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Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template
models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg
springmodels developed using inspiration frombiological characteristic have the potential to improve high-speed running capacity
of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on run-
ning speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg
force and the virtual leg compression is established.When the SLIPmodel and the two-segment legmodel with constant spring stiff-
ness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve
spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are
found and (2) at fast running speed from 25 to 40/92m s−1 both the tolerated range of landing angle and the stability region are the
largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running
compared with the SLIP model and with constant spring stiffness.

1. Introduction

Owing to the elastic elements (muscles, tendons, ligaments,
and other soft tissues) of legged systems, in fast animal
locomotion spring-like leg behavior is discovered to represent
bouncing gaits like running, hopping, and trotting [1, 2].
On the one hand, the leg compliance can reduce the impact
of the ground contact phase [3] and recycle kinetic energy
by using of elastic strain energy storage and release [4],
which can lead to low energy costs. For instance, due to
storage and utilization of elastic strain energy, the reduction
rate of the required muscle work is up to 40 percent in a
trotting or galloping horse [5]. On the other hand, compliant
legged systems exhibiting self-stability in response to inter-
nal (speed variations) and external perturbations (ground
surface irregularities) can simplify the dynamic control of
bouncing motion [6]. Therefore, the elastic elements play an
important role in fast animal locomotion [7].

According to spring-like leg behavior of bouncy gaits,
biomechanists [8] propose a simple spring-mass model to
describe animal and human locomotion, which is also called

spring-loaded inverted pendulum (SLIP), consisting of a
point mass representing the body and a massless linear
spring describing the leg. For the purpose of achieving stable
running in the SLIP model, an increase in leg stiffness
is required for increased running velocities when angle of
attack is unchanged [9]. At present, the SLIP model is
extensively applied to the study of bouncing gaits for legged
robots, including one-legged hopping robots, bipedal robots,
quadruped robots, and hexapod robots. Sato and Buehler
propose a hopping robot with one leg based on the SLIP
model [10].

However, biological limbs are not the telescopic linear
leg model, rather, they are made up of multiple joints; their
compliance is situated at the joint level [11, 12]. According
to this concept, Rummel and Seyfarth [6] study the effects
of the two-segment leg model with constant spring stiffness
on running stability during low-speed running, and results
from simulations and experiments show that adjustment of
joint stiffness is required to support stable running at different
speeds. Furthermore, this segmented leg supports self-stable
running at an enlarged range of speeds (lower minimum
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(b) Locomotion phases and transition conditions

Figure 1: SLIP model during a running cycle.

speed) compared with the SLIP model. At present, the two-
segment leg model with constant spring stiffness is widely
applied to the design of compliant legged robots such as the
intersegmental joint configuration of “JenaHopper” designed
by Rummel et al. [13].

It is well known that the SLIPmodel and the two-segment
leg model with constant spring stiffness can be seen as an
effective tool to research on bouncing gaits for legged robots.
In addition to these two models, Karssen and Wisse [14] also
propose the running model with nonlinear leg spring and
study the effect of the nonlinear leg springs on disturbance
rejection behavior. Some results of this optimization reveal
that the push (push forward and backward) disturbances
rejection with the optimal nonlinear leg spring is much better
than with the optimal linear spring. What is more, it can be
seen from the size of the basin of attraction that the range
of running speeds of the optimal nonliner spring is largely
increased compared with the optimal linear spring. But this
runningmodel is analyzed in the low-speed case. At present, a
number of prominent high-speed spring-legged robots, such
as bipedal robot MABEL [15] and Cheetah-cub quadruped
robot [16], are developed. Here, it is interesting to note that
a speed record of 3.06m s−1 is implemented on MABEL by
adjusting its effective leg stiffness [17].

Although there are many running robots and running
models at present, we focus only on the two-segment leg
model in this study. This is because it is the most reduced
leg configuration; in spite of the low complexity of this two-
segment leg model, it is still suitable to solve the question
of how leg segmentation and joint stiffness influence the
stability of running at different speeds [6]. On the other
hand, so far, the potential effects of joint stiffness on running
speeds during high-speed locomotion remain an unresolved
issue. Therefore, in the present paper, we propose the two-
segment leg model with “J”-curve spring stiffness. Here, “J”-
curve spring stiffness is inspired by biological materials [18].
Subsequently, we employ this proposed model to investigate

the potential role of “J”-curve spring stiffness on running
speeds during high-speed locomotion. Here, in this paper
running models focus only on the SLIP model, the two-
segment leg model with constant spring stiffness and with
“J”-curve spring stiffness. This is to develop a deeper under-
standing of the benefits and drawbacks of the two-segment
leg model with “J”-curve spring stiffness compared with the
other two models regarding high-speed running capacity.

