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Abstract

Models of competitive template replication, although basic for replicator dynamics and primordial evolution, have not yet
taken different sequences explicitly into account, neither have they analyzed the effect of resource partitioning (feeding on
different resources) on coexistence. Here we show by analytical and numerical calculations that Gause’s principle of
competitive exclusion holds for template replicators if resources (nucleotides) affect growth linearly and coexistence is at
fixed point attractors. Cases of complementary or homologous pairing between building blocks with parallel or antiparallel
strands show no deviation from the rule that the nucleotide compositions of stably coexisting species must be different and
there cannot be more coexisting replicator species than nucleotide types. Besides this overlooked mechanism of template
coexistence we show also that interesting sequence effects prevail as parts of sequences that are copied earlier affect
coexistence more strongly due to the higher concentration of the corresponding replication intermediates. Template and
copy always count as one species due their constraint of strict stoichiometric coupling. Stability of fixed-point coexistence
tends to decrease with the length of sequences, although this effect is unlikely to be detrimental for sequences below 100
nucleotides. In sum, resource partitioning (niche differentiation) is the default form of competitive coexistence for
replicating templates feeding on a cocktail of different nucleotides, as it may have been the case in the RNA world. Our
analysis of different pairing and strand orientation schemes is relevant for artificial and potentially astrobiological genetics.
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Introduction

Gause (1934) in the Golden Age of theoretical ecology

formulated the principle of competitive exclusion, proposing in

effect what usually is being referred to as ‘‘complete competitors

cannot coexist’’ [1]. Later investigations have confirmed that in

stable steady state the number of coexisting species cannot be

larger than the number of resources, provided that growth rates

depend linearly on resource concentrations and that we look for

coexistence at fixed densities [2–4]. For maximal coexistence to

occur, the M competitors must consume the M resources in

different proportions. Since the seminal experiments of Spiegel-

man [5] and the deep theoretical insights of Eigen [6], nucleic acid

replication kinetics has been under repeated scrutiny. In the

‘‘default’’ model of Eigen with constant total population concen-

tration the fastest replicator (and its associated mutant cloud) wins,

consonant with ‘‘survival of the fittest’’; the tacit assumption being

that the competing sequences are complete competitors in the

sense of Gause. More detailed investigations of RNA replication

kinetics have greatly improved these models, taking into account

saturation of the replicase enzyme, asymmetry of plus and minus

RNA strands, and replicationally inert double-strand formation

[7–9]; the latter phenomenon yielding coexistence due to the self-

limitation of growth. Von Kiedrowski [10,11] discovered a

somewhat similar phenomenon for his artificial non-enzymatic

chemical self-replicators growing parabolically, where self-limita-

tion of growth arises from reversible double-strand formation.

Szathmáry and Gladkih [12] showed that the consequential

parabolic growth leads to stable dynamical coexistence. Yet none

of these models included a detailed analysis of base composition

and sequence effects on coexistence. In this paper we remedy this

deficiency.

We explicitly take into consideration the concentration of up to

four different building blocks (‘‘nucleotides’’, with the aim that the

model should be general enough to deal with different number of

bases and base-pairing modes [13–15]) and a large number of

competing different sequences, in order (i) to present, at least in

part, the missing theory of competing template replicators having

different sequences and (ii) to answer the question whether Gause’s

principle holds for such replicators.

During the forthcoming analysis we deliberately introduce some

simplifications. We assume that template replication rates depend

on nucleotide concentration linearly (there are no cooperative

effects) and that the dynamics of these abiotic resources are not

periodically forced, for example. We neglect replicase enzymes

and assume that template and replica separate irreversibly upon

completion of elongation. The kinetic effects are simplified to the

extent that the elongation rate of template polymerization depends
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only on the identity of the inserted nucleotide and nothing else.

We know that this is a crucial simplification but already with this

rule different sequences may assume very different kinetic

phenotypes. In agreement with this, we neglect secondary and

tertiary structures.

The raison d’être for these assumptions is that we would like to

demonstrate the effect of competition for resources of competing

template sequences as simply and clearly as possible. (We note that

as mentioned above, irreversible or reversible pair formation can

lead to coexistence, and that enzyme saturation leads to linear

growth instead of exponential.) We deliberately want to see the

dynamics of coexistence under irreversible exponential growth

tendency, as a kind of worst case. The effect of the sequence

diversity of templates on dynamical coexistence is not trivial. If

there are two resources A and B, then it is trivial that sequences of

AA and BB may coexist. But what about AA and AB? Are these

sufficiently similar for competitive exclusion or sufficiently different

for competitive coexistence? And have AB and BA got the same

features in competition, or not? This question is relevant since a

recent study [16] in the ecological literature indicated that life-

history traits of organisms can promote dynamical coexistence on

limiting resources beyond the effect of simple resource partition-

ing. Thus two templates with the same nucleotide composition but

substantially different sequences may be regarded as adopting two

different life history strategies. As replication proceeds sequential-

ly, templates might be regarded as consuming different resources

during different stages of their life histories. What is the effect (if

any) of this stage-structure on template coexistence?

Some of the effects that we show in this paper are far from

trivial. Our calculations show the effect of resource partitioning on

template coexistence and shed more light on early molecular

evolution, which surely was affected by sequence effects of

template replicators.

