
Frontiers in Endocrinology | www.frontiersi

Edited by:
Jianfeng Liu,

Huazhong University of Science and
Technology, China

Reviewed by:
Eva Surmacz,

Allysta Pharmaceuticals, Inc.,
United States
Silvio Naviglio,

University of Campania Luigi Vanvitelli,
Italy

*Correspondence:
Bertrand Duvillié
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Epidemiologic analyses have shed light on an association between type 2 diabetes (T2D)
and pancreatic ductal adenocarcinoma (PDAC). Recent data also suggest a potential
relationship between T2D and insulinoma. Under rare circumstances, type 1 diabetes
(T1D) can also be implicated in tumorigenesis. The biological mechanisms underlying such
relationships are extremely complex. Some genetic factors contributing to the
development of T2D are shared with pancreatic exocrine and endocrine tumors.
Obesity and overweight can also contribute to the initiation and severity of T2D, while
aging may influence both endocrine and exocrine tumors. Finally, pharmacological
treatments of T2D may have an impact on PDAC. On the other hand, some treatments
for insulinoma can trigger diabetes. In the present minireview, we discuss the cellular and
molecular mechanisms that could explain these interactions. This analysis may help to
define new potential therapeutic strategies.

Keywords: diabetes, pancreas, cancer, aging, insulinoma, obesity
INTRODUCTION

Diabetes is a metabolic disorder characterized by chronic hyperglycemia. Type 1 diabetes (T1D) is
less frequent (5.6%) than type 2 diabetes (T2D) and is caused by autoimmune destruction of
pancreatic beta-cells. T2D represents 91.2% of diabetes cases and is generally associated with insulin
resistance and compensatory hyperinsulinemia, an early indicator of metabolic dysfunction. In the
longer term, T2D leads to progressive functional defects of beta-cells. The remaining cases are
primarily gestational diabetes, which are represented by hyperglycemia that generally disappears
after delivery. Pancreatic adenocarcinoma (PDAC), the most frequent (95%) exocrine pancreatic
cancer, is also the most lethal, with a 5-year overall survival of less than 8% (1). Insulinomas are
functional neuroendocrine tumors originating from beta-cells. They are generally benign but can
metastasize in 5%–10% of cases (2). Interestingly, T2D and pancreatic cancers share several
common risk factors, and long standing T2D represents a recognized risk for carcinogenesis.
Inversely, PDACmay also be responsible for diabetes (3). This link between diabetes and cancer was
first suggested by epidemiologic observations. In particular, PDAC is strongly associated with
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diabetes (4). Although T2D is a well-established risk factor for
PDAC (5), this association is less clear for T1D. Indeed, a clinical
prospective study on patients with T1D showed an increased risk
of stomach, cervical and endometrium cancers, but only a very
modest association with PDAC (6). These differences between
T1D and T2D in the risk of developing PDAC may be attributed
to differences in insulin levels, which is a risk factor (6). Finally,
recent data has suggested a potential association between T2D
and insulinoma (7). Despite this evidence, the causative link
between T2D and PDAC, as well as insulinoma is not completely
understood. The possible molecular mechanisms of this
association will be discussed in this review.
COMMON DETERMINANTS OF DIABETES
AND PANCREATIC CANCER

T2D and PDAC have common determinants, including aging,
obesity, and genetic factors (Figure 1), in addition to some
environmental factors that include tobacco smocking, alcohol
consumption and low level of physical activity (8). T2D and
insulinoma also share causative signals.

Aging
The Effect of Aging in T2D
Aging is the time-dependent deterioration of physiological
functions affecting both diabetes and PDAC. The incidence of
diabetes increases with age: with 1.8 million patients aged 20–39,
11.7 millions at 40–59, to 19.3 millions at 60–79 in the European
Union in 2017 (9). Moreover, the mass of islet cells increases
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during maturation, but slowly decreases after age 40 (10). Islet
amyloidis, which is associated with insulin resistance and T2D,
is more commonly found in older individuals (11). Finally,
metabolic sensing pathways, such as the mTOR, AMP-
activated protein kinase, and insulin/insulin-like growth factors
(IGFs) pathways (12, 13) are age-dependent. Interestingly,
mTOR, a kinase activated by metabolic signaling, also plays an
important role in T2D (14) and PDAC (15).

