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NADPH Oxidase: A Potential Target for Treatment of Stroke
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Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and
excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH
oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke.
Several reports have shown that knockout or deletion of NOX exerts a neuroprotective effect in three major experimental stroke
models. Recent studies also confirmed that NOX inhibitors ameliorate brain injury and improve neurological outcome after stroke.
However, the physiological and pathophysiological roles of NOX enzymes in the central nervous system (CNS) are not known well.
In this review, we provide a comprehensive summary of our current understanding about expression and physiological function
of NOX enzymes in the CNS and its pathophysiological roles in the three major types of stroke: ischemic stroke, intracerebral
hemorrhage, and subarachnoid hemorrhage.

1. Introduction

Stroke, also known as a cerebrovascular accident, is a group
of symptoms in which common clinical features include
sudden onset and focal neurological deficits. It is an acute
cerebrovascular event closely related to injury of brain tissues
because of insufficient regional cerebral perfusion due to a
sudden block of a cerebral artery that supplies blood to the
brain.Themost common causation of stroke is occlusion of a
cerebral artery (ischemic stroke accounts for about 87% of all
strokes), with only a small part of stroke caused by rupture of
the cerebral blood vessels (intracerebral hemorrhage, approx-
imately 10%, and subarachnoid hemorrhage, around 3%, in all
cases) [1]. Under heart diseases and cancer, stroke has been
third leading cause of death in industrialized nations, and
theWorld Health Organization reports that approximately 15
million people suffer from a stroke every year. Stroke kills up
to 5.5million people annually and cause permanent disability
in another 5 million patients [2–4].

In recent years, oxidative stress has attracted consid-
erable attention. It is involved in inflammation, neuronal
apoptosis, and necrosis and plays an important role in brain
injury after stroke [5–7]. The most important factor for
oxidative stress is reactive oxygen species (ROS), which
include a variety of small molecule radicals, and the major
source of ROS is NADPH oxidase (NOX) [8]. Several NOX
subtypes are widely distributed in the cerebral tissues and
vasculature. Therefore, the implications of NOX enzymes in
cerebrovascular pathology, such as stroke, have received wide
attention and have been substantially investigated [3]. One
of the important causes of brain damage following stroke
is excessive generation of ROS [9]. Moreover, increasing
evidences suggest that NOX enzymes play a mechanistic role
in the process of brain injury after stroke [10–12].

In this review, we provide a comprehensive description
of current knowledge about NOX enzymes in stroke. In the
first section, we describe the structure and function of NOX
enzymes and the expression of NOX enzymes in the CNS
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under physiological conditions. At the same time, we sum-
marize the possible mechanisms and roles of NOX enzymes
in three stroke pathologies: ischemic stroke, intracerebral
hemorrhage, and subarachnoid hemorrhage.

2. NOX

2.1. What Is NOX? NOXmay refer to either NADPH oxidase
[13] or nonphagocytic cell oxidase [14]. The former empha-
sizes the type of enzyme, and the latter is restricted by cell
type. In this review, we discuss only the former.

Nicotinamide adenine dinucleotide phosphate oxidase
(NADPH oxidase) was first found in neutrophils and macro-
phages, so it is also known as phagocyte oxidase (phox).
Production of ROS byNADPHoxidase in these two cell types
when they undergo an “oxidative burst” during inflammation
constitutes the body’s defense to pathogens [8]. NOX is
localized in the cell membrane, with cytochrome c and flavin
adenine dinucleotide (FAD) radicals [14]. The enzyme is
composed of six subunits, p22phox, p47phox, gp91phox, p67phox,
p40phox, and the small GTPase Rac. gp91phox and p22phox
subunits are located in the plasma membrane and can form
active NOX complex when combined with several other
cytosolic subunits; gp91phox is the primary functional subunit
(catalytic subunit) [15]. In phagocytic cells, NOX is usually
in an inactive state. When phagocytic cells are stimulated by
extracellular signals, such as hormones, cytokines, bacteria,
and other substances, p47phox, p67phox, p40phox, and Rac
in the cytosolic subunit can combine with p22phox through
its proline-rich tail and form an enzyme complex. This
combination changes the conformation of gp91phox, induces
electronic transmembrane rotation, and activates the enzyme
complex which plays a biological role [8, 16].