Results

To understand the mechanism of coexistence of template

replicators (sequences) we formulated the dynamics of polynucleotide

replication. Here we only explain the necessary basics of our

formalism, for the mathematical model see Models Section, for

further details see Text S1. Template replicators are assumed to be

single-stranded with double-stranded replication intermediates (as

for RNA). As a simplification, metabolism responsible for

replication is restricted to the common pool of shared monomers,

which are either fed from within (protocells) or from the outside

(flow reactor).

A sequence is a single polynucleotide strand of the form

w1w2 . . . wL of length L where wi stands for any monomer at the

ith position. As an example, a sequence of monomers in case of

RNA could be ACAGAUU with w1~A, w2~C, etc. A sequence

pair is a double-stranded polynucleotide molecule. It can be

represented by only one of its strands as it defines the complement

strand unambiguously (note that we do not deal with strand

separation and treat the two strands as separate sequences). For

example the ACAGAUU sequence defines its complementary pair

AAUCUGU. An intermediate complex is a complete sequence

and its incompletely built complementary sequence during the

duplication phase. For example, one intermediate complex of the

above RNA sequence pair is:

ACAGAUU

: : : CUAA

An N-group of sequence pairs consists of N such sequence pairs.

Often members of a group are represented by one sequence of

each pair for sake of simplicity. Concerning the dynamics, for each

type of monomer we introduce a specific rate constant that defines

the speed of elongation of the sequence; also for each monomer

type and for each intermediate there is a specific degradation rate

constant.

First, we investigate the more realistic but also more complex

systems that can only be solved numerically and later we

gradually traverse to simplified systems that can be handled fully

analytically. Such systems, though simplified, provide powerful

rules about the mechanisms of coexistence which still can be

translated and applied to the realistic cases. Accordingly, first we

numerically analyze the complementary replication of templates

corresponding RNA replication. Second, we deal with the simpler

homologous replication where monomers pair with identical

types (non-complementary base-pairing); we also introduce

parallel strand polarity as opposed to antiparallel polarity (like

in case of RNA replication). The difference between comple-

mentary and non-complementary pairing and parallel and

antiparallel strand polarity is given in Fig. 1. Third, as a further

simplification of the previous system, we assume uniform

degradation rates for replication intermediates and even identical

elongation rates for the different monomer types to obtain

analytical results.

Complementary replication
The following model of template replication models RNA

replication, dealing with 4 monomers, complementary pairing and

antiparallel strand polarity. We have investigated the coexistence

of N groups of sequence pairs of length L. As the sequence space is

huge (4L), consequently, the Cartesian product of the sequence

space yielding all possible combinations of N sequence pairs is

even more huge (4L:N ). Therefore it is usually impossible to

investigate the coexistence of all possible combinations of

sequences. Instead, we used a reasonably large sample of the full

combined space to estimate the probability and stability of

coexisting sequences over four different monomers. We have

investigated sequences of length L~4, as this is the maximum

length for which the space could be reasonably analyzed. Our

analysis was performed using the following two methods (for

parameters, see Text S1):

N M1 With a given set of parameters (elongation constants ki,

degradation rates di and mj ) we computed the fraction l1 of

coexisting sequence groups of the total combined sequence

space with different numbers of complementary pairs (N). In

Author Summary

The dynamical theory of competing templates has not yet
taken the effect of sequences explicitly into account. One
might think that complementary sequences have very
limited competition only. We show that, despite interest-
ing sequence effects, competing template replicators yield
to Gause’s principle of competitive exclusion so that the
number of stably coexisting template species cannot
exceed the number of nucleotide species on which they
grow, although one of the findings is that plus and minus
strands together count as one species. Thus up to four
different templates/ribozymes can constitute the first steps
to an early, segmented genome: we suggest that other
mechanisms build on this baseline mechanism.

Niche Partitioning of Replicating Sequences
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case of a large sequence space, only a random subset was used.

In case of coexistence, we examined the local stability of this

coexistence.

N M2 We have investigated the coexistence for each sampled

sequence group for different numbers of complementary pairs

(N ) using 1000 different random degradation rate sets. We

have assessed the ratio l2 of coexisting sequences.

The results of the analysis of coexistence of N complementary

pairs of sequences of length 4 can be seen in Tables 1 and 2

(methods M1 and M2, respectively). Accordingly, we can state that

the increasing number of complementary pairs reduces the

probability and stability of coexistence and that on four different

monomers a maximum of four different sequence pairs could

possibly coexist. Thus Gause’s principle (against first intuition)

limits the number of sequence pairs instead of individual sequences

because of the dynamical coupling between the template and its

complement (the plus-minus ensamble behaves like a single

replicator, see [6,17]). In the intermediate case of non-comple-

mentary pairing with antiparallel polarity, it is still the number of

sequence pairs that limits coexistence (and not individual

sequences), though due to a better partitioning of resources

coexistence is more probable on average (for details, see Text S1).

