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Abstract. Serrated polyposis (SPP) is characterized by the 
development of multiple serrated polyps and an increased 
predisposition to colorectal cancer (CRC). In the present study, 

we aimed to characterize, at a clinical and molecular level, 
a cohort of SPP patients with or without a family history of 
SPP and/or polyps/CRC (SPP-FHP/CRC). Sixty-two lesions 
from 12 patients with SPP-FHP/CRC and 6 patients with 
sporadic SPP were included. The patients with SPP-FHP/CRC 
presented with an older mean age at diagnosis (p=0.027) 
and a more heterogeneous histological pattern of lesions 
(p=0.032) than the patients with sporadic SPP. We identified 
two molecular forms of SPP-FHP/CRC, according to the 
preferential location of the lesions: proximal/whole-colon 
or distal colon. Mismatch repair (MMR) gene methylation 
[mutS homolog 6 (MSH6)/mutS homolog 3 (MSH3)] or 
loss of heterozygosity (LOH) of D2S123 (flanking MSH6) 
were detected exclusively in the former (p=3.0x10-7), in 
most early lesions. Proximal/whole-colon SPP-FHP/CRC 
presented a higher frequency of O-6-methylguanine-DNA 
methyltransferase (MGMT) methylation/LOH, microsatel-
lite instability (MSI) and Wnt mutations (19/29 vs. 7/17; 
16/23 vs. 1/14, p=2.2x10-4; 15/26 vs. 2/15, p=0.006; 
14/26 vs. 4/20, p=0.02) but a lower frequency of B-raf 
proto-oncogene, serine/threonine kinase (BRAF) mutations 
(7/30 vs. 12/20, p=0.0089) than the distal form. CRC was 
more frequent in cases of Kirsten rat sarcoma viral oncogene 
homolog (KRAS)-associated proximal/whole-colon SPP-FHP/
CRC than in the remaining cases (4/4 vs. 1/8, p=0.01). Thus, 
SPP-FHP/CRC appears to be a specific entity, presenting two 
forms, proximal/whole-colon and distal, which differ in the 
underlying tumor initiation pathways. Early MGMT and MMR 
gene deficiency in the former may underlie an inherited suscep-
tibility to genotoxic stress.

Introduction

Serrated polyposis (SPP), which was previously known as hyper-
plastic polyposis, is characterized by the presence of multiple 
colorectal epithelial polyps with a serrated architecture, termed 
serrated (SE) polyps, as well as an increased predisposition to 
colorectal cancer (CRC) (1-3). SE polyps differ from adeno-
matous (AD) polyps and are comprised of various lesions, 
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namely: hyperplastic polyps (HPs), non-dysplastic lesions with 
normal proliferation and architecture but elongated crypts with 
a saw-toothed appearance; sessile serrated adenomas (SSAs), 
lesions that present abnormal proliferation and architecture 
and may or may not include dysplasia; and traditional serrated 
adenomas (TSAs) that are dysplastic polyps with prominent 
serration (1,4-6). The presence of multiple SE polyps has 
also been associated with other hereditary conditions, namely 
serrated pathway syndrome or Jass syndrome (7-9).

It has been proposed that these SE lesions arise through the 
serrated pathway rather than through the adenoma-carcinoma 
sequence pathway (7,10-13). It has also been suggested that the 
HP is the precursor lesion in this pathway, with SSA as an 
intermediate step which then progresses to an adenocarcinoma 
with or without microsatellite instability (MSI or MSS, respec-
tively). At the molecular level, SE lesions associated with those 
hereditary serrated syndromes share some genetic alterations, 
namely the presence of B-raf proto-oncogene, serine/threo-
nine kinase (BRAF) mutations and the methylator phenotype, 
termed CpG island methylator phenotype (CIMP) (14-16), 
although these are also common to the sporadic SE lesions.

However, the analysis of SPP lesions has revealed specific 
features which are distinct from the SE lesions occurring in a 
sporadic context; accordingly, in SPP, HPs, TSAs and CRC are 
preferentially located in the proximal colon, i.e. proximal to 
the splenic flexure (17-19). Moreover, patients with SPP have 
previously been found to present extensive DNA methylation 
in the normal mucosa of the proximal colon (20), suggesting 
the involvement of widespread gene promoter methyla-
tion (CIMP) (7,14,21). This phenotype appears to be related to 
MutL homolog 1 (MLH1) methylation, which has been associ-
ated with MSI status, rather than O-6-methylguanine-DNA 
methyltransferase (MGMT) methylation. However, MSI appears 
to be less frequent in SPP lesions than in sporadic lesions (14,22). 
Similarly, SPP lesions also exhibited a lower frequency of 
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations 
when compared with sporadic SE lesions (21,22). However, it 
was also found that most adenomas and CRCs from patients 
with SPP exhibited a classic morphology and that few of these 
had BRAF or KRAS mutations, although SE lesions presented 
a high frequency of mutations in these genes (22). Previous 
research has suggested that tumorigenesis associated with 
SPP may not necessarily follow the serrated pathway and may 
follow an alternate pathway, involving TSAs and tubulovillous 
adenomas (TVAs) as intermediate lesions that progress to MSS 
adenocarcinomas with KRAS mutations or even a traditional 
pathway with adenomatous polyposis coli (APC) mutations as 
the initiating events (10).