Aging and PDAC
Aging dramatically increases the risk of pancreatic carcinogenesis
(16). Indeed, pancreatic intraepithelial neoplasia (PanINs) is one
precursor of PDAC. In an autopsy study, high grade PanIN
lesions were found more frequently in T2D patients and old
individuals, suggesting a role of both aging and diabetes (17).
Moreover, PanINs are associated with chromosomal instability,
telomere shortnening (18), and DNA damage, which all depend
on aging (19). Several cellular mechanisms involved in aging also
play an important role in PDAC. For example, lobulocentric
atrophy, a combination of atrophy of acinar parenchyma, acinar
to ductal metaplasia and fibrosis, promotes proliferation of small
ductular structures and PanINs. This process is found in patients
at high risk of PDAC and is age-dependent (20). Moreover,
senescence is also important in cancer cells: after oncogenic
transformation, cells can undergo senescence, with a reduction
of their proliferation. However, some malignant cells often
escape this process (21). In addition, age-related senescent-
associated secretory phenotype (SASP) cells in the stromal
micro-environment support cancer progression (21). In the
KRASG12D model of PDAC, knock-out of the senescence-
FIGURE 1 | Schematic representation of the interactions between diabetes and PDAC. Some biological parameters occurring during prediabetes, including
hyperglycemia, elevated insulin, and IGF bioavailability contribute to diabetes (T2D) and can further lead to PDAC (red arrows). Some genetic factors; UCP2, HNF1a,
and PDX1, are also common determinants of diabetes and PDAC (written in red). Some parameters in relation with aging can cause T2D and/or PDAC (blue arrows,
and the common determinants for T2D and PDAC development are written in blue). Some characteristics of obesity can contribute to T2D and/or PDAC (green
arrows, and the common determinants for T2D and PDAC development are written in green).
September 2020 | Volume 11 | Article 563267

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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inducing factor SIN3B reduced the initiation and progression of
pancreatic lesions, while decreasing secretion of the SASP factor
IL-1a (22). Moreover, the conditional knock-out of IL-1a also
reduces the number of neoplastic lesions. Finally, mitochondrial
gene mutations, which accumulate with age, affect cell
metabolism. Consequently, a selective growth advantage that
promotes cancer is confered to the cells present in the aging
environment (23, 24). Importantly, such mitochondrial events
also enhance tumor progression in PDAC (25). Together, these
data highlight the strong impact of aging in PDAC.

The Role of Aging in Insulinoma
Men1 knock-out mice provide a model of insulinoma, in which
tumors develop late. Indeed, early inactivation of Men1 specific to
beta-cells leads to multiple insulinoma only by 60 weeks (26),
suggesting the requirement of additional somatic events. Notably,
in Men1 knock-out tumors, an increase in the number of entire
chromosome 11 was also found in insulinomas, and of chromosome
15 in pituitary prolactinomas. Several oncogenes, including c-MYC
and ErbB2/Her2/Neu are present in these duplicated regions (26).
The age-related penetrance of MEN1 in patients is 7%, 52%, 87%,
98%, 99%, and 100% at 10, 20, 30, 40, 50, and 60 years of age,
respectively (27), suggesting that aging also influences tumorigenesis
in human MEN1 tumors. Interestingly, different phenotypes in
MEN1 monozygotic twins were observed: in (28), both twins
developed parathyroidism, but only one had a pancreatic tumor.
This observation suggests that one single mutation in MEN1 is
insufficient to induce insulinoma. The variant V109G of p27 and
inactivating mutations of CDKN1B were shown to influence the
clinical phenotype of MEN1 patients (29). Moreover, some cell-cycle
regulators, whose expression is age-dependent (30), are also
differentially expressed in human beta-cells from insulinoma as
compared to healthy tissue (31). For example, p16 is more heavily
expressed at the adult stage than in prenatal beta-cells (32). Such
expression restricts beta-cell proliferation with aging (30) and also
promotes senescence. Interestingly, its expression is considerably
reduced in insulinoma cells (31). Together, these data suggest that
aging influences beta-cell proliferation, but that insulinoma cells
develop a specific proliferation pattern evading this control.

Obesity
Obesity and Diabetes
Obesity, characterized by excessive accumulation of body fat,
with a body mass index (BMI) of 30 kg/m2 or greater, is a well-
known risk factor of diabetes (Figure 1) (33). Indeed, 87.5% of
adults with T2D are also obese or overweight [BMI>25 (34, 35).
The first causative link between obesity and T2D is insulin
resistance. Indeed, both obesity and insulin resistance precede
altered glycemia (36). Moreover, fat deposition has deleterious
effects that depend on its anatomical location. The visceral
adipose tissue (VAT), located in the abdominal cavity is linked
to a higher risk of T2D as compared to subcutaneous adipose
tissue (SCAT) (37).