Coexistence can be visualized in case of two coexisting sequence

pairs of length L in two dimensions: each cell of a 4L:4L matrix

represents a certain combination of two pairs, and is labeled by the

first sequence of the first pair (rows) and the first sequence of the

second pair (columns). Sequences are ordered according to

standard lexicographic ordering along the horizontal and vertical

Figure 1. Template and copy are either different (thin) or identical (bold) for complementary (top) and homologous pairing
(bottom) due to strand polarity. Reverse (top left) and direct palindromes (bottom middle) yield two identical templates with complementary
and homologous pairing, respectively, just like homologous pairing with parallel polarity. Note, that in case of reverse palindromes, it is not necessary
for the sequence itself to be palindromic to make the two strands identical. Cases of complementary pairing with antiparallel polarity (top left and
middle) and homologous pairing with parallel polarity (bottom right) are discussed in the main text; homologous pairing with antiparallel polarity
(bottom left and middle) is discussed in Text S1. The remaining case (top right) is not discussed here.
doi:10.1371/journal.pcbi.1003193.g001

Table 1. Analysis of coexistence of N complementary pairs of sequences of length L~4 according to method M1.

N Number of scanned seq.s Fraction of coexistence (l1) Average of leading eigenvalues

2 48 (100%) 55.5% (S) 20.0401

3 106 (5.96%) 11.1% (S) 20.00198

4 106 (0.023%) 0.83% (S) 20.000653

5 107 (0.0009%) 0% n/a

Second column shows the number of scanned sequences (and the amount as a fraction of the whole combined sequence space). The third column shows the fraction
of coexisting sequences in the scanned domain, i.e. the probability of coexistence of random sequence groups of size N with a given parameter set. (S) indicates that all
cases of coexistence are locally asymptotically stable. The fourth column shows the average of the leading eigenvalues (if there is coexistence) as a measure of stability.
For parameters, see Text S1.
doi:10.1371/journal.pcbi.1003193.t001

Table 2. Analysis of coexistence of N complementary pairs of
length L~4 according to method M2.

N Number of scanned seq.s Fraction of coexistence (l2)

2 48 (100%) 49.40%

3 48 (0.4%) 6.92%

4 48 (0.0015%) 0.36%

5 48 (6?1026%) n/a

Second column shows the number of scanned sequences (and the amount as a
fraction of the combined sequence space). The third column shows the fraction
of coexisting sequences averaged over the scanned sequence groups and over
1000 random degradation rate sets for intermediates (for parameters, see Text
S1).
doi:10.1371/journal.pcbi.1003193.t002

Niche Partitioning of Replicating Sequences
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axes (see Fig. 2). The higher probability and mean stability of

coexistence in the bottom corner correspond to the ‘‘niche

partitioning’’: first sequence consumes more B, while the second

sequence consumes more A.

Our model is applicable for any sequence length N, predicting

whether there is coexistence for any combination of sequences.

However, for larger values of N the full combined sequence space

is enormous therefore it is impossible to perform exhaustive search

for all coexisting cases. By brute force search we have found some

illustrative examples, according to Method M2 (for details see Text

S1). Our results (tested up to N~30) show that 8 sequences (4

sequence pairs) can stably coexist (linear asymptotic stability was

explicitly tested). There is no theoretical (but computational)

objection to applying this model for even longer sequences.

Non-complementary (homologous) replication
In this section we deal with a simplified system: we restrict our

attention to homologous base pairing ignoring the polarity of

strands (see Fig. 1), allowing only two monomer types (see the

extended model of four monomers in the Text S1). Due to

homologous pairing of monomers and the lack of different

polarities of the strands, template and copy are identical, thus a

pair of pairs consists of a total of two different sequences.

Intermediates of the first sequence (pair) are denoted as xi,

intermediates of the second are denoted by yi, their concentrations

by xi and yi (as were introduced previously), monomers are

denoted by wi,vj[fA,Bg and their concentrations by wi and vi,

(i,j~1 . . . L). Note that results in this section hold for all cases

when template and copy are identical: this happens not only in the

Figure 2. Split plot of the coexistence of two complementary sequence pairs with antiparallel strand polarity (4 sequences per pair)
of length L~4. Lower left half: coexistence is marked by green, extinction of the first sequence pair by red and extinction of the second sequence
pair by blue. Upper right half: stability of coexistence according to the leading eigenvalue (red indicates more stable, blue indicates less stable
coexistence, white indicates extinction of one of the sequence pairs). The upper triangle shows the stability measures of the sequences pairs from the
lower one (mirrored and rotated 900). From the point of view of coexistence two pairs (e.g. ABCA-BDAB, BBDC-DCAA) and their reverse
(BBDC-DCAA, ABCA-BDAB) are not fully equivalent. The reason for this is that the degradation rates are assigned to sequences, always in the
same order within a set (this means that the same rates are assigned to e.g. ABCA and BBDC in the two cases, respectively). Despite this difference
the plot is almost symmetrical since degradation rates are taken from a narrow distribution. For details, see main text, for parameters, see Text S1.
doi:10.1371/journal.pcbi.1003193.g002

Niche Partitioning of Replicating Sequences
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case of homologous pairing with parallel orientation, but also for

some exotic cases of antiparallel strands, like palindromic

sequences of homologous pairing and reverse-palindromic se-

quences of complementary pairing (Fig. 1). We briefly note that

such palindromes are not likely to coexist any more than non-

palindromic sequence pairs.