A review of published case studies of SPP reported 
that approximately 10-50% of patients with SPP have been 
described as having a family history of CRC (23). In agreement 
with these findings, several studies have described an increased 
risk of CRC in the first-degree relatives of probands diagnosed 
with SPP compared with the general population (2,17,18,24-28). 
These studies have contributed to the notion that there are SPP 
cases where heredity may play a role in the development of CRC 
and/or polyps. Indeed, another review on this subject reinforces 
the concept that familial SPP exists and also the importance of 
defining the genetic basis of familial SPP and of studying these 
families in a systematic manner (29).

Thus, in the present study, we aimed to characterize, at 
the clinical and molecular level, SE and AD lesions from a 
cohort of patients with SPP who had been stratified into two 
groups: patients with or without a family history of SPP and/or 
polyps/CRC in first-degree relatives, in order to elucidate the 
information available regarding this new SPP entity with an 
apparent hereditary component.

Patients and methods

Patients and specimens. Eighteen patients diagnosed with SPP 
according to the WHO diagnostic criteria (1) were included 
in this study: 12 patients with SPP associated with a family 
history of SPP and/or polyps/CRC (multiple or diagnosed at 
a young age) in first-degree relatives (designated herein as 
SPP-FHP/CRC) (11 index and one affected relative diagnosed 
simultaneously with the index patient), and 6 index patients 
without a family history of SPP/polyps/CRC (designated 
herein as sporadic SPP) from the familial colorectal cancer 
registry of the Portuguese Institute of Oncology of Lisbon 
Francisco Gentil (Lisbon, Portugal). No evidence of SPP 
and/or polyps/CRC was found in the first-degree relatives of 
the patients with sporadic SPP, either by regular colonoscopy 
examination or by the absence of symptoms. The patients 
were classified as presenting a family history of polyps in 
first-degree relatives (5/11), if at least one relative had been 
diagnosed with polyps at or under 52 years of age or with 
>10 polyps. We cannot exclude the possibility that some of 
these families, namely PH4 or PH6, may have Jass syndrome 
instead of SPP, due to the presence of a mixture of AD and SE 
lesions (7,9). All patients had developed >10 lesions prior to the 
date of recruitment.

Sixty-two lesions were included here: 1 hyperplastic 
colonic mucosa (HCM), 25 HPs, 8 TSAs, 11 SSAs, 1 adeno-
matous/serrated (AD/S) carcinoma (Ca), 1 serrated carcinoma 
(SCa), 8 tubular adenomas (TAs), 2 TVAs and 5 Ca. Two 
normal colonic mucosa (NCM) samples were also included in 
this study. Fresh colorectal lesions were obtained from colec-
tomy or colonoscopy specimens from patients who underwent 
surgery or colonoscopy in the Portuguese Institute of Oncology 
of Lisbon Francisco Gentil. Sections from corresponding 
areas of the specimens submitted for diagnosis were divided 
into two parts: one was snap frozen in liquid nitrogen imme-
diately after resection, while the other was formalin-fixed and 
paraffin-embedded.

Histological characterization, according to the WHO 
guidelines (1), was performed by experienced pathologists 
(R.F. and P.C.). The study was conducted in accordance with 
local ethical standards and in agreement with the Helsinki 
Declaration of 1975, as revised in 1983. Informed consent for 
diagnosis and additional investigational studies, which may 
result in improving the knowledge about the pathogenesis 
of the disease, was obtained from patients included in this 
study. Moreover, biological material used for DNA isola-
tion was obtained from archival sections from colorectal 
adenomas and carcinomas specimens, submitted for diagnosis 
(histological classification) and derived from patients who 
underwent surgery or colonoscopy in the Portuguese Institute 
of Oncology of Lisbon Francisco Gentil; only somatic analysis 
was performed and samples are truly anonymized.
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Methods
DNA isolation. DNA was isolated from fresh-frozen and/
or paraffin-embedded tumor tissue and matched normal 
tissue. DNA was isolated from the paraffin-embedded tissues 
by proteinase K digestion, which was followed by phenol/
chloroform extraction and ethanol precipitation, as previously 
described (30). DNA from the fresh frozen tissue was isolated 
by proteinase K digestion, followed by precipitation with a satu-
rated NaCl solution and ethanol as previously described (31).