In this study, we not only hope that the two-segment leg
model with “J”-curve spring stiffness will show the largest
range of running speed for self-stable high-speed running in
all threemodels but also expect that results of ourworkwill be
regarded as a promising concept for the design of bioinspired
high-speed robots.

2. Methods

2.1. SLIP Model. As shown in Figure 1(a), the SLIP model is
modeled as a point mass 𝑚 attached to a massless spring leg
with linear stiffness of 𝑘 and rest length of 𝑙0. This model for
running can be represented as the flight and stance phases
alternatively, which is shown in Figure 1(b). During the flight
phase the system dynamics is determined by the point-mass
gravity, which results in a ballistic trajectory of the pointmass,
and then the equation of motion can be expressed as

Fflight = 𝑚g, (1)

where Fflight is the total force vector during flight and g =
[0, −𝑔]T denotes the gravitational acceleration vector. In
addition, considering that the total energy 𝐸total is assumed
to be conserved, during flight 𝐸total is

𝐸total =
1
2𝑚V0
2 + 𝑚𝑔𝑦apex,𝑖, (2)

where V0 is the constant horizontal speed of the point mass
and 𝑦apex,𝑖 denotes the apex height (the point mass has the
maximum vertical height at the beginning of the flight phase
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Figure 2: The configuration of the two-segment leg model.

of running). Afterwards, the transition from flight to stance
phase occurs when the spring leg strikes the ground at a given
angle of attack 𝛼0. This transition event can be formulated by

𝑙 (𝑡) = 𝑙0, (3)

where 𝑙(𝑡), which is the function of time 𝑡, denotes the
current spring leg length. The next moment, the stance
phase starts. With the tip of foot regarded as pivot without
slipping, the stance phase can be split into the compression
and decompression subphases. Here, the transition between
the above-described two subphases takes place when the leg
reaches its maximum compression. Note that leg stiffness is a
fixed value of 𝑘 and the direction of leg force is from the tip
of foot to the point mass during these two subphases. Thus,
the motion equations of stance phase are written as

Fstance = 𝑚g + Fleg
𝐹leg = 𝑘 (𝑙0 − 𝑙 (𝑡)) ,

(4)

where Fleg is the leg force vector and Fstance denotes the total
force vector. Finally, when the tip of foot leaves the ground
the flight phase starts, and then the point mass reaches the
subsequent apex variable𝑦apex,𝑖+1. Consequently, a step, called
a cycle, can be defined as the movement between 𝑦apex,𝑖 and
𝑦apex,𝑖+1.

2.2. Two-Segment LegModel. The following section describes
the configuration of the two-segment leg model and its
dynamics of running with spring-like legs. As illustrated
in Figure 2, the two-segment leg model is described by a
point mass 𝑚 attached to a rotating segmented leg, and this
segmented leg is represented by massless upper and lower leg
linked by the intersegmental joint, with the joint angle of 𝛽0
at rest and the radius of cable pulley of 𝑅. What is more, this
model can be considered as hip movement actively and knee
movement passively. Note that knee joint elasticity originates
from spring compliance, and spring property has a significant
influence on running stability. Thus, the two-segment leg
model can be divided into the two-segment leg model with

constant spring stiffness and with nonlinear spring stiffness
in terms of the linear or nonlinear characteristics of tensile
spring, and its joint stiffness 𝑐(Δ𝛽) is

𝑐 (Δ𝛽) =
𝐹spring𝑅
Δ𝛽

Δ𝛽 = 𝛽0 − 𝛽,
(5)

where 𝛽 denotes instantaneous joint angle, Δ𝛽 represents the
amount of joint flexion, and 𝐹spring is the tensile force of the
spring. In addition, it is evident that both upper leg of length
𝑙1 and lower leg of length 𝑙2 affect the dynamics of running.
Therefore, to make the analysis of the mathematical model
easily, the two segment lengths are defined as 𝑙1 = 𝑙2 = 𝐿;
in order to facilitate the comparison between the SLIP model
and the two-segment leg model, rest length of the virtual leg
is also defined as 𝑙0.

Figure 3 illustrates the two-segment leg model during a
running period. It is worth noting that the two-segment leg
model can be conceived as an equivalent SLIP model whose
leg stiffness is nonlinear. Thus, similar to the SLIP model, the
two-segment legmodel for running is also composed of flight
and stance phases, and stance phase can also be divided into
the compression and decompression subphases. Similarly,
the total energy, transition conditions, the total force during
flight, and the direction of leg force of the stance phase are
identical with those of the SLIP model, respectively.