Obesity and PDAC
Infiltration of adipose tissue favors pancreatic precancerous
lesions (38). Indeed, in obese patients, fat has an effect on
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PanIN lesions and PDAC development. Obesity promotes
inflammation that activates tumor associated neutrophils, and
consequently pancreatic stellate cells, leading to increased
desmoplasia and tumor growth (39). Moreover, chronic
inflammation can promote EMT in PanIN cells, driving tumor
progression and cell dissemination, leading to PDAC (40). Insulin
resistance associated with obesity promotes dislypidemia (41),
with elevated concentrations of triglycerides (42), and increased
cholesterol synthesis (43). Hypertriglyceridemia is the third most
common cause of acute pancreatitis (44), which also represents a
risk for PDAC (45). Indeed, patients with acute pancreatitis had a
2-fold increased risk of pancreatic cancer when compared to the
matched population. Moreover, adipokines, which include leptin,
adiponectin, and lipocalin 2, also establish a connection between
obesity and PDAC. In animals and humans, the leptin receptor
Ob-Rb plays an important role in obesity (46). While leptin is
produced by mature adipocytes, human PDAC cell lines and
tissues both express the leptin receptor. Overexpression of leptin
in an orthotopic model of human pancreatic cancer promotes
tumor growth and lymph node metastasis (47), indicating that
leptin is a key factor for PDAC. Recently, a possible
interconnection between leptin and the Notch pathway, which is
responsible for transformation, proliferation, tumor progression,
EMT and chemoresistance, was described (48). Adiponectin is
found in adipose tissue and its expression is very low in obese
subjects. Prospective epidemiologic studies have shown that low
concentration of adiponectin is linked to a higher risk of PDAC
(49). Interestingly, adiponectin treatment inhibits the proliferation
of human pancreatic cancer cells (50). Knocking-down
adiponectin receptors abolished these effects, and enhanced the
growth of human pancreatic cancer xenografts in nude mice.
Moreover, this antiproliferative effect of adiponectin was shown to
be mediated by the b-catenin signaling pathway. However, the
roles of leptin and adiponectin are still debated, as a higher
adiponectin/leptin ratio and lower leptin levels were found in
patients with PDAC as compared to controls (51). Finally,
lipocalin 2, a protein involved in innate immunity, also plays an
important role in the cellular microenvironment that contributes
to PDAC. Lipocalin 2 was found to be a regulator of VAT
hypertrophy in animals treated with high fat diet (HFD). The
deletion of Lipocalin2 decreases PDAC incidence in KRAS-G12D
transgenic mice (52). More generally, diet has a strong impact on
pancreatic cancer. Recently, Chang et al. showed that HFD
dramatically increases the incidence of PDAC in KRAS-G12D
mice. Indeed, the PanIN lesions express new genetic variants,
suggesting that genetic alterations may participate to this
process (53).

Obesity and Insulinoma
Obesity has thus far not been identified as a cause of insulinoma,
but the reverse has been described. Insulinoma can be linked to
hyperphagia in some cases by induction of hypoglycemia and
hunger. This may lead to weight gain in 20%–40% of patients
and even to overt obesity (54, 55). Interestingly, the orexigenic
hormone ghrelin is associated with obesity (56). Co-expression
of ghrelin and its receptor was detected in several pancreatic
September 2020 | Volume 11 | Article 563267
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endocrine tumors, and specifically in insulinoma, but elevated
circulating ghrelin is rare in these patients (57).

The Genetic Factors
The Genetics of Diabetes and PDAC
Genome wide association studies (GWAS) have been used to
identify relationships between diabetes and pancreatic cancers.
Several pancreatic developmental genes, NR5A2, PDX1, and
HNF1A, were identified as susceptibility factors for PDAC
(Figure 1) (58). Moreover, heterozygous mutations in some of
these genes, PDX1 and HNF1a, are also responsible for different
monogenic forms of maturity onset diabetes of the young
(MODY 4 and MODY 5). Some variants of PDX1 and HNF1a
are also associated with increased risks of T2D (59, 60), obesity
(61), or hyperglycemia (62). The antioxidant mitochondrial
uncoupling protein 2 (UCP2), which controls pancreatic
development and insulin secretion (63), is overexpressed in
PDAC tumors compared to normal adjacent tissues (64),
suggesting that UCP2 overexpression is a biomarker of bad
prognosis. However, other recent studies using the pancreatic
cancer cell line Mia PACA2 showed that UCP2 inhibits
cancer cell proliferation and tumorigenesis (65). This effect is
mediated by retrograde mitochondrial signaling on the Warburg
effect that reorients mitochondrial function toward oxidative
phosphorylation rather than glycolysis. Additional analyses are
needed to elucidate the discrepancy between these two studies
involving UCP2. Taken together, these data indicate a link
Frontiers in Endocrinology | www.frontiersin.org 4
between genes controlling pancreas development, diabetes
and PDAC.