Somatic mutation analysis of the APC gene. APC mutation 
analysis was performed using the protein truncation test (PTT) 
for exon 15, as previously reported (30). Briefly, APC exon 15 
was divided into four overlapping fragments that were ampli-
fied by polymerase chain reaction (PCR) and, subsequently, 
in vitro transcription and translation were performed using a 
TnT T7-coupled reticulocyte lysate system (Promega, Madison, 
WI, USA). In negative cases, the mutational cluster region was 
subsequently analyzed by automated sequencing in order to 
search for missense mutations. For the samples obtained from 
paraffin-embedded tissues, APC mutations were analyzed by 
single-strand conformational polymorphism (SSCP) or by 
automated sequencing (32).

Somatic mutation analysis of catenin beta 1 (CTNNB1). 
Genomic DNA from each tumor sample was amplified by 
PCR for SSCP analysis of exon 3 of the CTNNB1 gene. The 
amplified products were analyzed in a mutation detection 
enhancement (MDE) gel and visualized by silver staining (33).

Somatic mutation analysis of the AXIN2 gene. AXIN2 
mutation analysis was performed by amplification of a repeti-
tive sequence containing the (G)7, (C)6 and (C)5 tracts (where a 
considerable mutation frequency was described) (34), followed 
by electrophoresis in 7% polyacrilamide gel containing 
formamide and urea and visualization by silver staining (33).

Somatic mutation analysis of BRAF, KRAS and 
neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS) 
genes. BRAF (exon 15: forward primer 5’-TCATAATGCTTG 
CTCTGATAGGA-3’; reverse primer 5’-GGCCAAAAATTT 
AATCAGTGGA-3’, KRAS (exon 2: forward primer 5’- GTG 
TGACATGTTCTAATATAGTCA-3’; reverse primer 5’- GAA 
TGGTCCTGCACCAGTAA) (35) and NRAS (exons 2 and 
3-primers were kindly provided by Dr Branca Cavaco), were 
amplified by PCR. The DNA samples were amplified in a 
standard PCR buffer (Invitrogen, Waltham, MA, USA). 
Mutations in these genes were analyzed by automated 
sequencing.

Sequencing analysis. After amplification, PCR prod-
ucts were purified with Illustra GFX™ PCR DNA and Gel 
Band purification kit (GE Healthcare, Little Chalfont, UK) 
according to the manufacturer's instructions. Sequencing 
reactions were performed using the BigDye Terminator Cycle 
Sequencing kit and the respective products were analyzed on 
the ABI PRISM™ 310 Genetic Analyzer (both from Applied 
Biosystems, Foster City, CA, USA) using Sequencing Analysis 
software. The pathogenic relevance of missense variants was 
evaluated by comparing aminoacid sequences using PolyPhen 
software (http://genetics.bwh.harvard.edu/pph/) and SIFT 
software (http://sift.jcvi.org/).

MSI/loss of heterozygosity (LOH) analysis. MSI status was 
analyzed using the Bethesda panel of reference markers (36). 
Each colonic lesion and paired normal DNA were amplified 

by PCR for each of the microsatellite markers and analyzed 
in the ABI Prism™ 310 Genetic Analyzer using GeneScan 
software (Applied Biosystems). The lesions were classified as 
MSI-high (H) when showing MSI in two or more of the five 
markers, MSI-low (L) when MSI was detected in one of the 
markers, and MSS when none of the markers revealed insta-
bility (37). In cases exhibiting MSI-L, BAT-40 and MYCL 
markers were also analyzed and the lesions were classified 
as MSI-H when MSI was detected in >40% of the 7 markers 
analyzed; otherwise they were classified as MSI-L, as previ-
ousy described (37).

A total of 4 dinucleotide markers f lanking MGMT 
(D10S1703, D10S1676, D10S169 and D10S1651) were analyzed 
for each colonic lesion and paired normal DNA in order to 
evaluate the presence of LOH. Each lesion was subsequently 
scored as demonstrating LOH if the ratio between the areas of 
the normal and the tumor alleles was >1.5 or <0.67.

Regarding the D5S346 marker, LOH was evaluated (and 
confirmed using the D5S1965 marker) as indicative of loss of 
the APC gene. LOH of D2S123 and D17S250 was also evalu-
ated as described above.

Methylation analysis. The analysis of MGMT and 
mismatch repair (MMR) gene promoter methylation was 
performed by methylation-specific multiplex ligation-depen-
dent probe amplification (MS-MLPA) (38) using the SALSA 
MS-MLPA KIT ME011 MMR, (MRC-Holland, Amsterdam, 
The Netherlands). MS-MLPA reactions were performed as 
described by the manufacturer. The samples were analyzed 
using GeneScan software on the ABI Prism™ 310 Genetic 
Analyzer (Applied Biosystems). The results were normal-
ized using MRC Coffalyser MLPA-DAT software v.9.4 
(MRC-Holland). A ratio of 0.15 or higher, corresponding to 
15% of methylated DNA, was indicative of promoter methyla-
tion as described elsewhere (32,39).

Statistical analysis. Fisher's exact test (using a two-sided 
or 2x3 table) and the χ2 test (http://www.quantitativeskills.
com/sisa/index.htm) were used to compare categorical 
variables, and the Student's t-test (http://www.physics.csbsju.
edu/stats/t-test.html) was used to compared continuous 
variables. A p-value <0.05 was considered to indicate a 
statistically significant difference.

