = Belize,
HO = Honduras, BR = Brazil, AR = Argentina, FG = French Guiana. Host codes are hor = horse,
don = donkey, hum = human, mos = mosquito, ham = hamster, mus = mouse. u = unknown. Strains are
colored by serotype (blue = IE, green = ID, red = IC, and purple = IAB). Hosts from which the strains were
collected are indicated with symbols at the branch tips (red circles = human, orange circles = horses, blue
circles = mosquitos, and green squares = hamsters). Counts of the number of alleles shared uniquely by the
sequences down each branch are shown at the nodes in blue.

doi:10.1371/journal.pone.0152604.g001
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through Guatemala and Trinidad down to Venezuela and Peru, likely the result of incompletely
inactivated vaccines made from older strains initiating later outbreaks [27]. Likewise, the sero-
type IC and ID isolates comprising the lower part of the tree in Fig 1, collected between 1961
and 2005, had very few differences across our panel of SNP loci.

Association between genotypes and phenotypes
Because the host and serotype associated with a VEEV isolate are not completely predictable
from its position in the phylogeny, we searched for SNP loci that were associated with these
important phenotypes for which the association was not simply a product of ancestry. We
applied the “rpart” recursive partitioning algorithm to identify variations that are associated
with particular host types or serotypes. The resulting decision tree classifiers are diagrammed
in Figs 2 and 3. Our results indicate that these phenotypes are complex polygenic traits affected
by multiple alleles on multiple genes. In each decision tree, the notations displayed above each
branch point indicate the loci and alleles used in the associated test criteria; the annotations
below each leaf node indicate the most common serotype or host type, together with the actual
numbers of isolates at the leaf having each phenotype. For example, in the serotype tree (Fig 2),
the first branch point separates the isolates according to the allele at alignment position 9987.
Those with an T allele are classified as serotype IE; the remainder are then tested at position
9201, with a C allele indicating serotype ID; the rest are tested at position 7764, with an A allele
indicating serotype IAB and a G indicating serotype IC.

Fig 2. Decision tree for prediction of serotype from SNP alleles.Notations above internal nodes indicate
SNP position in the TC-83 genome and alleles corresponding to left and right branches. Numbers below
terminal nodes are numbers of isolates in node with serotypes IAB/IC/ID/IE respectively.

doi:10.1371/journal.pone.0152604.g002
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Depending on the true serotype of the isolate, serotype prediction accuracy ranged from
95.6% for ID to 98.5% for IAB and IE strains (Table 3). Serotype IE was almost universally
associated with a T allele at position 9987, which is in the p6K/TF gene.

The SNP at position 9201 corresponds to residue 213 on the E2 protein; substituting G for
C at this locus was shown previously to mediate a shift from serotype ID to IC [11]. Although

Fig 3. Decision tree for prediction of host type from SNP alleles.Notations above internal nodes are as in
Fig 2. Numbers below terminal nodes are numbers of isolates in node collected from large/small host types,
respectively.

doi:10.1371/journal.pone.0152604.g003

Table 3. Accuracy, positive (PPV) and negative predictive value (NPV), true positive (TPR) and negative (TNR) rates for serotype and host type
predictions.

Phenotype Accuracy PPV NPV TPR TNR

Serotype 94.8% - - - -

IAB 98.5% 90.0% 99.2% 90.0% 99.2%

IC 97.0% 71.4% 100.0% 100.0% 96.8%

ID 95.6% 97.9% 94.3% 90.2% 98.8%

IE 98.5% 98.4% 98.6% 98.4% 98.6%

Host type 87.4% - - - -

large 87.4% 90.7% 85.9% 75.0% 95.2%

small 87.4% 85.9% 90.7% 95.2% 75.0%

(PPV) = TP/(TP + FP), (NPV) = TN/(TN+FN), TPR = TP/(TP+FN), and TNR = TN/(TN+FP).

doi:10.1371/journal.pone.0152604.t003
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we also found that this locus provided the best discrimination between serotypes ID and IAB/
IC, the association was not as clear as indicated by the previous studies. Three serotype ID
genomes (R16905, 8138, and 204381) had an A at position 9201, corresponding to a lysine at
residue 213, which in earlier studies was associated with serotypes IAB and IC.