2.2.1. Two-Segment Leg Model with Constant Spring Stiffness.
As can be seen in Figures 2 and 3, if tensile spring has a
constant stiffness, the system can be regarded as the two-
segment leg model with constant spring stiffness reported in
[6], and the equation of motion for this running system is
given by the following equation (based on [6]):

Fstance = 𝑚g + Fleg

𝐹leg =
√𝑙12 + 𝑙22 − 2𝑙1𝑙2 cos𝛽

𝑙1𝑙2
𝑐 (𝛽 − 𝛽0)
sin𝛽 .

(6)

2.2.2. Two-Segment Leg Model with “J”-Curve Spring Stiffness.
In this section we illustrate a nonlinear “J”-curve spring
force-elongation relationship of the proposed model and its
dynamics of running. A schematic diagram of a joint of
large mammals, presented in [19], describes a knee or an
ankle; joint configuration shown in this schematic diagram
is similar to the two-segment leg model. Here, owing to the
similar role of elastic elements, muscles and tendons shown
in this schematic diagram can be considered as tensile spring
of the two-segment leg model. it is very interesting to note
that muscles [20], tendons [21], and muscle-tendon complex
[22] force-elongation curves resemble a “J”-shape, and Steven
Vogle also notices that biological tissues (ligaments, skin, etc.)
force-length curves resemble a “J”-shape [23]. Thereby, we
imitate a joint configuration of largemammals and adopt “J”-
curve spring stiffness inspired by biological materials [18] to
establish the two-segment leg model with “J”-curve spring
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Figure 3: Two-segment leg model during a running period.

Table 1: Five points representing “J” curve.

Elongation 0% 25% 50% 75% 100%
Force 0% 4% 17% 48% 100%

stiffness. By doing this, we hope that the proposed two-
segment leg model with “J”-curve spring stiffness will be
capable of realizing high-speed locomotion, resulting in the
imitation of biological high-speed running capacity. Here,
five points shown in Table 1, presented in [18], can be used to
describe “J”-curve spring properties, and then mathematical
formulation of the relationship between the “J”-curve spring
force 𝐹𝑠(𝑙𝑠) and the “J”-curve spring elongation 𝑙𝑠 is obtained
by using of the interpolation method, and this equation is
represented by

𝐹𝑠 (𝑙𝑠) = 𝑎4 (𝑙𝑠)4 + 𝑎3 (𝑙𝑠)3 + 𝑎2 (𝑙𝑠)2 + 𝑎1𝑙𝑠 + 𝑎0, (7)

where 𝑎4, 𝑎3, 𝑎2, 𝑎1, and 𝑎0 denote the undetermined coeffi-
cients; subsequently, substituting these five points into (7) can
yield

𝑎4 = −
16𝐹max

25 (𝑙max)4
,

𝑎3 =
48𝐹max

25 (𝑙max)3
,

𝑎2 = −
11𝐹max

25 (𝑙max)2
,

𝑎1 =
4𝐹max
25𝑙max
,

𝑎0 = 0,

(8)

where 𝑙max represents the maximum elongation of “J”-curve
spring and 𝐹max denotes the “J”-curve spring force corre-
sponding to 𝑙max.

The virtual leg force vector Fleg(Δl) relates gravitational
force vector 𝑚g to the total force vector Fstance during the
stance phase with

Fstance = 𝑚g + Fleg (Δl) ; (9)

in [6] the virtual leg force 𝐹leg(Δ𝑙) is a function of the virtual
leg compression Δ𝑙 with

𝐹leg (Δ𝑙) =
(𝑙0 − Δ𝑙) 𝜏
𝐿2 sin (𝛽0 − Δ𝛽)

, (10)

where the joint torque 𝜏 can be determined according to𝐹𝑠(𝑙𝑠)
with

𝜏 = 𝐹𝑠 (𝑙𝑠) 𝑅; (11)

the relationship between the amount of the joint flexion Δ𝛽
and 𝑙𝑠 can be given by

Δ𝛽 = (180
∘𝑙𝑠)
(𝑅𝜋) ; (12)

Δ𝑙 can be then represented by

Δ𝑙 = 𝑙0 − 𝐿√2 − 2 cos (𝛽0 − Δ𝛽). (13)

Seeing that the maximum compression of the virtual leg
rarely exceeds 30% of the rest virtual leg length among run-
ning animals [24], both the spring’s maximum compression
in the SLIP model and the maximum compression of the
virtual leg in the two-segment leg model are defined as 0.3𝑙0
in this study, and then the corresponding maximum amount
of the joint flexion Δ𝛽30 in the two-segment leg model is
formulated by