Results

Clinical characterization. Table I summarizes the clinical 
features of the 18 patients included in this study, stratified 
into two groups: SPP-FHP/CRC and sporadic SPP. The 
average age at diagnosis (i.e. the age at which they presented 
symptoms) among our cohort of SPP patients (n=18) was 
55±11 years (range 25-80); however, it was significantly higher 
in the SPP-FHP/CRC group than in the sporadic SPP group 
[60±10 years (range 41-80) vs. 46±15 years (range 25-68), 
p=0.027 (Student's t-test)] (Table II).

The number of lesions was higher in the SPP-FHP/CRC 
group than in the sporadic SPP group (threshold, ≥40 lesions): 
[10/12 (83%) vs. 3/6 (50%) patients, respectively]. With respect 
to histological features, AD lesions were more frequent in the 
SPP-FHP/CRC group than in the patients with sporadic SPP 
[10/12 (83%) vs. 1/6 (17%), p=0.013]. Moreover, the patients 
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with SPP-FHP/CRC presented a more heterogeneous spec-
trum of lesions in comparison with the patients with sporadic 
SPP. In agreement with these findings, the presence of three or 
more types of lesions was more frequent in the former group 
[9/12 (75%) vs. 1/6 (17%), p=0.032].

Regarding the location of the lesions in each patient, we 
observed that whereas some of the patients with SPP presented 
lesions dispersed uniformly throughout the whole colon, other 
patients with SPP presented a predominance of lesions in one 
of the two major segments, proximal or distal. Therefore, a 
prevalence of proximal or distal location of the lesions was 
considered when at least 70% of the lesions (majority SE) 
were located in the proximal or distal colon, respectively. In 
accordance, a preferential proximal location was observed in 
3/12 (25%) of the SPP-FHP/CRC patients and in none of the 
patients with sporadic SPP (0/5). A preferential distal location 
was observed in 3/5 (60%) of the sporadic SPP patients and in 
5/12 (42%) of the patients with SPP-FHP/CRC.

Molecular characterization. The molecular alterations 
found in each SPP-FHP/CRC lesion, namely mutations in 
RAS/RAF and Wnt signaling genes, MSI, MGMT and MMR 
methylation, LOH of MGMT locus and LOH at D2S123 and 
D17S250 markers, are presented in Table III. The spectra of 
these molecular alterations led us to observe that the somatic 
mutation/promoter hypermethylation spectra differs between 
those patients whose lesions were preferentially located in the 
proximal colon, or distributed throughout the whole colon, and 
those whose lesions were preferentially located in the distal 
colon, as shown in Table IV. This led us to stratify the patients 
with SPP-FHP/CRC into two groups, proximal/whole-colon 
and distal SPP-FHP/CRC.

Although the ratio between the different types of lesions 
in the two groups, proximal/whole-colon and distal, do not 
match, i.e. in the former a higher proportion of AD lesions 
have been analyzed [in a recent study, individuals with 
large and right-sided SE lesions also had significantly more 
AD lesions compared with those without such types of SE 
lesions (40)], we found differences with respect to the muta-
tion spectrum, even considering only HPs or SSAs, which have 
been analyzed in both groups. Accordingly, HPs and SSAs 
from patients with proximal/whole-colon SPP-FHP/CRC 
presented RAS/RAF gene mutations less frequently [2/6 (33%) 
and 1/7 (14%) vs. 14/14 and 2/2, respectively, p=0.003 
and p=0.08] whereas MMR gene methylation or LOH of 
D2S123 [flanking mutS homolog 6 (MSH6)] occurred more 
frequently (4/4 and 2/2 vs. 0/7 and 0/2, respectively, p=0.003 
and p=0.33), when compared with the same type of lesions 
from distal SPP-FHP/CRC patients (Table V). Moreover, SE 
and AD lesions presented a similar spectrum of molecular 
alterations, especially among each patient. The exception were 
BRAF mutations that were significantly more frequent in SE 
lesions [17/36 (47%) vs. 2/14 (14%), p=0.05] (Table V). For 
each patient, either presenting proximal/whole-colon or distal 
SPP-FHP/CRC, the spectra of somatic molecular alterations 
detected in the lesions were similar regardless of the loca-
tion of each specific lesion. For example, in a patient with a 
prevalence of proximal lesions, these presented a specific 
mutation pattern that was shared by the few distal lesions that 
were analyzed from the same patient and different from the 
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proximal lesions from patients with a predominance of distal 
lesions and vice versa (Table IIIA).

The abovementioned findings led us to analyze the molec-
ular data from the patients with SPP-FHP/CRC, who were 
stratified into two groups: proximal/whole-colon and distal 
SPP-FHP/CRC.

