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Environmental cues are a major component of directing immune function in health and disease. 
Cells sense their environment in part through recognition of small molecules such as cytokines, 
chemokines, and pathogen-associated molecular pattern (PAMP) molecules. This provides immune 
cells instruction on how to respond to different inflammatory situations. Recent studies in immuno-
metabolism have identified nutrient availability (i.e., glucose or other carbon sources, amino acids, 
lipids) as an important environmental cue, especially in activated, highly metabolic immune cells 
(1). Related to nutrients is oxygen, which is critical for most multicellular life as an essential element 
of several biochemical pathways for the generation of cellular energy. Cells are able to sense oxygen 
levels and modulate their biosynthetic and transcriptional pathways accordingly.

Cells have two major pathways for generating energy from a carbon source: oxidative phospho-
rylation or glycolysis. Oxygen is essential for oxidative phosphorylation, the metabolic pathway 
in which energy is generated through the electron transport chain in mitochondria. In contrast, 
glycolysis is less fuel efficient but can proceed in the absence of oxygen. In most cells, glycolysis is 
reserved for when oxygen is limited. However, like tumor cells, activated T cells are able to undergo 
glycolysis even in the presence of oxygen, a process termed aerobic glycolysis (1). As such, T cells 
have a distinct relationship with oxygen and modulate their function in response to environmental 
oxygen levels.

OXYGEn DYnAMiCS in iMMUnE HOMEOSTASiS AnD 
inFLAMMATiOn

Oxygen levels vary between 0 and 19% in healthy mammalian tissues. The tissues closest to 
atmospheric oxygen levels (21.1% or 160  mmHg at sea level) are those of the upper airways 
(approximately 19%, 150  mmHg) (2). Lymphoid tissues are lower in oxygen; bone marrow is 
approximately 6.4% (50 mmHg) (2) and the spleen can range from 3 to 4% (25–35 mmHg) (3). The 
gastrointestinal (GI) tract, which contains upwards of 70–80% of one’s total lymphocytes (4), has 
an especially dynamic oxygen range (5). The lumen, with its many obligate anaerobic commensal 
bacteria, is close to 0% oxygen (6). The intestinal tissue, including the lamina propria where many 
T cells reside, is approximately 7% oxygen (58 mmHg) (2). Immune cells encounter a wide range 
of oxygen levels as they traffic within the human body (2). T cells begin life in the bone marrow; 
progenitors migrate to the thymus for development, then to the blood to either circulate through 
the blood or lymphatic systems or to become a tissue-resident T cell, in such various organs as the 
lung, skin, brain, or GI tract. A progenitor or mature T cell may be exposed an oxygen concentra-
tion between 3 and 19% oxygen. These oxygen levels can be further modulated within the cell’s 
microenvironment.

Inflammation and environmental oxygen levels are linked; inflammation is often accompanied by 
hypoxia, and hypoxia itself can cause inflammation (7). In patients, many different inflamed tissues 
have been shown to have lower than normal oxygen levels. In the GI tract, mice with experimental 
models of inflammatory bowel disease (IBD) have increased inflammation and decreased oxygen 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00324&domain=pdf&date_stamp=2017-03-21
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00324
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:lauren-zenewicz@ouhsc.edu
https://doi.org/10.3389/fimmu.2017.00324
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00324/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00324/abstract
http://loop.frontiersin.org/people/27159


2

Zenewicz Oxygen Levels and Immunological Studies

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 324

levels in their colonic tissues (8), which corresponds with pathol-
ogy observed in IBD patients (9). Examining the role of hypoxia 
in modulating epithelial cell and immune cell responses has been 
an area of active investigation in the design of new therapeutics 
for treating IBD (10).