NOX is classically considered as a key part of electron
transport chain in the plasma membrane. It can generate
free radical oxidation by reducing one electron in molecular
oxygen and produce a series of secondary products (includ-
ing superoxide, hydroxyl radical, hydrogen peroxide, sodium
hypochlorite, ozone, and singlet oxygen) based on the free
radical oxidation, with these products referred to as reactive
oxygen species (ROS) [8]. ROS play a bactericidal role in
phagocytic vesicles and participate in host immunity. This is
considered the primary mechanism by which the phagocytic
cells kill invading pathogenic microorganisms [16, 17].

In recent years, researchers have found that the follow-
ing NADPH oxidase subunits, which include all subunits
except p40phox, are expressed in the nonphagocytic cells:
gp91phox, p47phox, p22phox, and p67phox [18]. At present, studies
have reported that NADPH oxidase has seven isozymes,
nonphagocytic cell oxidases 1/2/3/4/5 (NOX1/2/3/4/5) and
dual-function oxidases 1/2 (DUOX1/2), in nonphagocytic
cells, which are also part of the NOX (nonphagocytic cell
oxidase) family [14]. In nonphagocytic cells, NOX subunits
are present in the cytoplasm, and each subunit of the oxidase
enzyme is assembled into the functional state for producing
ROS. NOX in nonphagocytic cells maintain sustained low
levels of activity, even without extracellular stimulation, and
constantly produce O

2

−. NOX utilize NADH or NADPH as

electron donor to produce ROS in nonphagocytic cells [8].
O
2

− produced byNADPH innonphagocytic cells is generated
primarily in the cytoplasm and is involved in the physio-
logical and pathological processes of gene expression, cell
proliferation, and apoptosis [18].

ROS are not only by-product of mitochondrial oxidative
phosphorylation but also generated by a variety of other
sources in cells [13, 14]. The discovery of homologs of the
NOX family in the plasma membrane of nonphagocytic
cells provides direct evidence for nonphagocytic cellular
ROS generation and function and changes our traditional
understanding of ROS [19]. It has been widely recognized
that ROS from the plasma membrane are produced not
only in phagocytic cells but also in many nonphagocytic
cells, such as neurons, digestive tract epithelial cells, vascular
endothelial cells, mesangial cells, fibroblasts, thyroid cells,
and many other cells. ROS participate in host defense and
act as messengers in regulation of biological functions in cells
[8]. Increasing evidence indicates that ROS act as second
messenger and are involved in cell differentiation, regulation
of cell proliferation, apoptosis, signal transduction, immune
response, and hormone biosynthesis [20–22].

2.2. Expression and Function of NOX Enzymes in the CNS.
The family of NOX enzymes is widely expressed in all regions
of the CNS [23], as shown in both in vivo (total brain
tissues) and in vitro (primary cultured cells) studies. In these
studies, researchers detect the expression of all NOX isoforms
using a variety of techniques including reverse transcrip-
tion polymerase chain reaction (RT-PCR), real-time PCR,
western blot, in situ hybridization, immunohistochemistry,
and immunofluorescence staining. Several NOX homologs
are coexpressed in the same tissue and cell, although they
may have different functions.The results of PCR showed that
mRNAs encoding NOX1, NOX2, NOX3, and NOX4 were
detected in total brain tissues but not in defined cerebral
regions [23]. However, no research provides systematic infor-
mation on functional protein expression of all NOX isoforms
in tissues and cells in the CNS. To our knowledge, there
are several studies on NOX2 and NOX4 protein expression
in tissues in the CNS [10, 24, 25], and two studies report
that NOX1 protein is expressed in primary neurons [26] and
astrocytes [27]. At present, there is little data on NOX3 and
NOX5 protein expression in the CNS.