The SNP at position 7764 lies within the capsid gene; an A or G at this position, correspond-
ing to lysine or arginine at residue 68, is associated with serotypes IAB and IC respectively. The
only strains not classified correctly by this SNP are the three serotype ID strains that are also
misclassified by the SNP at 9201. The serotype data was obtained from previous studies, and it
is possible that the serotypes were incorrectly determined.

To assess whether other loci would perform equally well for predicting serotype, we per-
formed mutual information clustering to identify equivalence groups of loci, such that knowing
the allele at one locus in a group completely determines the alleles of the other loci. A total of
4126 loci were present in the TC-83 genome and were polymorphic across all VEEV genomes.
The largest equivalence group comprised 666 loci, which were those that have one allele for the
serotype IE branch of the phylogenetic tree (including the 3 serotype ID outliers) and a different
allele for the IAB/IC/ID branch. The remaining equivalence groups ranged in size from 2 to 76
loci; 2124 loci are singletons. The loci at positions 9987, 9201 and 7764 used in the serotype clas-
sifier are all singletons, having distinct patterns of alleles across the full set of isolates. The SNP at
9201 is also a singleton with respect to the 71 isolates in the non-IE subtree of the decision tree.
However, across the 24 isolates in the IAB/IC subtree, there were 14 non-synonymous loci, 7 of
which were in structural protein genes, which have the same allele pattern as 7764. Any of these
loci would perform equally well in distinguishing serotype IAB and IC isolates, once the likely ID
and IE isolates have been excluded by testing the loci at 9987 and 9201. Therefore, it would be
premature to identify any one of these loci as determining the serotype IAB vs IC phenotype.

Host type prediction was less accurate than serotype prediction; 89.6% of strains were cor-
rectly predicted to have been collected from large mammals vs “small” hosts (mosquitos and
rodents, including sentinel hamsters) (Table 3). This may reflect that hosts are sampled during
outbreaks than during enzootic surveillance. The true positive rate (TPR) was larger for small
hosts (95%) than for large hosts (81%). Close inspection of the SNP variants used in the deci-
sion tree classifier (Fig 3) showed that their allele patterns were associated with phylogenetic
branches rather than host type, and no mutations that universally associated with host type
across multiple different phylogenetic branches could be identified.

We also built classifiers in which the predictors were restricted to non-synonymous loci
within the genes encoding structural proteins, or further restricted to envelope protein genes.
Serotype classifiers based on structural protein loci were more accurate than envelope glyco-
protein-restricted classifiers (data not shown), but not as accurate as unrestricted classifiers.
For host type prediction, the best overall classifier used envelope protein loci only, so restricting
to smaller locus sets had no effect.

Comparison of single gene, MSA and SNP-based trees
We hypothesized that phylogenetic analyses of VEEV based on comparing single gene
sequences, as was done in some earlier studies (2), would yield trees with lower resolution and
differing topology than whole-genome MSA and SNP-based trees. To assess the impact of a
single-gene approach, we compared the maximum parsimony tree based on all SNPs against
trees generated using only the SNPs in each of the structural protein genes. We found that only
47% to 58% of the splits from the all-SNPs tree are present in any of the individual envelope
gene trees (Table 4). Since only 9.5% to 14% of the SNPs occur within any of the envelope
genes, the lower resolution of these trees is expected. The tree based on capsid gene SNPs had
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substantially worse resolution, however, with only 37% of the splits observed in the all-SNPs
tree. Since the capsid gene contains over 3.5 times as many SNPs as the E3 gene, the number of
splits shared by a gene-specific tree clearly depends on factors other than the total number of
SNPs. The E1 gene resulted in the best representation of the tree, as it captures 58% of the splits
identified in the all-SNPs tree.