Proximal/whole-colon vs. distal SPP-FHP/CRC. Mutations 
in the Wnt genes, as well as MSI, were significantly 
more frequent in the patients with proximal/whole-colon 
SPP-FHP/CRC than in the patients with distal SPP-FHP/CRC 
[14/26 (54%) vs. 4/20 (20%), p=0.02; 15/26 (58%) vs. 2/15 
(13%), p=0.0059] (Table IV). Interestingly, among the 
proximal/whole-colon SPP-FHP/CRC samples, Wnt gene 
mutations were significantly more frequent in the SE lesions 
than in the AD lesions [12/16 (75%) vs. 2/10 (20%), p=0.0091]. 
In the SE lesions, Wnt gene mutations, as well as MSI, were 
more frequent in TSAs (4/4 and 3/4) and in SSAs (6/7 and 6/7) 
and rarely detected in HPs (1/4 and 1/5) (p=0.02 and p=0.017, 
respectively) (Table V).

Similarly, LOH of the MGMT locus and MGMT meth-
ylation were also more frequent in lesions from the patients 
with proximal/whole-colon SPP-FHP/CRC, in comparison 
with lesions from the patients with distal SPP-FHP/CRC 
[16/23 (70%) vs. 1/14 (7%), p=2.2x10-4; 19/29 (65%) vs. 7/17 
(41%), p=0.1, respectively] (Table IV). The same difference 
was observed even considering SE lesions only (Table V). 
In particular, MGMT methylation was detected in all HP 
lesions (6/6) from proximal/whole-colon SPP-FHP/CRC, in 
contrast to the lower frequency observed in HPs from distal 
SPP-FHP/CRC (4/11, 36%) (p=0.017).

Interestingly, among lesions which were deemed informa-
tive for methylation analysis and loss of LOH of D2S123, the 
presence of MMR gene methylation or of the D2S123 LOH 
(flanking MSH6) was only observed in proximal/whole-colon 
SPP-FHP/CRC lesions [17/18 (94%) vs. 0/11, p=3.0x10-7]. 
These alterations were found in the majority of early lesions 
and in all histological types (Tables IIIA and IV). It is of 
note that MLH1 methylation was not detected in any of the 
SPP-FHP/CRC lesions, being observed only in one lesion from 

the sporadic SPP group (Table IIIB). Moreover, it is also of 
note that except for one lesion, MSI, either MSI-L or MSI-H 
was detected only in dinucleotide microsatellite markers.

By contrast to the abovementioned molecular alterations, 
in the SPP-FHP/CRC samples, BRAF and KRAS mutations 
were more frequent in the lesions located in the distal colon 
than those located in the proximal/whole-colon [12/20 (60%) 
vs. 7/30 (23%), p=0.0089 (χ2 test) and 6/20 (30%) vs. 5/32 (16%), 
respectively], although the latter was not statistically signifi-
cant (Table IV). Considering only the SE lesions, mutations in 
the RAS/RAF genes were detected in all the lesions from the 
distal SPP-FHP/CRC, namely in all HPs (14/14), HCM (1/1) 
and in one NCM (Table IIIA), but in only 8/19 (42%) lesions 
from the proximal/whole-colon SPP-FHP/CRC (p=1.3x10-4).

With respect to KRAS/BRAF mutations, two groups 
of patients were observed among those with either prox-
imal/whole-colon or distal SPP-FHP/CRC: one group whose 
lesions presented KRAS mutations (PH4, PH5, PH7 and PH14) 
and another group, whose lesions presented BRAF muta-
tions (PH3, PH8, PH19 and PH33) (Table IIIA). One patient 
presented either BRAF- or KRAS-positive lesions (family 
PH6). Notably, CRC was more frequent in the patients with 
proximal/whole-colon SPP-FHP/CRC associated with KRAS 
mutations than in the remaining patients [4/4 vs. 1/8 (12%), 
p=0.01] (Tables I and IIIA).

Discussion

SPP-FHP/CRC and sporadic SPP differ at the clinical level. 
The patients with SPP-FHP/CRC and sporadic SPP differed 
with respect to clinical and histological features. The older mean 
age at diagnosis (60 vs. 46 years old) of the former may underlie 
a slower process of tumorigenesis. This is in contrast to that 
which has been observed in relation to other hereditary CRC 
syndromes, namely in familial adenomatous polyposis and in 
Lynch syndrome, which are diagnosed at an earlier age (usually 
≤50 years old) compared to the age at diagnosis in patients with 
sporadic CRC (>60 years old) (32,41). The presence of a more 
heterogeneous histological pattern of lesions in patients with 
SPP-FHP/CRC, associated with the concomitant presence of 

Table II. Comparison between clinical features in patients with sporadic SPP and those with SPP-FHP/CRC.