In contrast, NOX1, NOX2, NOX4, p22phox, p47phox, and
p67phox mRNAs [28], as well as NOX1, NOX2, NOX4, and
p22phox proteins [29, 30], were detected on cerebral vascula-
ture. Interestingly, the expression level of NOX4 in the basilar
artery of male rats is higher than that in female rats [29], and
gender differences are also observed in expression of other
NOX enzymes. It is still not known whether these gender
differences in expression of NOX enzymes are functionally
important or simply a reflection of gender. Endothelial cells
(ECs) show high expression level of NOX1, NOX2, NOX4,
p47phox, and p67phox in rat cerebral vascular [31]. Endothelial
arteries are usually surrounded by pericytes in small cerebral
arterioles and capillaries. However, no report has examined
NOX enzymes expression in pericytes of cerebral vasculature.
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NOX enzymes have been detected in the CNS, but
knowledge of their function in normal CNS tissues and cells
is limited.This is partly because of the deficiency of powerful
tools, and the changes in phenotype are frequently difficult
to observe. A study has reported that ROS are implicated in
neuronal differentiation during CNS development [32]. NOX
enzymes may also play a role in nerve growth factor- (NGF-
) induced neuronal differentiation of PC12 cells, and ROS
produced by NOX enzymes promotes protein activity and
expression that regulate development of neuronal cells [33].
A study has explored the influence of angiotensin II on NOX
enzymes in cerebral vasculature [34]. It suggested thatNOX2-
derived ROS play an essential role in inward Ca2+ currents
in neurons treated with angiotensin II. Experiments also
confirmed that NOX2-derived ROS could affect angiotensin
I type receptor (AT1R) signal pathways [35], neuronal activity
[36], and CNS regulated cardiovascular functions [37]. As
a critical component of the CNS, microglia are resident
macrophages that participate in innate immunity in the CNS.
Nox family stays in a quiescent status in the absence of
stimulation, while be activated in response to several types
of stimulations (including damaged or necrotic neuronal
cells, pathogens, and abnormal protein aggregation) and
releases cytotoxic and inflammatory mediators, for instance,
ROS, nitric oxide (NO), and cytokines [38]. The activation
of microglia, which is modulated by NOX-derived ROS,
is participated in several physiological processes, such as
guidance of neuronal cells apoptosis during CNS develop-
ment [39], inflammatory responses [40], and secretion of
neurotransmitters [41]. Thus, NOX enzymes in microglia
play important roles in normal physiological functions of the
CNS.

3. NOX Enzymes in CNS Ischemic and
Hemorrhagic Stroke

Several researchers have explored the role of NOX enzymes
in excessive production of ROS during progressing of CNS
diseases. In this section, after a brief introduction about the
respective pathologies, we summarize reports on implica-
tions forNOX enzymes from studies of in vivomodels, as well
as possible molecular mechanisms from investigations of in
vitro systems.

3.1. NOX Enzymes in Ischemic Stroke. Ischemic stroke is
caused by decreased or blocked blood supply to a certain
brain region because of occlusion of a vessel. This occlusion
might be thrombotic (caused by blood clots formed in
situ) or embolic (caused by emboli formed in the heart or
another part of the body) [42]. Reducing or interrupting
blood flow decreases the supply of oxygen and glucose and
prevents the brain from generating ATP, which is required
for its enormous energy demands. After ischemic stroke,
this energy deficit is most severe in the ischemic core where
cell death (including apoptosis and necrosis) occurs rapidly.
In addition, a cascade of complex molecular pathways are
activated in the neighboring region known as the penumbra

[43]. Although the penumbra is functionally impaired, it
is potentially salvageable after ischemic stroke [44]. Thus,
treatment of ischemic stroke should include repair of the
penumbra [45]. Ischemic stroke triggers a series of molecular
events beginning with anaerobic glycolysis, lactate acidosis,
progressive energy depletion, loss of ability to maintain the
membrane potential with depolarization, release of toxic
concentration of extracellular glutamate and other excitatory
neurotransmitters, activation of gene transcription, inducing
protein expression andmisfolding aggregation, cellular influx
of calcium/sodium and water followed by cell swelling (cyto-
toxic edema), mitochondrial failure, ROS production, and
inflammatory responses, finally leading to brain tissue injury
[46–50].