Non-uniform degradation rates. As there is no comple-

mentary pairing or polarity, any sequence pair consists of two

identical sequences, thus the maximum number of coexisting

species on two different resources is expected to be two. With the

applied restrictions, the system still remains overly complex for an

analytical approach (see the next two sections for an analytically

tractable simplification). According to our exhaustive numerical

results, we have found no case where more than two sequences

could coexist, supporting our hypothesis. We have numerically

integrated ODE systems until convergence or extinction of one of

the sequences. The numerical methods and routines are the same

as before. We have analyzed the coexistence of two sequences in

two different ways (for parameters see Text S1):

N M3 With a given set of parameters (elongation constants ki,

degradation rates di and mj ) we computed the fraction l3 of

coexisting sequence pairs of the total combined sequence pair

space at different sequence lengths (L). In case of coexistence,

we examined the local stability.

N M4 We have investigated the coexistence for each sampled

sequence pair using 1000 different random degradation rate

sets. We have assessed the ratio l4 of coexisting sequences as a

function of the length L of the sequences and the stability of

the coexistence.

First, the results of our investigations according to method M3

can be found in Table 3. It can be observed that approximately

half of the sequences coexist, independent of the sequence length,

while increasing length decreases the mean stability (defined as the

mean of leading eigenvalues). We have always found coexistence

to be locally asymptotically stable.

Second, we have investigated the system according to method

M4. The results characterizing the coexistence depending on L
are in Table 4. Approximately 50% of the randomly parameter-

ized sequence pairs can coexist (independently of sequence length)

and the (average) stability of the coexistence is slowly decreasing

with increasing length.

For two sequences, it is possible to visualize coexistence results

over the random parameter sets. As Fig. 3 shows, coexistence is

more likely if paired sequences contain different amounts of A and

B (lower left and upper right corners). Purple boxes along the main

diagonal indicate improbable coexistence, corresponding to

compositionally identical sequences that is, A:B ratios for the two

sequences are identical (cf. the grey areas of Fig. 4).

Uniform degradation rates. Uniform degradation rates of

sequence intermediates allow for a completely analytic approach.

With this simplification, we can compute the stable steady state

concentrations of intermediates and monomers analytically. We

managed to simplify the criteria of coexistence to a pair of simple

inequalities in terms of the number and position of different

monomers in the sequences (Eq. (14)). Our results indicate that

more than two sequences cannot coexist in a structurally stable

way on two different monomers. Generally, it is true that a

maximum of M different sequences can coexist on M different

monomers for details, see Text S1. We have investigated the local

asymptotic stability of coexistence. For different sequence lengths

(L~3 . . . 9) we have examined the whole sequence space

(excluding compositionally identical cases). Numerical results

indicate that solutions are locally asymptotically stable (parameters

are the same as in method M3).

The above criteria of coexistence only hold for compositionally

non-identical sequences. In case of compositional identity, we have

demonstrated numerically (L~3 . . . 6, for the whole sequence

space) that the coexistence is neutral. All stable steady state

concentrations depend on the initial conditions (the leading

Table 3. Analysis of coexistence of two sequences of length L according to method M3.

L Number of scanned seq.s Fraction of coexistence (l3) Average of leading eigenvalues

3 26 (100%) 50.0% (S) 20.0811

4 28 (100%) 43.4% (S) 20.0611

5 210 (100%) 50.3% (S) 20.0598

6 212 (100%) 46.1% (S) 20.0513

7 214 (100%) 49.5% (S) 20.0462

8 216 (100%) 47.8% (S) 20.0412

9 218 (100%) 48.9% (S) 20.0355

Second column shows the number of scanned sequences (the whole combined sequence space for all investigated L). The third column shows the fraction of
coexisting sequences, i.e. the probability of coexistence of two sequences with a given parameter set (see Text S1). (S) indicates that all cases of coexistence are locally
asymptotically stable. The fourth column shows the average of the leading eigenvalues (if coexistence exists) as a measure of stability.
doi:10.1371/journal.pcbi.1003193.t003

Table 4. Analysis of coexistence of two sequences of length
L according to method M4.

L
Number of scanned
seq.s

Fraction of coexistence
(l4)

3 26 (100%) 49.98%

4 28 (100%) 42.81%

5 210 (100%) 47.06%

6 212 (100%) 43.15%

7 214 (100%) 44.88%

8 214 (25%) 43.24%

9 214 (6.25%) 43.68%

Second column shows the number of scanned sequences (and the amount as a
fraction of the whole sequence space). The third column shows the fraction of
coexisting sequences averaged over the scanned sequence pairs and the 1000
random parameter sets. For parameters, see Text S1.
doi:10.1371/journal.pcbi.1003193.t004

Niche Partitioning of Replicating Sequences
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eigenvalue of the Jacobian being zero). From a biological point of

view, coexistence of compositionally identical sequences is

structurally unstable, as any perturbation of the degradation rates

disrupts coexistence, thus practically there is no coexistence. (With

non-uniform degradation rates, compositionally identical pairs can

stably coexist with very low probability; cf. Fig. 3, main diagonal

blocks) In the following calculation (and later, if not indicated

otherwise), we have ignored compositionally identical sequence

pairs.

We have demonstrated numerically, that more than two

arbitrary sequences are able to coexist, though in a structurally

unstable way: any perturbation of the degradation rates destroys

coexistence, rendering the system to a simpler one where only one

or two sequences coexist on the two monomers. Thus Gause’s

principle is not violated.