Δ𝛽30 = 𝛽0 − arccos
2𝐿2 − (0.7𝑙0)2
2𝐿2 . (14)

Finally, the radius of cable pulley 𝑅 can be obtained based on
the amount of the joint flexion Δ𝛽30 with

𝑅 = 180
∘𝑙max
𝜋Δ𝛽30
. (15)
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2.3. Analysis Methods. The steps-to-fall analysis and the apex
return map, which are reported in [6, 9], are adopted to
analyze the running dynamics as represented by the above-
mentioned three models. In the following section, we briefly
review these two methods. The steps-to-fall analysis can
record the maximum number of steps to fall for a given
system parameters (𝑚, 𝑙0, V0, etc.), and simulation calculation
is not stopped until the number of predefined steps is reached.
Here, the maximum number of successive steps is defined
as 50 [6]. Although the steps-to-fall analysis can provide a
method for counting the number of successive steps, the
system might still fall after a finite threshold. Therefore, in
order to solve this question, the apex return map is adopted.

The second approach, the apex return map, can identify
the fixed point. Furthermore, the stability of the fixed point
𝑦∗ = 𝑦apex,𝑖+1 = 𝑦apex,𝑖 can be described by

𝑠 = 𝑑𝑦apex,𝑖+1𝑑𝑦apex,𝑖

𝑦∗
; (16)

here if 𝑠 is smaller than 1, this conditionmeans that the system
is stable.

2.4. Simulation Parameters Setup. For the purpose of facili-
tating the comparison of all three models, simulation param-
eters can be defined as follows. (1) Seeing that a representative
value for humans running is leg compression at 10% of rest leg
length [25], the reference stiffness 𝑘10% can be defined by the
following equation (based on [6]):

𝑘10% =
𝐹10%
𝑙10%
, (17)

where 𝑙10% denotes a reference leg compression at 10% of
rest leg length and 𝐹10% is the corresponding leg force; (2) a
dimensionless reference stiffness �̃� can be expressed by the
following equation (based on [26]):

�̃� = 𝑘𝑙0𝑚𝑔; (18)

(3) the dimensionless reference stiffness �̃�10% can be given by
the following equation (based on [6]):

�̃�10% =
𝑘10%𝑙0
𝑚𝑔 ; (19)

three models parameters, 𝑚 = 80 kg, 𝑙0 = 1m, 30∘ ≤
𝛼0 ≤ 90∘, and 0 ≤ �̃�10% ≤ 50, and the initial apex height
of 1m are defined [6]. Additionally, in the two-segment leg
models the small (𝛽0 = 115∘) and large nominal joint angles
(𝛽0 = 165∘) are adopted to analyze the effects of different
nominal joint angles on running speeds, respectively; in
our model (𝛽0 = 115∘ and 165∘), the maximum speed of
stable running is 92 and 40m s−1, respectively. Thus, two
speed ranges (5 to 92m s−1 and 5 to 40m s−1) are utilized to
investigate the advantages and disadvantages of our model
compared with the other two models with respect to high-
speed running capacity, respectively. Here, the speed of
5m s−1 is the minimum speed of stable running in our model
at 𝛽0 = 115∘.
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Figure 4: Normalized force-compression relationships of the SLIP
model and the two-segment leg model. Solid curves are the pro-
posed model and dashed ones denote the two-segment leg model
with constant spring stiffness. The same nominal joint angle 𝛽0
is adopted to facilitate the comparison of normalized force-length
relationships between the two-segment leg model with “J”-curve
spring stiffness and with constant spring stiffness, with the fact that
red, green, and purple curves represent 𝛽0 = 115∘, 𝛽0 = 140∘, and
𝛽0 = 165∘, respectively.

3. Results

3.1. Normalized Force-Length Relationships of the Two-
Segment Leg Model with “J”-Curve Spring Stiffness. In this
section, we not only analyze normalized force-compression
relationships of the two-segment leg model with “J”-curve
spring stiffness but also investigate the effects of different
nominal joint angles 𝛽0 on these relationships. For ease
of understanding, we divide the range of Δ𝑙/𝑙0 into two
subintervals. Here, the first one is 0 ⩽ Δ𝑙/𝑙0 < 10, and the
second is 10 ⩽ Δ𝑙/𝑙0 ⩽ 30. For 0 ⩽ Δ𝑙/𝑙0 < 10, results shown
in Figure 4 reveal that large variations in Δ𝑙/𝑙0 result in small
changes in leg force𝐹leg/𝐹10%. In contrast, for 10 ⩽ Δ𝑙/𝑙0 ⩽ 30,
large changes in Δ𝑙/𝑙0 lead to large variations in leg force.
Furthermore, at the beginning of the second subinterval, a
given variations in Δ𝑙/𝑙0 lead to increasingly large changes in
leg force with increasing virtual leg compression. Next, we
consider roles of nominal joint angles.The larger the nominal
joint angle, the slightly smaller the leg force for a given Δ𝑙/𝑙0
in the first subinterval. In the second subinterval, the smaller
the nominal joint angle, the greater the rise in leg stiffness at
a given virtual leg compression.