Permanent middle cerebral artery occlusion (pMCAO)
and transient middle cerebral artery occlusion (tMCAO)
followed by reperfusion are major experimental animal
models used to investigate ischemic stroke [51]. It has been
reported that NOX2 protein increases from 24 h to 72 h after
reperfusion in endothelial cells [52] and microglia [53] of the
penumbra in mice pMCAO and tMCAO models. NOX4 has
also been confirmed to increase in the brain after ischemic
stroke. In a model of MCAO, NOX4mRNA levels in neurons
increase within day 1, peak between days 7 and 15, and slowly
decline until day 30.TheNOX4mRNA level in newly formed
capillaries increases in parallel with the peak, suggesting that
NOX4 plays a role in repair of brain damage [10]. We also
found that the mRNA and protein levels of NOX2, NOX4,
and DUOX1 increase in neurons, astrocytes, and endothelial
cells in a rat MCAOmodel, but there is no significant change
in NOX1, NOX3, and DUOX2 [54]. In analysis of whole
brain tissues, the mRNA and protein levels of NOX2 and
p22phox increase in the ischemic hemisphere in a rat model
of MCAO [55], and NOX4 protein increases in the ischemic
cortex and basal ganglia after ischemic stroke in mice [56]. In
general, these data indicate that NOX2, NOX4, and DUOX1
expression increase after ischemic stroke. In addition, a study
using a model of endothelin-1-induced stroke has reported
that NOX activity increases in arteries of the penumbra [57].
To our knowledge, no data are available on NOX5 expression
after ischemic stroke, and possible changes in expression of
this homolog remain to be examined.

Knockout (KO) animals and specific inhibitors are pow-
erful tools for exploring the roles of different NOX iso-
forms (Table 1). After ischemia/reperfusion in mice, genetic
deletion of NOX2 significantly reduced disruption of blood-
brain barrier and infarct size [58]. However, NOX2 is not
obviously involved in the pathogenesis of brain damage in
newborn pups after hypoxia/ischemia [59, 60]. It has been
demonstrated that NOX2 is the major source of ROS after
ischemic stroke, not only in circulating leukocytes that have
infiltrated the CNS with reperfusion but also in CNS cells
[61]. NOX4 has also been shown to have a protective effect
on ischemic stroke; NOX4-deficientmice had reduced infarct
size and improved neurological outcome after ischemic
stroke [56]. Two investigations using NOX1-knockout mice
did not show neuroprotection in respective MCAO model
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Table 1: Published studies on genetic absence or pharmacological inhibition of NOX in stroke.

NOX isoform Stroke model
Genetic absence or
pharmacological
inhibitor

Parameters analyzed Conclusion Reference

NOX1 tMCAO and
pMCAO NOX1−/− Lesion size, neurological outcome,

BBB integrity, cerebral edema
NOX1 KO has a protective
effect [63]

NOX1 tMCAO NOX1−/− Infarct volume, cerebral edema,
neurological outcome NO neuroprotection [62]

NOX1 tMCAO and
pMCAO NOX1−/−

Infarct volume, neurological
outcome, BBB integrity, cerebral
edema, ROS, RNS, apoptosis

NO neuroprotection [56]

NOX2 tMCAO NOX2−/− Infarct volume, ROS NOX2 KO has a protective
effect [61]

NOX2 tMCAO NOX2−/− Infarct volume, BBB integrity NOX2 KO has a protective
effect [58]

NOX2 tMCAO NOX2−/− Mortality, infarct volume,
neurological outcome, ROS

NOX2 KO has a protective
effect [60]

NOX2 tMCAO and
pMCAO NOX2−/−

Infarct volume, neurological
outcome, BBB integrity, cerebral
edema, ROS, RNS, apoptosis

NO neuroprotection [56]

NOX2 ICH NOX2−/− Mortality, hematoma volume,
neurological deficit, brain edema

NOX2 KO has a protective
effect [77]