To compare the topologies of trees generated with whole-genome SNPs or MSA to single-
gene trees, we generated tanglegrams. S1 Fig shows a tanglegram with the MSA-based tree on
the left and the all-SNPs tree on the right, with lines connecting the same taxa between trees.
Differences between these trees were minor and within a reasonable expectation of uncertainty
in the trees, mostly involving poorly resolved isolates such as Mucambo, CabassouCaAr, and
PixunaBeAn. These isolates were collected from mosquito pools from 1954–1980 in French
Guiana, Brazil, Argentina, and Peru, and are now considered different species in the VEE anti-
genic complex [26]. Each of these genomes has about 500 genome specific SNP alleles. They
are the sole representatives of serotypes IF, IIIA, IIIB, IIIC, IV, V, and VI, each branching off
the tree basal to the branches leading to the more heavily sequenced VEEV serotypes from
Mexico, Peru, and Venezuela. In summary, the similarity between the whole genome SNP and
MSA trees supports the SNP genotyping approach to phylogenetically characterize unse-
quenced samples using SNP arrays.

S2 and S3 Figs show tanglegrams with the all-SNPs tree on the left and the trees based on
SNPs in the E1 (S2 Fig) or capsid (S3 Fig) gene on the right. The EEEV genomes were not clus-
tered as a monophyletic group in any of the SNP gene trees, possibly because these genomes
are too divergent from the VEEV genomes. Further, the capsid gene SNP tree had lower accu-
racy than the E1 gene tree, as indicated by the many crossing lines of the tanglegram in S3 Fig.
The differences between the single gene and whole genome SNP trees illustrate the difficulty of
phylogenetic analyses based on a small region rather than the full length of the genome, and
suggest that SNP phylogenies based on single genes may have low resolution and accuracy.

Microarray analysis of VEEV cDNA samples
To address the question of whether microarrays provide a viable alternative to whole-genome
sequencing for VEEV strain characterization, we developed a VEEV SNP array. The array
included 70,760 probes covering all 7,926 loci discovered with kSNP. We hybridized cDNAs
from 134 isolates to SNP arrays. Genome sequences were available for 81 of the isolates. We
calculated overall concordance rates between the allele calls made by SNP microarray versus
those called by whole genome sequences; these are summarized in S3 Table. The overall con-
cordance rate was 96.2%. Hybridizations of replicate cDNA samples extracted from three iso-
lates showed close agreement between replicates. The array correctly classified 76 out of 84
cDNA samples. Four of the 8 misclassified cases were highly similar sequences collected in the
same location. One source of error was that the array analysis currently is not able to call a

Table 4. Comparison of trees frommultiple sequence alignment versus all SNPs, and trees from
SNPs located in a single gene versus all SNPs.

Tree
comparison

Splits Found in 2nd

tree
Total Splits in SNP
tree

Fraction splits in SNP tree found in
2nd tree

All SNPs vs MSA 112 146 0.77

All SNPs vs E1 84 146 0.58

All SNPs vs E2 72 146 0.49

All SNPs vs E3 68 146 0.47

All SNPs vs
capsid

54 146 0.37

doi:10.1371/journal.pone.0152604.t004
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locus as missing, even if that locus is not present in the genome sequence, causing discordance
between the genome and array genotypes.

A potential advantage of microarray analysis over DNA sequencing is its reduced need for
viral isolation and culturing, allowing viruses to be characterized directly from a tissue sample.
To test whether this was feasible, we isolated RNA from the brains of 3 replicate mice infected
with VEEV strain TC-83, analyzed the RNA using the SNP microarray, and compared the
array genotypes to our panel of 144 sequence-based genotypes. For all 3 replicates, the array
genotypes were closest to those of the published sequence for the TC-83 strain, as shown in S4
Table. This suggests that a SNP microarray can produce accurate VEEV genotypes, even in the
presence of a complex host DNA background.