Uniform degradation rates and identical rate

constants. As a further simplification, here we assume identical

rate constants, which allows a fully analytical approach. In this

case, the presence (or lack) of coexistence of sequences can be

deduced right from the order of monomers of the sequences

according to a very simple rule (Eq. (15)). The rule provides a

deeper understanding of coexistence by revealing a further effect

additional to simple resource partitioning. According to the rule,

the criteria of coexistence in case of shorter sequences (Lv6) leads

to the exclusion principle of Gause. Thus two sequences coexist if

they have different limiting resources, that is if one has more A
while the other has more B, as in ‘‘niche-segregation’’ (compact

green areas in Fig. 4, upper panel). Compositionally identical

sequences result in neutral stability (and structural instability

against perturbation of degradation rates), see gray blocks in Fig. 4.

However, for longer sequences (L§6), this is only generally

true, and it becomes possible to seemingly violate the principle, as

there are exceptions depending on the position of monomers that

allow for coexistence even when sequences seemingly feed on the

Figure 3. Probability of coexistence in case of non-uniform degradation rates and homologous pairing (L~8). Each cell is an average
of numerical results over 1000 random parameter setups. Purple indicates highly improbable coexistence, green indicates likely coexistence.
Sequences are arranged along the axes first according to Hamming distance and secondly according to lexicographic ordering (increasing B content
towards bottom and right). For parameters, see Text S1.
doi:10.1371/journal.pcbi.1003193.g003

Niche Partitioning of Replicating Sequences
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same limiting resource. For example, two sequences can coexist if

both have e.g. B majority, provided one of the sequences has most

of the A-s in its head; the latter behaves as having A-majority. The

coexistence condition directly (Eq. (15)) specifies the required

amount and position of A-s in the head to yield coexistence (for

example, AAABBBB and BABBABB coexist, seemingly violating

Gause’s principle). Therefore, it is not just the composition of the

sequences but the order of monomers too that affects coexistence,

thus an explicit sequence effect is present. The number of these

‘‘irregular’’ coexistent cases increases with sequence length: this

finding corresponds to the stage-structure effect found in

theoretical ecology [16]. Note, however, that Gause’s principle

in the end holds since there cannot be more sequence pairs than

the number of limiting resources.

To sum up, according to the coexistence condition (Eq. (15)),

the front part of the sequence (head) weighs more concerning the

coexistence than the rear (tail). This is because during replication,

earlier intermediates are present in larger concentrations than

intermediates closer to the final step of the replication (for details,

see Text S1). Consequently, monomers included earlier (i.e. into

the head) are needed in higher concentrations than monomers

incorporated into the tail. Thus the head influences competition

more strongly than the tail.

A special but analytically tractable case is when the head and

tail are homogeneous blocks of identical monomers. If there are at

least

ncrit~q0,415Lr ð1Þ

A-s in a homogeneous block in the head, the sequence behaves

as having A-majority, and can coexist with sequences explicitly

having B-majority (q:rdenotes the closest integer being larger or

equal; the exact value of this constant is:
ln 4{ln 3

ln 2
, for proof, see

Text S1). For the previous example, ncrit~3, the first sequence

behaves as having A-majority and it coexists with the second

sequence, though both have B-majority.

If we visualize the coexistence of such pairs where each

sequence in the sequence space is listed along the horizontal and

vertical axes in the same order, examples of irregular coexistence

can be found as the green lines at the borders of bottom left (‘‘less

A – more B’’) and upper right (‘‘more A – less B’’) domains

(Fig. 4, bottom panel). The longer the sequence gets the more

obvious is the effect and the irregularity: the borders of the two

main domains get more fractured. However, no new coexisting

pairs appear, due to the symmetry, since each irregularly

coexisting case prevents the regular coexistence of its symmetric

pair. However, the number of irregularly coexisting pairs will

increase, as the homogeneous blocks in the ‘‘head’’ of the

sequence (the first &41:5% part) allow for more irregular

coexistence (it is supposed that for long enough sequences it is

not necessary for the head-block to be fully homogeneous, i.e. to

exclusively contain one monomer only). According to Eq. (15), for

Lv6, ncritwL=2, irregular coexistence is not possible as head-

monomers will be in explicit majority (compare internal

structures of panels of Fig. 4).

Discussion

In this paper we have provided the foundations of the hitherto

missing theory of template replication where replication interme-

diates and different sequences are explicitly taken into account.

Under the assumption of fixed stable steady state densities for

resources and competitors Gause’s principle [1] fully rules over

replicator dynamics: coexistence of more replicators than the

number of limiting resources (nucleotides) is not asymptotically

stable. We have found, however, that template and copy (or plus

and minus strands) count as one replicator, since they are

stoichiometrically coupled.

We have found cases of coexistence where Gause’s principle

seems to be violated in that two sequences can coexist with exactly

the same nucleotide composition but adequately different

sequences: this is a version of the stage-structure effect on

coexistence found in theoretical ecology [16]. The part of a

sequence that is replicated earlier has a stronger effect than that

replicated later, since replication intermediates corresponding to

positions in the front are more abundant, hence they influence

competitive dynamics more strongly. We have demonstrated the

trend that the stability of coexistence in terms of the leading

eigenvalue decreases with sequence length. This may be consid-

ered bad news; however we should not forget that a good share of

ribozymes [18] and aptamers [19] is smaller than 100 nucleotides,

for which one still would get acceptable local stability values. (Note

that the smallest known ribozyme consists of 5 nucleotides [20].)