NOX2 SAH NOX2−/− Mortality, brain edema, oxidative
stress NO neuroprotection [86]

NOX4

tMCAO and
pMCAO NOX4−/−

Infarct volume, neurological
outcome, BBB integrity, cerebral
edema, ROS, RNS, apoptosis

NOX4 KO has a protective
effect [56]

tMCAO DPI Superoxide production level DPI has a protective effect [57]

tMCAO DPI and DMSO
Infarct volume, neurological
outcome, BBB integrity, MMP-2/
MMP-9 activity

DPI and DMSO exert
neuroprotection [64]

tMCAO Apocynin Infarct volume, neurological
outcome

Apocynin has a protective
effect [65]

tMCAO Apocynin Neurological outcome, BBB
integrity, MMP-9 activity

Apocynin has a protective
effect [66]

tMCAO Honokiol
Lesion size, ROS, neutrophil
activation/infiltration, calcium
influx

Honokiol has a protective
effect [67]

ICH Apocynin Hemorrhage volume, brain edema,
neurological outcome NO neuroprotection [80]

SAH DPI ROS, autoregulatory vasodilation DPI has a protective effect [82]

SAH Apocynin cerebral vasospasm, superoxide
level, neurological deficit

Apocynin has a protective
effect [83]

tMCAO: transient middle cerebral artery occlusion; pMCAO: permanent middle cerebral artery occlusion; BBB integrity: blood-brain barrier integrity;
KO: knockout; ROS: reactive oxygen species; RNS: reactive nitrogen species; ICH: intracerebral hemorrhage; SAH: subarachnoid hemorrhage; DPI:
diphenyleneiodonium; DMSO: dimethylsulfoxide; MMP-2/MMP-9: matrix metalloproteinase-2/matrix metalloproteinase-9.

[56, 62]. However, in a rat tMCAO model, absence of NOX1
significantly reduced lesion size, improved neurological out-
come, preserved blood-brain barrier integrity, and reduced
cerebral edema [63]. To our knowledge, no knockout animal
models of other NOX subtypes have been used to research
experimental stroke.

Several pharmacological studies have confirmed that
NOX enzymes contribute to the progression of brain injury
after ischemic stroke. In an in vivo model of endothelin-1-
induced tMCAO, treatment with the NOX inhibitor diph-
enyleneiodonium (DPI) decreases superoxide production in
arteries of the penumbra area and of the contralateral part to
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the infarct [57]. Another report showed that administration
of DPI combined with dimethylsulfoxide (DMSO) reduced
infarct size and blood-brain barrier disruption [64]. In
addition, treatment with the NOX inhibitor apocynin before
ischemia also exerted a neuroprotective effect, resulting in
reduced infarct volume and improved neurological outcome
[60, 65]. It was also reported that apocynin inhibits the
activity of matrix metalloproteinase-9 (MMP-9), improving
the blood-brain barrier disruption and ameliorating neuro-
logical outcome [66]. Honokiol, another inhibitor of NOX,
has also been shown to have a protective effect on cerebral
ischemia-reperfusion injury by inhibiting ROS generation
and reducing lesion size [67]. Other NOX inhibitors have
not been studied in stroke models, and the safety and
specificity of these inhibitors remain challenging for their
clinical application.

To investigate the mechanisms of cellular death after
ischemic stroke, primary neurons treated with oxygen/glu-
cose deprivation and reoxygenation were used as an in vitro
model of ischemic stroke. Results suggest that NOX2 con-
tributes to generation and accumulation of ROS in neurons
and neuronal death in the reoxygenation phase. These effects
were blocked by NADPH oxidase inhibitors and were absent
in neurons from gp91phox knockout mice [68]. Meanwhile,
genetic absence of p47phox, which is essential for NOX2
activation, also exhibits neuroprotective effects (postischemic
superoxide production and cell death were prevented) in
cultured neurons [69].