Discussion
Tools for rapid genotyping of equine encephalitis virus strains and elucidating their phyloge-
netic relationships are critically important to understand why certain strains are likely to cause
epizootic infection, and to forecast the incidence of potential epidemic events. The results
above represent analyses of VEE complex strains derived from a wide range of hosts and geo-
graphic regions. The collected data indicate that our microarray and sequencing-based geno-
typing tools effectively distinguish VEEV strains and allow us to cluster those strains according
to their derivation and phenotypic history.

Since the VEEV genome is small, whole genome multiple sequence alignment (MSA) of
more than 140 sequences was feasible. Predicted genotype/phenotype associations were slightly
more accurate when genotypes were based on variable positions in a whole genome alignment
than when they were based on k-mer contexts defined by kSNP (data not shown). The MSA
approach is usually not feasible for bacterial genomes, so that kSNP is typically a better option
for bacterial genotype/phenotype association studies.

Relying on non-random associations between serotype and sequence variation, we were
able to build decision trees to predict VEEV serotype. With 3 loci, prediction accuracy was
95.6% to 98.5%. However, strains that clustered phylogenetically with a different serotype were
sometimes mislabeled by the decision trees. In addition, there were multiple loci that distin-
guished equally well between IAB and IC strains, after excluding isolates with a T at position
9987 (which are mostly serotype IE) or a C at position 9201 (which are mostly ID). These
observations suggest that the actual amino acid variants that determine serotype may be any of
a wide range of candidates, as suggested earlier [12], and that the association we observe
between serotype and certain other variants is due to their co-inheritance with the causal vari-
ants. We also noted that no variants associated perfectly with any of the serotypes; thus it must
be possible to obtain the same shift in antigenic specificity from mutations at multiple loci.

A previous study [11] based on a smaller set of VEEV genomes investigated the mutations
required for the virus to transition from the enzootic cycle (small mammals, Culexmosquitos,
forest habitats) to the epizootic cycle (Aedes/Psorophoramosquitos, amplification in equids,
transmission to humans). It reported that a single mutation in the E2 protein (T213 -> K or
R), when engineered into a serotype ID enzootic strain, changed its serotype to IC and ren-
dered it capable of causing enhanced viremia in horses, as well as possibly more efficiently
infecting Aedes (Ochlerotatus) mosquitos implicated as vectors in equine-amplified epizootics.
Our results, based on the larger set of VEEV genomes available now, suggest a more complex
association between genotype and phenotype. We identified three serotype ID strains with the
K213 E2 allele. There was no single locus that distinguished all of these ID strains from the IAB
and IC strains nearest to them phylogenetically. This is further evidence that a variety of muta-
tions can mediate the shift from ID to IAB or IC serotypes.
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Comparison of the phylogenetic tree predicted from whole genome SNPs was similar to
that from whole genome multiple sequence alignment. Narrowing to single gene SNP trees
showed that the E1 gene SNPs more closely represent the whole genome SNP tree than do the
SNPs from the other envelope protein or capsid genes. This concurs with previous analyses
based on sequence alignment rather than SNPs, which also showed that the E1 gene captures
the same high level relationships as the whole genome alignment but does not provide the
same resolution [28]. However, these results emphasize that use of a small region of the
genome for SNP analysis provides lower resolution than whole genome SNPs, and with some
genes even results in different tree topology. A whole genome SNP approach more effectively
represents complete phylogenetic relationships to reveal distinctions that would otherwise be
overlooked.