The relevance of our findings can be questioned on the grounds

that ribozyme replicators should have been longer than considered

in this paper. This objection partially loses force if one considers

known ribozyme sizes and the early constraints on replication. We

discuss these issues in turn. The smallest ribozymes known are: (1)

the trinculeotide UUU that catalyses metal ion-dependent

cleavage of RNA [21], (2) the pentanucleotide GUGGC promot-

ing peptide bond formation [22], and (3) the 19 nucleotides long

minimalized hammerhead ribozyme for RNA cleavage [23]. Note

that these ribozymes are devoid of complex secondary structures

that would significantly alter their potential replication kinetics.

Nevertheless, Yarus notes that the stable conformation of a cavity

formed by the single-stranded overhang beyond the three base

pair formed between enzyme and substrates seems to be essential

for catalysis [22]. Regarding the replication issue, it is generally

believed that small RNA replicators preceded long ones, partly

supported by the non-enzymatic replication in the von Kiedrowski

experiments [10]. In fact, the production of a generalized replicase

ribozyme that could replicate long RNA-s is an unsolved problem.

This prompted Ellington [24] to suggest a collectively autocatalytic

set consisting of a modest replicase and a ligase. In such a system

only small fragments would be replicated, followed by ligation to

yield the longer ribozyme structures. Noteworthy in this regard is

the case of the collectively autocatalytic, ligating set of Lehman

[25], in which fragments of lenghts 43, 65, 55 and 52 are used as

pieces in the assembly. It remains to be seen whether these

fragments would stably coexist when replicated, using the right

combination of the resource and structure fitness landscapes. Of

course, we might find in the future ribozymes that could be

assembled from even smaller pieces; for such cases our theory

Figure 4. Coexistence plots of pairs of double-stranded sequences of length L~4 (upper panel) and L~12 (lower panel) using two
monomers (A, B) in case of uniform degradation and identical elongation rate constants and non-complementary pairing. The green
indicates stable coexistence, grey indicates structurally unstable coexistence, i.e. compositional identity (no coexistence in a biological sense), while
pink indicates that there is no coexistence possible. Sequences along the axes are arranged first according to Hamming distance and secondly
according to lexicographic ordering from more A (top and left) to more B (bottom and right). For parameters, see Text S1.
doi:10.1371/journal.pcbi.1003193.g004
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would almost immediately apply. In any case, we predict that

dynamical coexistence of small, functionally important RNA

replicators will be demonstrated in the near future.

Mechanisms for template coexistence have been in the focus of

models of primordial replicator evolution (cf. [6], [26]). Here we

have shown that up to four replicator pairs (plus and minus

sequences) can stably coexist in the same environment without any

special coupling. Thus we argue that for any special theory

showing that N different template replicators can coexist one

might find that in effect up to 4N different replicators may coexist

without explicit representation of the four nucleotides as resources.

This calls for further investigations.

Recently there has been an upsurge in interest in exo/

astrobiology. It is in this context that we have deliberately

presented results for homologous pairing also, even with parallel

orientation of the strands. Although such configurations are not

unheard of even in our world, we wanted to see how such features

would in general affect dynamical coexistence of template

replicators.

We have obtained the fitness landscapes through a distribution

of elongation and degradation rates. The main reason behind this

is tractability: although the 2D structures as phenotypes of RNA

molecules can be calculated for most cases, this does not

automatically yield phenotypes in terms of replication rates. We

are temporarily satisfied with the phenotype richness that our local

rules provided (see Fig. S3). What is more, we predict that the

main finding that Gause rules over competitive coexistence of

template replicators in stable steady state would not be violated

even with more complex fitness landscapes.

Models

Reaction and dynamics
In each experiment, we integrated the system of N sequence

pairs (Eqs. (5)–(9) extended with the dynamics of the rest N{1
pairs) until convergence (when the difference of the concentrations

of any two intermediates at two successive time steps is less than

10{7) or until extinction (if the concentration of an intermediate is

less than 10{7 the corresponding sequences pair is treated as

extinct). We are interested in how many sequence pairs can coexist

maximally on four different monomers. According to Gause’s

principle, one would expect a maximum of two sequence pairs to

coexist, as that yields four different sequences. Since members of

the pairs are stoichiometrically coupled, this should affect the

dynamics, allowing different mechanisms of coexistence.