Clinical feature SPP-FHP/CRC Sporadic SPP p-value

Age at diagnosis (years) 60±10 46±15 0.027 (Student's t-test)

Preferential location of lesions
  Whole colon 4/12 (33%) 2/5 (40%) NS
  Proximal 3/12 (25%) 0/5 NS
  Distal 5/12 (42%) 3/5 (60%) NS

≥40 lesions 10/12 (83%) 3/6 (50%) NS

AD lesions 10/12 (83%) 1/6 (17%) 0.013a

≥3 types of lesions 9/12 (75%) 1/6 (17%) 0.032a

Statistically significant values are shown in bold. NS, non-significant (p>0.05). aFisher's exact test (two-sided). AD, adenomatous; SPP, serrated pol-
yposis; SPP-FHP/CRC, SPP associated with a family history of SPP and/or polyps/colorectal cancer (CRC) (multiple or diagnosed at a young age) in 
first-degree relatives.
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both SE and AD lesions, compared with the lesions in patients 
with sporadic SPP, suggests the involvement of other pathways 
in the tumorigenic process associated with SPP-FHP/CRC, in 
addition to the serrated pathway of tumorigenesis.

Molecular alterations involved in tumor initiation distinguish 
between two forms of SPP-FHP/CRC: proximal/whole-colon 
and distal. Two forms of SPP-FHP/CRC appear to exist 
according to the preferential location of the lesions in the 
colon and rectum, proximal/whole-colon and distal, which 
differ with respect to the somatic events involved in tumor 
initiation. LOH and methylation of MGMT, MMR gene 
methylation and/or LOH of D2S123 and Wnt gene mutations 
appear to be the major somatic events that lead to tumor initia-
tion in proximal/whole-colon SPP-FHP/CRC. By contrast, in 
distal SPP-FHP/CRC, KRAS or BRAF mutations were found 
in the majority of early lesions and thus seem to play a major 
role in tumor initiation.

We have previously shown that distinct Wnt gene muta-
tions are selected in sporadic and hereditary CRC according 
to tumor location, i.e. proximal or distal colon (33,42). We and 
others have also proposed that this finding is the result of the 
selection of a specific level of β-catenin signaling, optimal 
for tumor formation, which differs along the colorectum, thus 
contributing to differences in lesion distribution in specific 
types of CRC, such as Lynch syndrome (42,43). Proving this, 
variable gradients in the number of stem cells and physi-
ological Wnt activity have been demonstrated throughout the 
length of the intestinal tract (44). Thus, in a similar fashion, 
tumorigenic pathways may also differ between proximal and 
distal SPP-FHP/CRC.

MGMT and MMR alterations, followed by Wnt gene 
mutations, are involved in the initiation of proximal/whole-
colon SPP-FHP/CRC. The exclusive detection of MMR 

gene methylation (mainly of MSH6) and/or LOH of D2S123 
(flanking MSH6) in proximal/whole-colon SPP-FHP/CRC, 
in the majority of early lesions and in all histological types, 
appears to suggest that the MMR system plays an important 
role in the initiation of proximal/whole-colon SPP-FHP/CRC, 
which is in agreement with the high frequency of MSI (either 
MSI-L or MSI-H) in these lesions (58%). Interestingly, MMR 
methylation and, consequently, MMR deficiency were not 
associated with MLH1 methylation as has been previously 
observed in sporadic SE lesions located in the proximal 
colon (7), but rather with MSH6 or mutS homolog 3 (MSH3) 
methylation. Accordingly, a high frequency of LOH of the 
MSH3 locus has been recently described in sporadic MSI-L 
CRC, suggesting that the impairment of other MMR genes 
such as MSH3 or MSH6, as observed in the present study, 
are involved in an MSI-L pathway, instead of MLH1, which 
is usually associated with the MSI-H serrated pathway (45). 
The detection of MSI almost exclusively in dinucleotide 
microsatellite markers is in agreement with this finding, since 
this type of MSI has been described to be a characteristic 
feature of MSI-L tumors (46). Interestingly, in the present 
study, MSI was detected more frequently at D2S123 followed 
by D17S250.

MGMT methylation and LOH of the MGMT locus were 
the most frequent alterations in proximal/whole-colon 
SPP-FHP/CRC, and MGMT methylation was detected in all 
HPs, commonly known as the precursor lesion (12). Therefore, 
we suggest that, similarly to MMR alterations, LOH and meth-
ylation of MGMT may also be early events in SPP-FHP/CRC 
proximal/whole-colon tumorigenesis. Notably, among the 
17 lesions informative for both MMR and MGMT altera-
tions in this form of SPP-FHP/CRC, in 16 (94%) both events 
were noted (Table IIIA). It is known that MGMT deficiency 
results in the inability to repair O6-methylguanine in the 
DNA, caused by genotoxic stress, which, once accumulated, 

Table IV. Molecular characterization of lesions from patients with SPP-FHP/CRC, stratified by preferential location of the 
lesions in each patient.