A k-mer based approach to SNP discovery has limitations relative to full sequence align-
ment, particularly for highly variable RNA viruses. However, our comparison of data derived
from multiple sequence alignments versus SNP analysis revealed that the resultant trees were
very similar and reliably identified comparable splits. These observed similarities are important
in that they support the use of our unique SNP array as an effective detection and genotyping
tool without available whole genome sequence data. The SNP array results can be obtained
within 24 hours as compared to 48–72 hours by whole genome sequencing. The cost of run-
ning a sample on SNP array is roughly 10 times less than whole genome sequencing. We have
shown here that data obtained from SNP arrays are capable of reliably clustering strains in
accordance with their respective whole genome sequence data. Array data provide sufficient
accuracy in phylogenetic classification to correctly cluster isolates by clade and to identify the
closest neighbors that have been sequenced or hybridized to the array. This technology would
be particularly useful for rapidly evaluating a novel strain from an epizootic outbreak event.
Further evaluation of the SNP array, using unknown or unsequenced VEEV strains, could pro-
vide additional validity and value of this technology in detection and genotyping of outbreak
strains.
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S1 Fig. Tanglegram connecting the corresponding taxa which illustrates the high similarity
between the MSA tree (left) and the SNP tree (right).
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S2 Fig. Tanglegram illustrating where the SNP tree based on all the SNPs (left) and that
based only on the SNPs in the E1 gene (right) differ.
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S3 Fig. Tanglegram illustrating where the SNP tree based on all the SNPs (left) and that
based only on the SNPs in the capsid gene (right) differ.
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analysis and/or tested on SNP microarray.
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Venezuelan Equine Encephalitis Viruses Genetics

PLOS ONE | DOI:10.1371/journal.pone.0152604 April 7, 2016 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152604.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152604.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152604.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152604.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152604.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152604.s006


isolates.
(XLSX)

S4 Table. Comparison of genotypes for VEEV on tissue from TC-83 infected mice.
(XLSX)

Acknowledgments
We thank Barry Hall for sharing the pre-release PPFS2 software.

Author Contributions
Conceived and designed the experiments: SNG KMNAB JA SCWNFMG CJ. Performed the
experiments: SNG KMNAB JA SCWNFMG CJ. Analyzed the data: SNG KMNAB JA SCW
NFMG CJ. Contributed reagents/materials/analysis tools: SNG KMNAB JA SCWNFMG CJ.
Wrote the paper: SNG KMNAB JA SCWNFMG CJ.

References
1. Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC. Venezuelan equine encephalitis. Annu Rev

Entomol. 2004; 49:141–74. PMID: 14651460.

2. Quiroz E, Aguilar PV, Cisneros J, Tesh RB, Weaver SC. Venezuelan equine encephalitis in Panama:
fatal endemic disease and genetic diversity of etiologic viral strains. PLoS Negl Trop Dis. 2009; 3(6):
e472. PMID: 19564908. doi: 10.1371/journal.pntd.0000472

3. Vilcarromero S, Aguilar PV, Halsey ES, Laguna-Torres VA, Razuri H, Perez J, et al. Venezuelan equine
encephalitis and 2 human deaths. Peru Emerg Infect Dis 2010; 16:553–6. doi: 10.3201/eid1603.
090970 PMID: 20202445

4. Johnson KM, Shelokov A, Peralta PH, Dammin GJ, Young NA. Recovery of Venezuelan equine
encephalomyelitis virus in Panama. A fatal case in man. The American journal of tropical medicine and
hygiene. 1968; 17(3):432–40. PMID: 5690051.

5. Ferro C, Olano VA, Ahumada M, Weaver S. [Mosquitos (Diptera: Culicidae) in the small village where a
human case of Venezuelan equine encephalitis was recorded]. Biomedica. 2008; 28(2):234–44. Epub
2008/08/23. doi: S0120-41572008000200008 [pii]. PMID: 18719725.

6. Aguilar PV, Greene IP, Coffey LL, Medina G, Moncayo AC, Anishchenko M, et al. Endemic Venezuelan
Equine Encephalitis in Northern Peru. Emerging Infectious Diseases. 2004; 10(5):880–8. doi: 10.3201/
eid1005.030634 PMID: PMC3323213.

7. Forshey BM, Guevara C, Laguna-Torres VA, Cespedes M, Vargas J, Gianella A, et al. Arboviral Etiolo-
gies of Acute Febrile Illnesses in Western South America, 2000–2007. PLoS Negl Trop Dis. 2010; 4(8):
e787. doi: 10.1371/journal.pntd.0000787 PMID: 20706628

8. Vilcarromero S, Laguna-Torres A, Fernández C, Gotuzzo E, Suárez L, Céspedes M, et al. Venezuelan
Equine Encephalitis and Upper Gastrointestinal Bleeding in Child. Emerging Infectious Diseases.
2009; 15(2):323–5. doi: 10.3201/eid1502.081018 PMID: PMC2657634.