The Genetic Links Between Diabetes and Insulinoma
Recently, a strong link between T2D and insulinoma has been
established (Figure 2). A p.Ser64Phe mutation in MAFA that
prevents GSK3-mediated MAFA phosphorylation (42, 44) was
identified in 25 individuals from two independent families (7).
These patients develop either insulinoma or diabetes with 90%
penetrance. Interestingly, the MAF proteins are well established
oncoproteins (66) and their tumorigenic activity is regulated by
GSK3-mediated phosphorylation in different cancers (67, 68).
Moreover, other studies have also revealed a role of MAFA in
diabetes. Within the pancreas, MAFA is exclusively expressed
in developing and mature beta-cells. MafA activates the insulin
promoter in response to glucose, and regulates genes involved in
beta-cell function such as glucose transporter 2, glucagon-like
peptide 1 receptor and prohormone convertase 1/3 (69).
Accordingly, glucose-stimulated insulin secretion (GSIS) is
impaired in MafA knock-out mice, and the architecture of the
islets is disorganized. Moreover, these mice develop T2D at 50
weeks after birth (70). In humans, data have also established a
link between MAFA and different forms of diabetes. Indeed,
expression ofMAFA is decreased in islets from T2D patients and
a polymorphism in MAFA is associated with T1D (71).

Cases of insulinoma with pre-existing diabetes are very rare
(72, 73). In (7), a 27 year-old female patient with a MAFA
FIGURE 2 | Interactions between diabetes and insulinoma. Some specific MafA mutations can predispose to diabetes (T2D) or insulinoma. In some rare cases with
such mutations of MafA, gestational diabetes precedes insulinoma. Moreover, other genes (Men1, YY1) are also involved positively (+) or negatively (−) in the
development of diabetes or insulinoma (blue arrows). Aging also contributes to both pathologies (green arrows, common aging determinant for T2D and insulinoma
written in green). Some inulinoma treatments (everolimus) can enhance the risk of diabetes (red arrow). On the other hand, exceptional cases of T1D can induce
insulinoma (red arrow).
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mutation preventing its phosphorylation by GSK3 first
developed gestational diabetes, and subsequent insulinoma at
55 years old. This finding suggests that theMAFAmutation may
have caused metabolic disorders in relation to diabetes, that
would lead to insulinoma in the long term. Another genetic link
between diabetes and insulinoma was suggested by the presence
of a recurrent somatic T372R mutation in YY1 (Yin and Yang 1
protein) in 30% of tumors (74). YY1 is a transcription factor that
belongs to the GLI-Kruppel class of zinc finger proteins and is a
target of mTOR inhibitors. In beta-cells, YY1 regulates the
transcription of CXCL12, which also has antidiabetogenic
potential (75). In some cases, insulinoma develop in a context
of hereditary predisposition to pancreatic endocrine tumors.
Indeed, MEN1, type-1 multiple endocrine neoplasm, represents
the most frequent predisposition gene for insulinoma (76).
Moreover, a relationship between MEN 1 and MAFA genes
was also established: altered MEN1 expression was shown to
disrupt the MAFA differentiation pathway in human and mice
insulinoma cells (77).
IS DIABETES A RISK FACTOR FOR
PANCREATIC CANCERS?

Hyperglycemia
Hyperglycemia and PDAC
In T2D, hyperglycemia is caused by excessive hepatic
gluconeogenesis, decreased incretin activity, and peripheral
glucose uptake, as well as altered insulin signaling. T2D results
from a long history of metabolic disorders before diagnosis.
These events can cause carcinogenesis and particularly PDAC
(Figure 1) (76). Indeed, patients can remain asymptomatic for
many years, with undiscovered glucose intolerance and transient
hyperglycemia (78). This prediabetic period considerably
increases the probability of developing PDAC (79). One
possible mechanism is the activation of the TGFb pathway by
glucose, leading to reduced E-cadherin levels in pancreatic ductal
cells and to a pronounced mesenchymal phenotype promoting
tumor growth and metastasis (5). Hyperglycemia may also
increase genomic instability leading to KRAS mutations
through activation of O-GlcNAcylation and nucleotides
deficiency (80). Finally, the mTOR pathway controls protein
synthesis and autophagy, and its deregulation is implicated in
diabetes, cancer, and the aging process (81). Interestingly, mTOR
inhibition in mouse models of KRAS-dependent PDAC subtypes
reduces tumorigenesis (15).