Let us introduce two complementary sequences:

x1~w1w2 . . . wL{1wL and y1~wLwL{1 . . . w2w1,

where wi[fA,B,C,Dg is the ith is the type of the monomer at

position i. Since y1 is the complement of x1, the overbar denotes

the complementing monomer pair (A<B and C<D, thus

A~B, B~A, etc.). Replication of the sequences happens as y1

builds up stepwise along x1. Using the notation above, the

intermediate complexes during replication are:

x2~
w1w2 . . . wL{1wL

wL

� �
, . . . ,xL~

w1w2 . . . wL{1wL

w2 . . . wL{1wL

� �

y2~
wLwL{1 . . . w2w1

w1

� �
, . . . ,yL~

wLwL{1 . . . w2w1

wL{1 . . . w2w1

� �
:

When the new copy is completed along the other template, the two

strands separate instantaneously yielding x1 and y1. The schema

of the reactions is as follows. Equations (2), (3) and (4) correspond

to the replication of x and y strands and the generation/

degradation of components, respectively.

wLzx1 DCA
kwL

x2, . . . ,w1zxL DCA
kw1

x1zy1 ð2Þ

w1zy1 DCA
kw1

y2, . . . ,wLzyL DCA
kwL

y1zx1 ð3Þ

DA
P

A,B,C,D

A,B,C,D DCCCA
mA,B,C,D

0

xi,yi DCA
dxi ,yi

0,

ð4Þ

where kwi
[fkA,kB,kC ,kDg is the elongation rate constant for the

given monomer at position i~1 . . . L, mj and di denote

degradation rates for the jth type of monomer and for the ith

species. The corresponding dynamics of the intermediates is as

follows (xi, yi denotes concentration of xi and yi, respectively, wi

denotes the concentration of the ith monomer in the sequence,

overbar denotes the complementing pair i~2 . . . L):

_xx1~kw1
w1xLzkwL

wLyL{ kw
L

wLzdx1

� �
x1 ð5Þ

_xxi~kwL{iz2wL{iz2xi{1{ kwL{iz1wL{iz1zdxi

� �
xi, ð6Þ

_yy1~kwL
wLyLzkw1

w1xL{ kw1
w1zdy1

� �
y1 ð7Þ

_yyi~kwi{1
wi{1yi{1{ kwi

wizdyi

� �
yi, ð8Þ

and the dynamics of the monomer R~fA,B,C,Dg, where A

denotes the concentration of monomer A, etc. is:

_RR~P{kRR
XL

i~1

dw
L{iz1

,Rxizdwi ,R
yi

� �
{mRR, ð9Þ

where di,j~1 if i~j, otherwise 0 (Kronecker delta).

The extension of the dynamics for more sequence pairs (i.e., to

more than one copy and template) is straightforward. The

dynamics of the intermediates is independent for each pair and

the dynamics of the monomers provides the coupling between the

equations of different pairs of sequences. Because of the cross-

coupling of equations, no analytical solution was found (some

analytical results will be presented for simplified cases). For the

numerical integration of the ODE system to find steady-state

solutions we have used the CVODE code from the SUNDIALS

project of the Lawrence Livermore National Laboratory [27].

Non-complementary replication and uniform
degradation: An analytical approach

Uniform degradation rates of sequence intermediates allow for a

completely analytic approach. For the positivity test of concentra-

tions, we introduce the following notation for the constants of the

power sum of r~
ffiffiffi
2L
p

:
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W A~
XL

i~1

dwi ,A
rL{i, W B~

XL

i~1

dwi ,B
rL{i ð10Þ

VA~
XL

i~1

dvi ,A
rL{i, VB~

XL

i~1

dvi ,B
rL{i: ð11Þ

The solution of the dynamics of the non-complementary

pairing system with uniform degradation rates for interme-

diates and monomers (di~d and mi~m, respectively, for all

i) provides the concentrations of the last intermediates of x
and y :

x̂xL~

P{mÂ

kAÂ
VB{

P{mB̂

kB B̂
VA

W AVB{W BVA
ð12Þ

ŷyL~

P{mB̂

kB B̂
W A{

P{mÂ

kAÂ
W B

W AVB{W BVA
, ð13Þ

where Â~
d

(r{1)kA

and B̂~
d

(r{1)kB

are the stable steady

state monomer concentrations (for detailed derivation, see

Text S1).

Let us assume that influx can counter degradation. In this case

the condition of coexistence (Q~
P{mÂ

P{mB̂

kB B̂

kAÂ
):

VA v> QVB and W A >
vQW B: ð14Þ

To sum up, coexistence is possible if VA{QVB and W A{QW B

are of different signs.

If the two elongation rate constants of the two monomers are

identical (kA~kB) the parameter Q equals 1, thus the simple criteria

of coexistence are the following:

VA v> VB, and W A >
vW B: ð15Þ

For example, sequences W = ABAAB and V = BABAA are not

coexisting (W A
wW B and VA

wVB), according to Gause’s

principle, as for both sequences A is the limiting resource for

which they compete. On the other hand, W = AAAB and

V = BABA are coexisting (W A
wW B and VA

vVB).

Sequences W = AAABBBB and V = BABBABB demonstrate

an example of irregular coexistence seemingly violating Gause’s

principle, as both have B-majority. Though, according to Eq. (15),

(W A
wW B and VA

vVB), and thus W behaves as having A-

majority.

Supporting Information

Figure S1 Split plot of the coexistence of two non-
complementary sequence pairs with antiparallel strand
polarity (4 sequences per pair) of length L~4. Lower left

half: coexistence is marked by green, extinction of the first

sequence pair by red and extinction of the second sequence pair by

blue. Upper right half: stability of coexistence according to the

leading eigenvalue (red indicates more stable, blue indicates less

stable coexistence, white indicates extinction of one of the

sequence pairs). The upper triangle shows the stability measures

of the sequences pairs from the lower one (mirrored and rotated

900). From the point of view of coexistence two pairs (e.g.