 Preferential location of lesions
 ------------------------------------------------------------------------------------------
Molecular characterization Proximal/whole-colon Distal colon p-value

Total Wnt gene mutations 14/26 (54%) 4/20  (20%) 0.02b

Total RAS/RAF gene mutations 12/30 (40%) 18/20  (90%) 3.7x10-4b

  BRAF gene mutations 7/30 (23%) 12/20  (60%) 0.0089 (χ2 test)
  KRAS gene mutations 5/32 (16%) 6/20  (30%) NS

MSIa 15/26 (58%) 2/15  (13%) 0.0059b

MMR gene methylation and/or LOH of D2S123 17/18 (94%) 0/11   3.0x10-7b

MGMT gene methylation 19/29 (65%) 7/17  (41%) NS

LOH of MGMT locus 16/23 (70%) 1/14  (7%) 2.2x10-4b

aExcept for one lesion, microsatellite instability (MSI), either microsatellite instability-low (MSI-L) or microsatellite instability-high (MSI-H), was 
detected only in dinucleotide microsatellite markers. bFisher’s exact test (two-sided). SPP, serrated polyposis; CRC, colorectal cancer; SPP-FHP/CRC, 
SPP associated with a family history of SPP and/or polyps/CRC (multiple or diagnosed at a young age) in first-degree relatives; MMR, mismatch 
repair; LOH, loss of heterozygosity; MGMT, O-6-methylguanine-DNA methyltransferase. Statistically significant values are shown in bold. NS, non-
significant (p>0.05).
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leads to the translocation of the MutSα complex (MSH2 
and MSH6) into the nucleus, thus increasing GT mismatch 
binding activity (47). This may lead to a selective pressure for 
molecular changes that impair MSH2 or MSH6 function such 
as promoter hypermethylation or LOH, thus explaining the 
association between the latter and MGMT methylation in the 
same early SPP-FHP/CRC lesions. Thus, we suggest a primary 
role for MGMT methylation, O6-methylguanine errors and 
MMR alterations in tumor initiation of proximal/whole-colon 
SPP-FHP/CRC. We further suggest that this molecular signa-
ture may indicate that a germline defect in the mechanisms 
regulating the response to genotoxic stress underlies the 
genetic susceptibility in this form of SPP-FHP/CRC.

In the present study, the higher frequency of Wnt gene muta-
tions in proximal SPP-FHP/CRC, particularly in SE lesions, 
when compared with the AD lesions, suggests that this pathway 
also plays an important role in this form of SPP-FHP/CRC, 

especially in the transition to SE adenoma since this frequency 
was significantly higher in TSA and SSA than in HP and HCM 
(p=8.4x10-4). In agreement, CTNNB1 or AXIN2 mutations, 
that are selected almost exclusively in proximal colorectal 
tumors with MSI (33), were detected in 4/14 (28%) TSAs and 
SSAs from proximal/whole-colon SPP-FHP/CRC. Moreover, 
among APC nonsense and missense mutations, the majority 
(7/8; 88%) were of the transition type which is a characteristic 
feature of cells presenting MMR defects (48-50).

The occurrence of LOH of D2S123 and/or D17S250 dinucle-
otide marker in the present study [17/48 (35%) and 7/51 (14%), 
respectively], has been previously described in Paneth cell 
metaplasia, a condition that is commonly observed in the small 
intestine and the proximal colon of elderly individuals (51,52). 
Therefore, MGMT deficiency may make these cells more 
exposed to genotoxic stress, thus leading to molecular changes 
in Wnt genes and consequently to commitment to Paneth cell 

Figure 1. Proposed pathways for colorectal tumorigenesis in proximal/whole-colon (upper panel) and distal serrated polyposis (SPP) associated with a family 
history of SPP and/or polyps/colorectal cancer (SPP-FHP/CRC) (bottom panel). Both of these forms may follow a KRAS (alternate) or a BRAF (serrated) 
pathway, (A and B), respectively, in the upper and lower panels. In addition, in distal SPP, an adenomatous polyposis coli (APC) (traditional) pathway may also 
occur [(C) in bottom panel]. Each lesion or molecular alteration in these proposed pathways is hypothesized based on the results obtained in the present study 
and we do not exclude that, in some cases, some of these molecular alterations may not occur, or even that other molecular alterations may also be found. The 
steps involving lesions that were not analyzed in this study and about which we have previously published information are represented by broken arrows. In 
some pathways a broken line was used to represent the increase in microsatellite instability (MSI) with tumor progression, to suggest a lower frequency in 
those cases. Ca, carcinoma; HP, hyperplastic polyp; MMR, mismatch repair; SSA, sessile serrated adenoma; TA, tubular adenoma; TSA, traditional serrated 
adenoma; TVA, tubulovillous adenoma.
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lineage [to which Wnt gene mutations largely contribute (53)] 
and to Paneth cell metaplasia. Therefore, colonic mucosa with 
Paneth cell metaplasia may be one of the pre-neoplastic lesions 
in the development of proximal/whole-colon SPP-FHP/CRC.