Hyperglycemia and Insulinoma
Glucose controls beta-cell proliferation both in vitro and in vivo
(82). In the context of insulin demand, beta-cells undergo
hypertrophy or hyperplasia to normalize glycemia (83). One
hypothesis is that pre-existing diabetes leads to insulinoma
through hyperglycemia. However, such cases are extremely
rare. Recently, two patients with pre-existing T1D developed
insulinoma (84, 85). In (84), a 31-year-old man experienced T1D
for 28 years. Surprisingly, frequent hypoglycemic episodes
Frontiers in Endocrinology | www.frontiersin.org 5
occurred, leading to the arrest of insulin therapy. After
resection, histopathology revealed a grade-2 insulinoma. One
unsolved issue is the absence of an autoimmune response against
tumor cells in this patient (84). Further analyses will be necessary
to investigate the mechanisms involved in tumor progression in
such patients.

Insulin and Insulin-Like Growth Factors
(IGFs) in Diabetes and Tumorigenesis
The insulin/IGF signalization plays an important role in diabetes.
Epidemiological studies have associated serum level variations of
IGF-1 (86, 87), IGF-2 (88), IGF binding proteins 1 (89, 90), 2
(91), 3 (86, 90), 4 (91) with T2D. Moreover, obese subjects also
exhibit alterations of the IGF system (88, 92, 93) influenced by
the presence or absence of T2D (93). Non-diabetic obese subjects
have elevated free IGF-1 and IGF-2, total IGF-2, IGF-BP3, and
reduced IGF-BP1 and 2 levels. In obese T2D patients, IGFBP-2 is
further reduced (93).

PDAC
PDAC originates from both ductal and acinar cells of the pancreas
(94), which are exposed to high levels of insulin. Such proxicrine
signals promote growth of pancreatic cancer cells (Figure 1) (3).
Indeed, the effects of insulin and IGFs 1 and 2 are mediated by the
insulin receptor (IR) and IGF1 receptor (IGF1R) (95, 96). As
previously discussed, obesity and T2D are associated with increased
risk of PDAC. These metabolic disorders are characterized by
insulin resistance, compensatory overproduction of insulin and
increased bioavailability of IGF-1 (97). To examine the role of
insulin in PDAC initiation, Ptf1aCreERLSL-KRASG12DIns1+/−

Ins2−/− mice, which have a sustain reduction of insulin but
no altered glycemia, were used (98). Mice with reduced insulin
had a significant decrease in the number of PanINs and
pancreatic tumors when compared to controls. Thus, these
results demonstrate that insulin regulates PDAC development.
Interestingly, altered expression of the tumor suppressor p53,
observed in 50% to 75% of PDAC (99), was shown to stimulate
the insulin/IGF1 pathway (100). Moreover, polymorphisms in the
IGF genes have been associated with decreased survival of patients
with PDAC (101). Taken together, these data strongly support a
role of the insulin/IGF axis in pancreatic cancer.

Insulinoma
In animals and human, some associations between IGF2 and
diabetes have been shown. In particular, IGF2 overexpression in
transgenic mice leads to beta-cell dysfunction (102), by inducing
beta-cell de-differentiation and reticulum stress. Moreover, in a
mouse model of multistage carcinogenesis induced by the SV40
large T antigen in pancreatic beta-cells, IGF2 was increased and
contributed to insulinoma development (103). Recently, studies
have shown that the IGF pathway is activated in insulinoma (104).
Glutamine can also stimulate biosynthesis and secretion of
IGF2 in mouse insulinoma cells, which regulate beta-cell mass
and function in an autocrine manner (105). Interestingly,
hypermethylation of the differentially methylated region 2 of
IGF2 was discovered in human insulinoma, leading to loss of
imprinting and overexpression of IGF2 (106). Finally, IGF2
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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overexpression was also detected in Men1-mutated mouse
insulinoma (107). IGF signaling thus appear to be an important
hallmark of insulinoma.
DIABETES TREATMENT TO PREVENT
PANCREATIC CANCERS?