3.2. Comparison of Normalized Force-Length Relationships
between the Two-Segment Leg Model with “J”-Curve Spring
Stiffness and the Other Two Models. Considering that in
[6] comparison of normalized force-length relationships
between the SLIP model and the two-segment leg model
with constant spring stiffness has already been discussed,
this section focuses on comparison of relationships between
the two-segment leg model with “J”-curve spring stiffness
and the other two models. In the first subinterval, leg force
of the proposed model is smaller than those of the other
two models for a given Δ𝑙/𝑙0, and leg stiffness of our model
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becomes increasingly small with increasing 𝛽0. In the second
subinterval, for a givenΔ𝑙/𝑙0 ourmodel has themaximum leg
force in all three models, and leg force becomes increasingly
large with increasing 𝛽0 in our model.

3.3. Stability Analysis at Different Running Speeds V0 and
Nominal Joint Angles 𝛽0. In this section, we concentrate on
the effects of a running speed and the dimensionless reference
stiffness on each other. Again, to gain better insights into
advantages and disadvantages of our model compared with
the other twomodels regarding high-speed running capacity,
we also analyze the effects of these speeds on angle of attack
and the stability region in all threemodels, respectively. Here,
for ease of understanding, some typical examples, which are
the regions of stable running at different running velocities
(V0 = 7ms−1, V0 = 29ms−1, and V0 = 36ms−1) and nominal
joint angles (𝛽0 = 115∘ and 𝛽0 = 165∘), are used to analyze
self-stabilizing behavior of the above-represented three mod-
els according to the normalized force-compression relation-
ships depicted in Figure 4. Interestingly, the speed of 29m s−1,
which is the maximum running speed of the cheetah, is the
highest running speed recorded from land animal [27].

In all three models, the proposed model has the tolerated
maximum range of the dimensionless reference stiffness at
a running speed from 7 to 40/92m s−1; the smaller the
nominal joint angles, the larger the stability regions for
given combinations of V0 and �̃�10%, as shown in Figure 5(a).
In other words, we can see from Figure 5(a) that for a
given dimensionless reference stiffness the proposed model
exhibits not only the largest tolerated range of running speeds
but also the tolerated maximum running speed in all three
models; for example, for a given �̃�10% = 41.2698, our model
at 𝛽0 = 115∘ is capable of accomplishing stable running
behavior at a speed range from 5 to 76m s−1. However,
at the same dimensionless reference stiffness, the tolerated
speed range is from 5 to 27m s−1 in the SLIP model; worse
still, in the two-segment leg model with constant spring
stiffness this range is only from 5 to 19m s−1. In addition,
a tolerated minimum �̃�10% is required in order to guarantee
the stability of running in a region (one of the twelve regions
in Figure 6). Interestingly, although the values of these �̃�10%
become increasingly large with increasing running speeds,
this tolerated minimum �̃�10% in our model is smaller than
those of the other two models for a given speed from 7 to
40/92m s−1; the smaller the nominal joint angle, the smaller
the rate of increment in this tolerated minimum �̃�10%.

At fast running speed form 25 to 40/92m s−1, our model
has the maximum range in angle of attack (𝛼1 and 𝛼2). For
instance, at high running speed (29m s−1), 𝛼1 and 𝛼2 (see
Figure 5(b)) are 11.43 and 7.62∘ in our model at 𝛽0 = 115∘,
respectively. In contrast, 𝛼1 = 𝛼2 = 3.8∘ in the SLIP model
and 𝛼1 = 𝛼2 = 0∘ in the two-segment leg model with constant
spring stiffness are found. Additionally, the range of landing
angle becomes smaller with increased 𝛽0; for example, in our
model at V0 = 40ms−1 and 𝛽0 = 115∘, 𝛼1 = 9.52∘ and 𝛼2 =
7.62∘ are found. However, at the same speed, both 𝛼1 and 𝛼2
at 𝛽0 = 165∘ are only 0.95∘. As for landing angle sensitivity,
all three models are sensitive for angle of attack variations

because of 𝛼1 = 𝛼2, but our model is sensitive for angle of
attack variations at higher speeds. Again, when our model is
sensitive for landing angel variations, it is necessary to stable
running at higher velocities for decreased 𝛽0.