3.2. NOX Enzymes in Hemorrhagic Stroke. Hemorrhagic
strokes are usually divided into intracerebral hemorrhage
(ICH) or subarachnoid hemorrhage (SAH). In general, hem-
orrhagic stroke causes a higher mortality and morbidity than
ischemic stroke [70]. ICH is often caused by hypertension,
bleeding disorders, or amyloid angiopathy, while SAH may
be caused by trauma or rupture of an aneurysm [71, 72]. The
causes of brain injury after ICH are complex. Initial damage
is due to the mechanical force induced by formation of the
hematoma. Hematoma expansion, edema, and inflammation
cause subsequent damage in brain tissues [73]. Excitatory
amino acids toxicity is a major factor in secondary brain
injury after ICH and glutamate is the primary excitatory
neurotransmitter [74]. Meanwhile, the major and frequent
complications of aneurysmal SAH are early brain injury [75]
and cerebral vasospasm [76].

A previous study has shown that, in a mouse model
of ICH, mRNA levels of gp91phox subunit were significantly
increased, and immunohistochemistry showed that gp91phox
subunit expression levels were also significantly upregulated.
In a collagenase-induced ICHmodel, gp91phox knockoutmice
displayed significant decreases in the volume of hematoma,
brain edema, neurological deficit, and mortality compared
with wild-type ICH mice. These data indicate that NOX2
plays an important role in brain damage due to ICH [77].
The activity of NOX enzymes increased significantly in
hypertensive mice with spontaneous ICH [78]. A study also
reported that activity of NADPH-d increased significantly in

the rat striatum after ICH [79]. However, another study found
that treatment with apocynin did not ameliorate the outcome
of rats after ICH.The hemorrhage volume, brain edema, and
neurologic score were not impaired in rats treated with dif-
ferent doses of apocynin (3–30mg/kg) [80].This discrepancy
may be due to the dose of apocynin. Several investigations
have reported that low doses of apocynin show benefit effects,
but high doses (more than 3.75mg/kg) increase intracerebral
hemorrhage and mortality of experimental animals [60, 81].

Several studies have demonstrated the roles of NOX
enzymes in SAH models. With increased expression levels
of NOX2, oxidative stress [82], cerebral vasospasms [30],
and neurological deficits [83] obviously increased after SAH.
However, when SAH rats were treated with the inhibitors of
NOX2, DPI [82], or apocynin [83], these neuronal damage
types were improved significantly. It has been reported
that reduced neuronal damage observed after treatment of
SAH with hyperbaric oxygen may involve downregulation of
NOX2 expression [84]. Further research, using a rat model
of SAH, confirmed that mRNA levels of gp91phox subunit and
NOXactivity were significantly increased and that hyperbaric
oxygen exerts neuroprotection by inhibiting these changes
[85]. However, hyperbaric oxygen is not a specific inhibitor
for NOX2 and no NOX2-knockout animals were used in
these studies. Thus, these results should be considered pre-
liminary. To our surprise, there is no reduction in mortality
rate, brain-water content, and intensity of oxidative stress
in NOX2-deficient mice after SAH [86]. To the best of our
knowledge, no other NOX isoforms deficient animals were
used in models of SAH.

4. Conclusions

Oxidative stress contributes to brain damage after stroke, and
NADPH oxidase enzymes are a major source of ROS in this
context (Figure 1). NOX enzymes are broadly distributed in
the CNS, including neurons, astrocytes, microglia, and the
cerebral vasculature.The expression of several NOX subtypes
significantly increases in brain tissue and cerebral vasculature
after stroke. Genetic absence or pharmacological inhibition
of functional NADPH oxidases, especially NOX2 and NOX4,
reduces brain tissue damage and improves neurological
outcome following experimental stroke. Thus, inhibition of
NADPH oxidase might be an effective strategy for stroke
therapy. The use of knockout animal models and the devel-
opment of inhibitors that target specific NOX homologs will
further increase our understanding of the roles that NOX
enzymes play in stroke. Moreover, a clear understanding of
the regulation of ROS producing systems, their distribution
in the cytoplasm and organelles, and mechanisms of activa-
tion of NOX enzymes in brain cells and cerebral vasculature
under pathophysiological conditions will contribute to better
stroke therapy.
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Figure 1: The role of NADPH oxidase enzymes in brain damage and neurological dysfunction after stroke. ICH: intracerebral hemorrhage;
SAH: subarachnoid hemorrhage; ROS: reactive oxygen species; BBB disruption: blood-brain barrier disruption.
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[74] J. Castillo, A. Dávalos, J. Naveiro, and M. Noya, “Neuroex-
citatory amino acids and their relation to infarct size and
neurological deficit in ischemic stroke,” Stroke, vol. 27, no. 6, pp.
1060–1065, 1996.