9. Watts DM, Lavera V, Callahan J, Rossi C, Oberste MS, Roehrig JT, et al. Venezuelan equine encepha-
litis and Oropouche virus infections among Peruvian army troops in the Amazon region of Peru. Am J
Trop Med Hyg. 1997; 56:661–7. PMID: 9230800

10. Watts DM, Lavera V, Callahan J, Rossi C, Oberste MS, Roehrig JT, et al. Venezuelan equine encepha-
litis febrile cases among humans in the Peruvian Amazon River region. Am J Trop Med Hyg 1998;
58:35–40. PMID: 9452289

11. Anishchenko M, Bowen RA, Paessler S, Austgen L, Greene IP, Weaver SC. Venezuelan encephalitis
emergence mediated by a phylogenetically predicted viral mutation. Proceedings of the National Acad-
emy of Sciences of the United States of America. 2006; 103(13):4994–9. doi: 10.1073/pnas.
0509961103 PMID: 16549790

12. Brault AC, Powers AM, Holmes EC, Woelk CH, Weaver SC. Positively Charged Amino Acid Substitu-
tions in the E2 Envelope Glycoprotein Are Associated with the Emergence of Venezuelan Equine
Encephalitis Virus. Journal of Virology. 2002; 76(4):1718–30. doi: 10.1128/JVI.76.4.1718–1730.2002
PMID: PMC135911.

13. Gardner S, Slezak T. Scalable SNP Analyses of 100+ Bacterial or Viral Genomes. J Forensic Res.
2010; 1:107, doi: 10.4172/2157-7145.1000107

Venezuelan Equine Encephalitis Viruses Genetics

PLOS ONE | DOI:10.1371/journal.pone.0152604 April 7, 2016 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152604.s007
http://www.ncbi.nlm.nih.gov/pubmed/14651460
http://www.ncbi.nlm.nih.gov/pubmed/19564908
http://dx.doi.org/10.1371/journal.pntd.0000472
http://dx.doi.org/10.3201/eid1603.090970
http://dx.doi.org/10.3201/eid1603.090970
http://www.ncbi.nlm.nih.gov/pubmed/20202445
http://www.ncbi.nlm.nih.gov/pubmed/5690051
http://www.ncbi.nlm.nih.gov/pubmed/18719725
http://dx.doi.org/10.3201/eid1005.030634
http://dx.doi.org/10.3201/eid1005.030634
http://www.ncbi.nlm.nih.gov/pubmed/PMC3323213
http://dx.doi.org/10.1371/journal.pntd.0000787
http://www.ncbi.nlm.nih.gov/pubmed/20706628
http://dx.doi.org/10.3201/eid1502.081018
http://www.ncbi.nlm.nih.gov/pubmed/PMC2657634
http://www.ncbi.nlm.nih.gov/pubmed/9230800
http://www.ncbi.nlm.nih.gov/pubmed/9452289
http://dx.doi.org/10.1073/pnas.0509961103
http://dx.doi.org/10.1073/pnas.0509961103
http://www.ncbi.nlm.nih.gov/pubmed/16549790
http://dx.doi.org/10.1128/JVI.76.4.1718&ndash;1730.2002
http://www.ncbi.nlm.nih.gov/pubmed/PMC135911
http://dx.doi.org/10.4172/2157-7145.1000107


14. Gardner SN, Hall BG. WhenWhole-Genome Alignments Just Won't Work: kSNP v2 Software for Align-
ment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial Genomes. PLoS ONE. 2013; 8
(12):e81760. doi: 10.1371/journal.pone.0081760 PMID: 24349125

15. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
Acids Res. 2004; 32:1792–7. PMID: 15034147

16. Price MN. Fast Tree-Comparison Tools Berkeley, CA. Available: http://meta.microbesonline.org/
fasttree/treecmp.html.

17. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and net-
works. Syst Biol. 2012; 61(6):1061–7. doi: 10.1093/sysbio/sys062 PMID: 22780991.