At fast running speed form 17 to 40/92m s−1, regions
of stable running of the proposed model are larger than
those of the other two models, as illustrated in Figure 5(c).
For instance, a region representing the number of successful
running steps, shown in Figure 6, is made up of the 64 × 64
equidistant grid; for a given running speed of 29m s−1 the
stability region consists of the 247 equidistant grids in our
model (𝛽0 = 115∘). However, at the same running speed
the region of stable running of the SLIP model is only the
16; worse still, there is no stable region in the two-segment
leg model with constant spring stiffness. In contrast, at low
running speed from 5 to 10m s−1, our model demonstrates
the minimum stability region in all three models. Again, in
the two-segment leg model, an increase in nominal joint
angle leads to a decrease of the stability region during
high-speed locomotion. For instance, at high running speed
(36m s−1), the stability region of ourmodel is decreased from
the 205 at 𝛽0 = 115∘ to the 10 equidistant grids at 𝛽0 = 165∘.

3.4. Return Map of the Apex Height. In the following section
we analyze stability of the proposed model by using of this
single apex returnmap. For a given total energy𝐸 = 34424.8 J
and system parameters (𝛼0 = 50∘ and �̃�10% = 18.75), results
from the effects of different nominal joint angles on stable
fixed points (the intersections of between three curves and
the diagonal) are shown in Figure 7(a). From this figure, we
can see that the small nominal joint angle results in the high
value of fixed point. Here, all curves show that our model can
accomplish periodic running patterns at the running speed
of 29m s−1.

Figure 7(b) shows the effects of another factor—different
running velocities—on stable fixed points with system
parameters (𝛼0 = 47∘, �̃�10% = 23.8, and 𝛽0 = 115∘).

We can obtain that the lower the running speeds, the
higher the values of fixed points, and the high running
velocities (31m s−1) result in the small basin of attraction
containing all apex heights.

4. Discussion

In this paper, we discuss the effects of the two-segment leg
with “J”-curve spring stiffness on running speeds during
high-speed running. Two methods, the steps-to-fall analysis
and the apex return map [6, 9], can be adopted to exploit
high-speed running capacity of the model.

Compared with the other two models, during fast run-
ning it reveals that (1) system can provide the larger regions
of stable running; (2) the tolerated range of �̃�10% for self-
stable running is even larger for a given running speed; (3)
the proposed model shows the larger tolerated speed range
and running speeds. In addition, when the proposedmodel is
stable running, the small nominal joint angle can lead to the
low tolerated minimum �̃�10%, with the large tolerated speed
range and running speed.



Applied Bionics and Biomechanics 7

Th
e t

ol
er

at
ed

 ra
ng

e o
f t

he
 d

im
en

sio
nl

es
s

re
fe

re
nc

e s
tiff

ne
ss

 [s
ho

w
in

g 
th

e s
pe

ed
ra

ng
e o

f s
ta

bl
e r

un
ni

ng
]

Th
e t

ol
er

at
ed

 ra
ng

e o
f t

he
 d

im
en

sio
nl

es
s

re
fe

re
nc

e s
tiff

ne
ss

 [s
ho

w
in

g 
th

e s
pe

ed
ra

ng
e o

f s
ta

bl
e r

un
ni

ng
]

Running speed �0 (m/s) two-segment leg model at 𝛽0 = 165∘Running speed �0 (m/s) two-segment leg model at 𝛽0 = 115∘
908070605040302010

10

20

30

40

50

10

20

30

40

50

15

25

35

45

5 10 15 20 25 30 35 40

SLIP model

Two-segment leg model with “J”-curve spring stiffness
Two-segment leg model with constant spring stiffness

SLIP model

Two-segment leg model with “J”-curve spring stiffness
Two-segment leg model with constant spring stiffness

(a)

𝛼2 in the SLIP model

𝛼1 in the SLIP model

𝛼2 in the two-segment leg model with “J”-curve spring stiffness

𝛼1 in the two-segment leg model with constant spring stiffness

𝛼2 in the two-segment leg model with constant spring stiffness

𝛼1 in the two-segment leg model with “J”-curve spring stiffness
𝛼2 in the SLIP model

𝛼1 in the SLIP model

𝛼2 in the two-segment leg model with “J”-curve spring stiffness

𝛼1 in the two-segment leg model with constant spring stiffness

𝛼2 in the two-segment leg model with constant spring stiffness

𝛼1 in the two-segment leg model with “J”-curve spring stiffness

Th
e t

ol
er

at
ed

 ra
ng

e o
f𝛼

1
an

d
𝛼
2

(d
eg

)