BRAF and KRAS mutations play different roles in proximal 
and distal SPP-FHP/CRC. Our finding that patients with 
proximal/whole-colon or distal SPP-FHP/CRC may carry, 
preferentially, either KRAS or BRAF mutations, supports 
previous observations suggesting that different forms of SPP 
exist, depending on whether lesions follow a KRAS or a 
BRAF pathway (22).

In addition, in the present study, we noted distinct roles 
for these mutations between proximal and distal SPP-FHP/
CRC. BRAF or KRAS mutations were detected in the majority 
of distal SPP-FHP/CRC lesions, mostly SE early lesions, thus 
underlining their importance in early stages, whereas in 
proximal/whole-colon SPP-FHP/CRC these mutations (mainly 
of KRAS) appear to be more important in tumor progression 
(mostly detected in TSAs, TVAs and Cas). Accordingly, a 
KRAS or alternate pathway has been proposed to be involved 
in the transition from TSA or TVA to CRC in SPP (10). 
Indeed, in patients with proximal/whole-colon SPP-FHP/
CRC, KRAS mutations were found only in TSAs, TVAs or 
Cas (PH4, PH5 and PH7) which is in accordance with their 
association with the development of a villous architecture and 
hence with malignant transformation (10,54-56). Therefore, 
as TSAs and TVAs shared early somatic events with HPs and 
TAs, respectively, from the same patients, and based on the 
model of SPP tumorigenesis previously presented by Leggett 
and Whitehall (10), we propose that proximal/whole-colon 
SPP-FHP/CRC tumorigenesis may follow an alternate or 
KRAS pathway, where TVA and TSA may develop from TA 
and HP, respectively, finally leading to CRC, that may or may 
not present with MSI (Fig. 1A, upper panel). Alternatively, 
a serrated or BRAF pathway (families PH3 and PH8) where 
SSA or TSA will probably lead to MSI-H cancer carrying 
BRAF mutations may also occur (Fig. 1B, upper panel). In 
this model, a deficient DNA repair pathway characterized by 
MGMT and MMR gene methylation and/or LOH followed by 
Wnt gene mutations, appears to be predominant in proximal 
SPP-FHP/CRC (Fig. 1, upper panel).

In distal SPP-FHP/CRC, either KRAS (PH6 and PH14) or 
BRAF (PH6, PH12, PH19 and PH33) mutations play a major 
role in tumor initiation, either through an alternate or a serrated 
pathway (Fig. 1A and B, bottom panel, respectively). Wnt gene 
mutations and MMR defects were detected in the only carci-
noma presented by these patients and thus are likely involved 
in tumor progression. As PH6 and PH33 also presented TAs 
and did not present TVAs, we hypothesize that, in distal 
SPP-FHP/CRC, some AD lesions may also develop through 
a traditional pathway initiated by APC mutations (Fig. 1C, 
bottom panel).

CRC is more frequent in patients with proximal/whole-colon 
SPP-FHP/CRC with TSAs, TVAs and KRAS mutations. The 
association of KRAS mutations in TSA or TVA with the develop-
ment of CRC in proximal/whole-colon SPP-FHP/CRC suggests 
a higher contribution of the alternate pathway in the develop-
ment of CRC in patients with SPP-FHP/CRC. Supporting our 

hypothesis, KRAS mutations have been previously described 
as more prevalent than BRAF mutations in a series of SE 
carcinomas occurring in the sporadic context, mainly in those 
presenting adjacent serrated adenomas (51%) (57). Moreover, 
in the same study, SE carcinomas were frequently MSS and 
presented a higher frequency of MGMT loss compared with 
traditional carcinomas, which is in agreement with our find-
ings demonstrating that MGMT deficiency plays a prominent 
role in SPP-FHP/CRC, mainly in the proximal colon.

The findings that KRAS and BRAF mutations promote 
serrated and hyperplastic features, despite being incapable of 
initiating colonic adenoma development by themselves (58,59), 
may contribute to the apparent lower incidence of CRC in 
distal SPP-FHP/CRC, as according to the results of our present 
study, KRAS or BRAF mutations appear to be the initial 
molecular events in this form. However, additional studies 
involving more families are warranted.

In conclusion, SPP-FHP/CRC appears to be a distinct 
clinical and histological entity differing from sporadic SPP. 
However, we suggest that two forms of SPP-FHP/CRC appear 
to exist, proximal/whole-colon and distal, which differ mainly 
in the molecular alterations detected in early lesions. We 
further propose that a germline defect in the mechanisms 
regulating the response to genotoxic damage may underlie the 
genetic susceptibility in the former. In addition, our results 
suggest that CRC appears to develop more frequently in 
proximal/whole-colon SPP-FHP/CRC following an alternate 
KRAS pathway, thus underlining the importance of a complete 
clinical, histological and molecular characterization for CRC 
risk evaluation in further studies involving families with SPP. 
The results of these studies may be used to design appropriate 
guidelines for the clinical management of proximal and distal 
colonic presentations of SPP that assumes major relevance 
considering the increased risk of CRC and/or polyps in first-
degree relatives.
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