[75] M. Fujii, J. Yan, W. B. Rolland, Y. Soejima, B. Caner, and J. H.
Zhang, “Early brain injury, an evolving frontier in subarachnoid
hemorrhage research,” Translational Stroke Research, vol. 4, no.
4, pp. 432–446, 2013.

[76] M. K. Tso and R. L. Macdonald, “Subarachnoid hemorrhage: a
review of experimental studies on the microcirculation and the
neurovascular unit,” Translational Stroke Research, vol. 5, no. 2,
pp. 174–189, 2014.

[77] J. Tang, J. Liu, C. Zhou et al., “Role of NADPH oxidase in
the brain injury of intracerebral hemorrhage,” Journal of Neu-
rochemistry, vol. 94, no. 5, pp. 1342–1350, 2005.

[78] Y. Wakisaka, J. D. Miller, Y. Chu et al., “Oxidative stress
through activation of NAD(P)H oxidase in hypertensive mice
with spontaneous intracranial hemorrhage,” Journal of Cerebral
Blood Flow and Metabolism, vol. 28, no. 6, pp. 1175–1185, 2008.

[79] A. Lu, K. R.Wagner, J. P. Broderick, and J. F. Clark, “Administra-
tion of S-methyl-l-thiocitrulline protects against brain injuries
after intracerebral hemorrhage,” Neuroscience, vol. 270, pp. 40–
47, 2014.



Oxidative Medicine and Cellular Longevity 9

[80] E. Titova, R. P. Ostrowski, L. C. Sowers, J. H. Zhang, and J. Tang,
“Effects of apocynin and ethanol on intracerebral haemorrhage-
induced brain injury in rats,” Clinical and Experimental Phar-
macology and Physiology, vol. 34, no. 9, pp. 845–850, 2007.

[81] X. N. Tang, B. Cairns, N. Cairns, and M. A. Yenari, “Apocynin
improves outcome in experimental stroke with a narrow dose
range,” Neuroscience, vol. 154, no. 2, pp. 556–562, 2008.

[82] H. K. Shin, J. H. Lee, K. Y. Kim et al., “Impairment of autoregula-
tory vasodilation by NAD(P)H oxidase-dependent superoxide
generation during acute stage of subarachnoid hemorrhage in
rat pial artery,” Journal of Cerebral Blood Flow and Metabolism,
vol. 22, no. 7, pp. 869–877, 2002.

[83] J.-S. Zheng, R.-Y. Zhan, S.-S. Zheng, Y.-Q. Zhou, Y. Tong, and S.
Wan, “Inhibition ofNADPHoxidase attenuates vasospasm after
experimental subarachnoid hemorrhage in rats,” Stroke, vol. 36,
no. 5, pp. 1059–1064, 2005.

[84] R. P. Ostrowski, A. R. T. Colohan, and J. H. Zhang, “Neu-
roprotective effect of hyperbaric oxygen in a rat model of
subarachnoid hemorrhage,” Acta Neurochirurgica Supplement,
vol. 96, pp. 188–193, 2006.

[85] R. P. Ostrowski, J. Tang, and J. H. Zhang, “Hyperbaric oxygen
suppresses NADPH oxidase in a rat subarachnoid hemorrhage
model,” Stroke, vol. 37, no. 5, pp. 1314–1318, 2006.

[86] S. Liu, J. Tang, R. P. Ostrowski et al., “Oxidative stress after sub-
arachnoid hemorrhage in gp91phox knockout mice,” Canadian
Journal of Neurological Sciences, vol. 34, no. 3, pp. 356–361, 2007.