18. Venkatachalam B, Apple J, St John K, Gusfield D. Untangling tanglegrams: comparing trees by their
drawings. IEEE/ACM Trans Comput Biol Bioinform. 2010; 7:588–97. doi: 10.1109/TCBB.2010.57
PMID: 20530818

19. Gardner SN, Thissen J, McLoughlin K, Slezak T, Jaing C. Optimizing SNPmicroarray probe design for
high accuracy microbial genotyping. J Microbio Meth. 2013:http://dx.doi.org/10.1016/j.mimet.2013.07.
006

20. Jaing C, Gardner SN, McLoughlin K, Mulakken N, Alegria-Hartman M, Banda P, et al. A functional gene
array for detection of bacterial virulence elements. PLoS ONE. 2008; 3(5):e2163. doi: 10.1371/journal.
pone.0002163 PMID: 18478124

21. Berge TO, Banks IS, Tigertt WD. Attenuation of Venezuelan equine encephalomyelitis virus by in vitro
cultivation in guinea pig heart cells. Am J Hyg. 1961; 73:209–18.

22. Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Com-
puting Vienna, Austria2014. Available: http://www.R-project.org/.

23. Therneau T, Atkinson B, Ripley B, Oksanen J, De'ath G. mvpart: Multivariate partitioning. R package
version 1.6–1 2013. Available: http://cran.R-project.org/package=mvpart.

24. VenablesW, Ripley B. Modern Applied Statistics with S. 4 ed. New York: Springer; 2002.

25. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics
when evolution is heterogeneous. Nature. 2004; 431:980–4. PMID: 15496922

26. Weaver SC, Barrett AD. Transmission cycles, host range, evolution and emergence of arboviral dis-
ease. Nature reviews Microbiology. 2004; 2(10):789–801. doi: 10.1038/nrmicro1006 PMID: 15378043.

27. Weaver S, Pfeffer M, Marriott K, KangW, Kinney R. Genetic evidence for the origins of Venezuelan
equine encephalitis virus subtype IAB outbreaks. Am J Trop Med Hyg. 1999; 60(3):441–8. PMID:
10466974

28. Wolfe DN, Heppner DG, Gardner SN, Jaing C, Dupuy LC, Schmaljohn CS, et al. Current Strategic
Thinking for the Development of a Trivalent Alphavirus Vaccine for Human Use. The American Journal
of Tropical Medicine and Hygiene. 2014. doi: 10.4269/ajtmh.14-0055

Venezuelan Equine Encephalitis Viruses Genetics

PLOS ONE | DOI:10.1371/journal.pone.0152604 April 7, 2016 15 / 15

http://dx.doi.org/10.1371/journal.pone.0081760
http://www.ncbi.nlm.nih.gov/pubmed/24349125
http://www.ncbi.nlm.nih.gov/pubmed/15034147
http://meta.microbesonline.org/fasttree/treecmp.html
http://meta.microbesonline.org/fasttree/treecmp.html
http://dx.doi.org/10.1093/sysbio/sys062
http://www.ncbi.nlm.nih.gov/pubmed/22780991
http://dx.doi.org/10.1109/TCBB.2010.57
http://www.ncbi.nlm.nih.gov/pubmed/20530818
http://dx.doi.org/10.1016/j.mimet.2013.07.006
http://dx.doi.org/10.1016/j.mimet.2013.07.006
http://dx.doi.org/10.1371/journal.pone.0002163
http://dx.doi.org/10.1371/journal.pone.0002163
http://www.ncbi.nlm.nih.gov/pubmed/18478124
http://www.R-project.org/
http://cran.R-project.org/package=mvpart
http://www.ncbi.nlm.nih.gov/pubmed/15496922
http://dx.doi.org/10.1038/nrmicro1006
http://www.ncbi.nlm.nih.gov/pubmed/15378043
http://www.ncbi.nlm.nih.gov/pubmed/10466974
http://dx.doi.org/10.4269/ajtmh.14-0055