PDAC
Metformin (108) is the most frequently prescribed, first-line
treatment drug for T2D (109). Metformin decreases glycemia by
lowering hepatic gluconeogenesis and improves insulin sensitivity
by promoting glucose uptake in skeletal muscle and adipose tissue.
Several epidemiological studies have demonstrated that
metformin administration reduces incidence, recurrence and
mortality of pancreatic cancer in diabetic patients (110, 111).
Clinical trials usingmetformin in combination with other drugs used
to treat PDAC are actually under investigation (https://clinicaltrials.
gov/ct2/results?term=metformin&cond=Pancreatic+Cancer). To
delineate the molecular mechanisms involved in this protective
effect of metformin, animal models were used. Metformin
significantly decreased the incidence of PDAC promoted by
diet-induced obesity in the conditional KRAS-G12D knock-in
mouse (112). Together, these findings demonstrate that
metformin, a treatment for diabetes, represents an important
pharmacological tool for PDAC prevention, strengthening the
link between these two pathologies. Moreover, AdipoRon, which
acts as an adiponectin receptor agonist (113), has antidiabetic
properties and can inhibit tumor growth of pancreatic cancer
cells MIAPACa-2 in xenografts. AdipoRon can also induce cell
death in cells derived from PDAC patients (114). These data
suggest that AdipoRon could be a therapeutic agent for both
diabetes and PDAC. Finally, several studies analyzed the
antidiabetic and protective effects of aspirin against PDAC.
Indeed, inflammation is a hallmark of T2D, and aspirin
reduces inflammation by regulating T-cell function (115).
Interestingly, clinical analysis of a subgroup of patients with
diabetes showed a protective role of aspirin against PDAC (116).
However, the effects of aspirin against PDAC seem to be
heterogenous and controversial (116–118). Further analysis is
thus required to better understand these effects.

Insulinoma
Anti-cancer drugs are used to treat insulinoma. Recently, a
combination of mTOR inhibitors and streptozotocin was shown
to have synergistic antitumor effects in insulinoma cells, both in
Frontiers in Endocrinology | www.frontiersin.org 6
vitro and in vivo (119). Everolimus, an mTOR inhibitor, was
successfully used to treat advanced pancreatic neuroendocrine
tumors in a phase 3 clinical trial (120) (RADIANT-3
ClinicalTrials.gov number, NCT00510068). However, other data
indicate that such anti-cancer therapy also has endocrine side
effects, such as increased plasma triglycerides, LDL cholesterol,
and high incidence of hyperglycemia (121). Thus, despite its
benefits in cancer, this treatment may enhance the risk of diabetes.
CONCLUSION

Pre-clinical and clinical data provide clear evidence of common
characteristics shared by T2D and PDAC, as well as T2D and
insulinoma. The association between diabetes and PDAC is
frequent, while it is more unusual between diabetes and
insulinoma. Some specific gene mutations contribute to both T2D
and insulinoma, strengthening the link between these diseases, while
others mutations have opposite effects on T2D and insulinoma.
Diabetes and PDAC share several metabolical disorders, that are
also found during obesity. Accordingly, obesity often contributes to
PDAC initiation, whereas obesity is a consequence of insulinoma.
Understanding the relation between T2D and PDAC and between
T2D and insulinoma may have important consequences. Indeed,
treatments of T2D can limit PDAC progression, while treatment for
insulinoma may induce T2D. These important findings should be
taken into consideration to develop new pharmacological strategies
to limit tumor progression.
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72. Kamocki ZK, Wodyńska NA, Pryczynicz A. Co-existence of insulinoma and
diabetes: A case report. Oncol Lett (2014) 8:1697–700. doi: 10.3892/
ol.2014.2338

73. Sakurai A, Aizawa T, Katakura M, Sato Y, Kaneko G, Yoshizawa K, et al.
Insulinoma in a Patient with Non-Insulin-Dependent Diabetes Mellitus.
Endocr J (1997) 44:473–7. doi: 10.1507/endocrj.44.473

74. Cao Y, Gao Z, Li L, Jiang X, Shan A, Cai J, et al. Whole exome sequencing of
insulinoma reveals recurrent T372R mutations in YY1. Nat Commun (2013)
4:2810. doi: 10.1038/ncomms3810

75. Marković J, Grdović N, Dinić S, Karan-Djuras ̌ević T, Uskoković A,
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