ABCA-BDAB, BBDC-DCAA) and their reverse (BBDC-DCAA,

ABCA-BDAB) are not fully equivalent. The reason for this is that

the degradation rates are assigned to sequences, always in the

same order within a set (this means that the same rates are

assigned to e.g. ABCA and BBDC in the two cases, respectively).

Despite this difference the plot is almost symmetrical since

degradation rates are taken from a narrow distribution. The

parameters are the same as in Fig. 2, for details, see the first section

of Text S1.

(TIF)

Figure S2 Coexistence plots of pairs of double-stranded
sequences of length L~5 (upper panel) and L~11 (lower
panel) using two monomers (A, B) in case of uniform
degradation and identical elongation rate constants and
non-complementary pairing. The green indicates stable

coexistence, grey indicates structurally unstable coexistence, i.e.

compositional identity (no coexistence in a biological sense),

while pink indicates that there is no coexistence possible.

Sequences along the axes are arranged first according to

Hamming distance and secondly according to lexicographic

ordering from more A (top and left) to more B (bottom and

right). The parameters are the same as in Fig. 4, for details, see

the first section of Text S1.

(TIF)

Figure S3 Correlation plot of the fitness landscape as a
function of Hamming distances for sequence pairs of
length L~8.
(TIF)

Table S1 Analysis of coexistence of N non-complemen-
tary pairs of sequences of length L~4 according to
method M1. Second column shows the number of scanned

sequences (and the amount as a fraction of the whole combined

sequence space). The third column shows the fraction of coexisting

sequences in the scanned domain, i.e. the probability of

coexistence of random sequence groups of size N with a given

parameter set. (S) indicates that all cases of coexistence are locally

asymptotically stable. The fourth column shows the average of the

leading eigenvalues (if there is coexistence) as a measure of

stability.

(XLS)

Table S2 Analysis of coexistence of N non-complemen-
tary pairs of length L~4 according to method M2. Second

column shows the number of scanned sequences (and the amount

as a fraction of the combined sequence space). The third column

shows the fraction of coexisting sequences averaged over the

scanned sequence groups and over 1000 random degradation rate

sets for intermediates (for parameters, see previous section of Text

S1).

(XLS)

Table S3 Examples of coexistence for L~20.
(XLS)

Table S4 Examples of coexistence for L~25.
(XLS)

Table S5 Examples of coexistence for L~30.
(XLS)
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Text S1 Supporting text with sections on 1) Param-
eters for methods M1, M2, M3 and M4; 2) Anal-
ysis of non-complementary pairing with antiparallel
polarity; 3) Analysis and analytical results of non-
complementary pairing and uniform degradation
rates; 4) Proofs; 5) Discussion of the fitness
landscape; 6) Examples of coexistence of longer
sequences.
(PDF)
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12. Szathmáry E, Gladkih I (1989) Sub-exponential growth and coexistence of non-

enzymatically replicating templates. Journal of Theoretical Biology 138: 55–58.

13. Szathmáry E (2003) Why are there four letters in the genetic alphabet? Nature

Reviews, Genetics 4: 995–1001.

14. Megger DA, Müller J (2009) Silver(I)-Mediated Cytosine Self-Pairing is

Preferred Over Hoogsteen-Type Base Pairs with the Artificial Nucleobase 1,3-

Dideaza-6-Nitropurine. Nucleosides, Nucleotides and Nucleic Acids 29: 27–38.

15. Matsuda S, Fillo JD, Henry AA, Rai P, Wilkens SJ, et al. (2007) Efforts toward

Expansion of the Genetic Alphabet: Structure and Replication of Unnatural

Base Pairs. Journal of the American Chemical Society 129: 10466–10473.
16. Fujiwara M, Pfeiffer G, Boggess M, Day SJW (2011) Coexistence of competing

stage-structured populations. Scientific Reports 1: 107.
17. Swetina J, Schuster P (1982) Self-replication with errors. A model for

polynucleotide replication. Biophysical Chemistry 16: 329–345.

18. Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annual Review of
Biochemistry 73: 791–836.

19. Lee JF, Hesselberth JR, Meyers LA, Ellington AD (2004) Aptamer Database.
Nucleic Acids Research 32: D95–D100.

20. Chumachenko NV, Novikov Y, Yarus M (2009) Rapid and simple ribozymic
aminoacylation using three conserved nucleotides. Journal of the American

Chemical Society 131: 5257–5263.

21. Kazakov S, Altman S (1992) A trinucleotide can promote metal ion-dependent
specific cleavage of RNA. Proceedings of the National Academy of Sciences of

the United States of America 89: 7939–7943.
22. Yarus M (2011) The meaning of a minuscule ribozyme. Philosophical

Transactions of the Royal Society B 366: 2902–2909.

23. Uhlenbeck OC (1987) A small catalytic oligoribonucleotide. Nature 328: 596–
600.

24. Meyer AJ, Ellefson JW, Ellington AD (2012) Abiotic self-replication. Accounts of
Chemical Research 45: 2097–2105.

25. Vaidya N, Manapat M, Chen IA, Xulvi-Brunet R, Hayden EJ, et al. (2012)
Spontaneous network formation among cooperative RNA replicators. Nature

491: 72–77.
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