Th
e t

ol
er

at
ed

 ra
ng

e o
f𝛼

1
an

d
𝛼
2

(d
eg

)

0

5

10

15

20

[in
di

ca
tin

g 
la

nd
in

g 
an

gl
e s

en
sit

iv
ity

]

0

5

10

15

20

25

30

[in
di

ca
tin

g 
la

nd
in

g 
an

gl
e s

en
sit

iv
ity

]

10 15 20 25 30 35 405
Running speed �0 (m/s) two-segment leg model at 𝛽0 = 165∘

20 30 40 50 60 70 80 9010
Running speed �0 (m/s) two-segment leg model at 𝛽0 = 115∘

(b)

SLIP model

Two-segment leg model with “J”-curve spring stiffness
Two-segment leg model with constant spring stiffness

SLIP model

Two-segment leg model with “J”-curve spring stiffness
Two-segment leg model with constant spring stiffness

Th
e n

um
be

r o
f t

he
 eq

ui
di

st
an

t g
rid

Th
e n

um
be

r o
f t

he
 eq

ui
di

st
an

t g
rid

Running speed �0 (m/s) two-segment leg model at 𝛽0 = 115∘
908070605040302010 10 15 20 25 30 35 405

Running speed �0 (m/s) two-segment leg model at 𝛽0 = 165∘

0

50

100

150

200

250

300

[in
di

ca
tin

g 
th

e s
ta

bi
lit

y 
re

gi
on

]

0

100

200

300

400

500

[in
di

ca
tin

g 
th

e s
ta

bi
lit

y 
re

gi
on

]

(c)

Figure 5: Properties of regions of stable running for given combinations of �̃�10% and 𝛼0 at different running speeds in the SLIP model, the
two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness, respectively. Here, the speed range of stable running
for a given �̃�10% from 0 to 50 is shown in (a) and (b), 𝛼1 denotes the difference between the minimum and maximum landing angles, and 𝛼2
is the maximum tolerated range of landing angle on a region of stable running.
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Figure 6: Regions of stable running for given combinations of �̃�10% and 𝛼0 in the two-segment leg model with “J”-curve spring stiffness (the
first row 𝛽0 = 115∘ and the second row 𝛽0 = 165∘), the two-segment leg model with constant spring stiffness (the first and second figures of
the third row 𝛽0 = 115∘ and the first and second figures of the last row 𝛽0 = 165∘) and the SLIP model (the third and fourth figures of the
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These characteristics mentioned above are due to the
two-segment leg structural configuration and “J”-curve
spring stiffness properties, resulting in the nonlinear force-
compression relationships depicted in Figure 4. In addition,
owing to the passive compliance identified in the proposed
model, this elastic two-segment leg configuration can take
advantage of simple control strategies to guarantee the steady-
state running behavior, with little or even no sensory infor-
mation. We believe that our model can be seen as a template
to analyze the high-speed dynamic locomotion for animals
and robots. However, this two-segment leg model with a
“J”-shape force-elongation curve cannot mimic adjustment
of leg stiffness in fast animal locomotion. This is because
limb stiffness is adapted to running speed; for example,
Hobara et al. [28] reveal through experiments that in humans
leg stiffness is adjusted to different hopping frequencies,
with the fact that there are two different force-elongation
curves during compression and decompression. Hence, in
order to adequately mimic limb compliant locomotion, these
aspects should be taken into account in the design and
implementation of robotic system.

Additionally, in the two-segment leg model with “J”-
curve spring stiffness, the running is simulated across smooth
and level terrain. Yet, the terrain is not the same in the
real world, where the ground surface irregularities must be
taken into account for running robots and running models.
Therefore, in order to achieve stable running of the proposed
model on uneven terrain, it is necessary to adjust apex height
with adequate ground clearance in response to disturbances
in ground height. Currently, for a given total system energy,
the return map of the apex height 𝑦apex,𝑖+1(𝑦apex,𝑖) can be
adopted to analyze running stability when the system is
perturbed by a change in ground height. Furthermore, as
the proposed model is conservative, the total system energy
is distributed to the vertical energy and the forward kinetic
energy by the adjustment of angle of attack; in other words,
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Figure 8: Return maps function 𝑦apex,𝑖+1(𝑦apex,𝑖) at different 𝛼0.

different angles of attack can be used to control a desired
apex height or, correspondingly, the forward speed. Here,
the return map of the apex height is adopted to investigate
the potential effects of different landing angles on the apex
height in our model (V0 = 29ms−1, �̃�10% = 40, and 𝛽0 =
115∘). Results shown in Figure 8 reveal that the apex height
𝑦apex,𝑖+1 is dependent on the preceding apex height 𝑦apex,𝑖 and
the selected angle of attack 𝛼0. What is more, for a given
apex height 𝑦apex,𝑖, both the value of fixed point and the
subsequent apex height 𝑦apex,𝑖+1 become increasingly small
with increasing 𝛼0, and the apex height is sensitive for angle
of attack variations. This means that a higher apex height
can be implemented by tuning a smaller angle of attack,
with the fact that only one step or a few more steps are



10 Applied Bionics and Biomechanics

required to achieve higher steady-state heights in our model.
Again, it is interesting to note that Seyfarth and Geyer [29]
introduce a generalized return map and derive an optimal
control strategy of the apex height in the SLIP model. This
method could be utilized to study the control strategy of the
apex height of the proposed model, which will be subject of
further investigations.

Running at High Speed. In Figure 5(a), the SLIP model indi-
cates that the tolerated minimum leg stiffness has to increase
with running speed to achieve stable running.This is in agree-
ment with a simulation study in which increasing leg stiffness
is required to guarantee the stability of a galloping quadruped
whose single leg consists of a linear spring attached to a
prismatic leg when running speed is increasingly high [30].
In the two-segment leg model with constant spring stiffness,
an increase in the tolerated minimum leg stiffness is also
necessary to accomplish stable running behavior at higher
speeds [6]. This finding is supported by robotic trials. Here,
hopping robot with one leg, which is made up of a segmented
leg with constant spring stiffness, becomes unstable with
increasing speed [31]. Therefore, leg stiffness is sensitive
for speed variation in these two models. The situation is
not all the same in the two-segment leg model with “J”-
curve spring stiffness. Here, in our model the amount of
increment in the toleratedminimumdimensionless reference
stiffness, for the same amount of increment in running speed,
is largely decreased compared with the other two models.
This characteristic of our model (leg stiffness is insensitive
for speed variation) enlarges tolerated range of speeds. On
the other hand, for a given running speed, the proposed
model has the minimum value of leg stiffness to achieve self-
stable running in all three models, as depicted in Figure 5(a).
For instance, at high running speed (29m s−1), the tolerated
minimum dimensionless reference stiffness in our model at
𝛽0 = 115∘ is 18.25 compared with 44.44 in linear leg model
and no stability solutions in the two-segment leg model with
constant spring stiffness. As a result, in all three models, for
a given nominal joint angle and leg stiffness, the proposed
model at high speed has not only the maximum speed
range of stable locomotion but also the tolerated maximum
running speed. This means that in all three models the two-
segment leg model with “J”-curve spring stiffness is most
advantageous for high-speed running.

Practically, several researchers have designed their
robotic legs similar to our model configuration and
leg stiffness. For example, the robotic leg proposed by
Schmiedeler and Waldron [32] used seven parameters to
accomplish biomimetic feature. With these parameters,
we here in this paper have calculated their virtual leg
force-compression relationship, as shown in Figure 9.
Obviously, this curve is similar to the curves as represented
by our model depicted in Figure 4, leading to the following
common characteristics: (1) the virtual leg spring is capable
of being soft at the beginning of touch down, which can
produce a relatively small impact force [32]; (2) it becomes
stiffer with increased compression, resulting in a large force,
which can prevent the leg to fold over on itself [32]. With the
facts that their prototype leg exhibits the potential for fast
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Figure 9: Virtual leg force-compression relationships of KOLT
quadruped robot.

locomotion in experiment [32] and then the corresponding
KOLT quadruped robot can implement gallop and high-
speed turning [33], we conclude that our simulation results
have been confirmed in practice.

5. Conclusion

In this paper, we have presented the two-segment leg model
with “J”-curve spring stiffness and have analyzed the effects of
“J”-curve spring stiffness on running speeds of the proposed
model during high-speed running. According to simulation
results of all threemodels, for a given dimensionless reference
stiffness, we have demonstrated that (1) our model has not
only the largest tolerated speed range but also the tolerated
maximum running speed, with the fact that the smaller
the nominal joint angle, the better the running capacity
mentioned above; (2) at fast running speed from 25 to
40/92m s−1 our model has not only the largest range of angle
of attack but the largest region of stable running. It has already
been successfully applied to quadruped robot, such as KOLT,
for high-speed running.

Next, we will investigate the effects of a broad ratio of
leg length and nominal joint angle range on high-speed
running performance, respectively. Again, wewill analyze the
whole stability zone of segmented leg in order to gain better
insights into advantages and disadvantages of our model at
fast running.
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