HYpOXiA-inDUCiBLE FACTOR (HiF) 
SiGnALinG AnD T CELLS

Cells sense and adapt to hypoxia in part through the well-
described HIF signaling pathway (11). The activity of this system 
is regulated by the posttranslational modification and stability 
of the alpha subunits (HIF-1α or HIF-2α) of the transcription 
factor complex. In the presence of oxygen, prolyl hydrolyases 
(PHD) modify the alpha subunits at two prolines, leading to 
polyubiquitylation and proteasomal degradation. When oxygen 
levels are low, PHD activity is reduced, which stabilizes the alpha 
subunits, allowing their translocation into the nucleus, dimer 
formation with constitutively expressed HIF-1β and binding to 
coactivators, resulting in transcriptional activation of potentially 
hundreds of hypoxia-response element-bearing genes. There are 
also HIF-independent pathways that are induced during hypoxia, 
including mechanistic target of rapamycin (mTOR) and NF-κB 
signaling pathways.

Hypoxia-inducible factor signaling regulates many path-
ways in immune cells, including macrophages, dendritic cells, 
B cells, and T cells (12, 13). In CD4 T cells, it has positive and 
negative roles in differentiation of naïve CD4 T cells to differ-
ent T helper subsets. HIF-1α and low oxygen enhance Th9, 
Th17, and Th22 differentiation (14–18) but negatively regulate 
Treg and Th1 differentiation (16, 19). This is in part through 
interactions of HIF-1α and the critical transcription factors 
involved in lineage development. In Th17 cells, HIF-1α binds 
to retinoic acid-related orphan receptor γ (RORγt) and forms 
a complex on the Il17a promoter with p300 thereby enhancing 
IL-17 production (16). In contrast, HIF-1α binds forkhead 
box P3, targeting it for proteasome-mediated degradation 
and reducing Treg differentiation (16). HIF-1α regulates the 
transcription factor aryl hydrocarbon receptor, promoting 
type 1 regulatory T cell differentiation (Tr1) (20). In contrast, 
Th1 differentiation is negatively regulated by HIF-1α, through 
increased STAT3 signaling (19). The HIF signaling pathway 
also is important in CD8 T  cell biology. HIF, in conjunction 
with mTOR, is needed for effector function of CD8 T cells (21); 
however, HIF activation needs to be balanced. In the absence 
of Von Hippel–Lindau (VHL) protein, a negative regulator of 
the HIF pathway, HIF accumulation enhances T  cell effector 
function. This allows the CD8 T cells to become refractory to 
exhaustion, causing immunopathology during a chronic viral 
infection (22). Further, as VHL deficient CD8 T cells undergo 
constitutive glycolysis this may preferentially promote T effec-
tor memory (23). These examples show some of the numerous 
HIF-signaling mechanisms affecting the role of oxygen in CD4 
and CD8 T cell biology.

Why is environmental oxygen sensing is important for T cells? 
In addition to the decision between glycolysis and oxidative 

phosphorylation, I propose this could be another sensor for 
inflammatory environments. This may be especially true for 
“sterile” inflammation in the absence of a pathogen, in which the 
inflammatory milieu lacks PAMPs. My laboratory has proposed 
that for the dual natured cytokine IL-22, which can be either 
inflammatory or protective depending on the inflammatory 
context (24), that oxygen sensing is one tactic cells can use to 
detect an inflammatory environment and upregulate IL-22 (17). 
This limits IL-22 to the site of inflammation, where it should be 
exerting function, instead of in healthy tissue.

iMpLiCATiOnS On RESEARCH AnD 
EXpERiMEnTAL DESiGn

A major hurdle in biomedical research is the translation of 
in vitro results to in vivo experiments to new drugs and therapies 
to cure human diseases. Very often in vivo results do not agree 
with the results of initial in vitro studies. This is a major hamper 
to scientific progress and leads some scientists and overseers to 
question the relevance of in vitro studies. Our first thought is to 
attribute the differences to the in vitro cultures for giving false 
and/or inaccurate results. However, very often the reason is more 
complicated. I propose oxygen levels may play one role in these 
differences.

Most in  vitro and ex vivo immunological research studies 
are performed within a standard laboratory CO2 incubator at 
approximately 17% O2. In these experiments, tissues, such as the 
spleen and lymph nodes, are excised from experimental animals 
and processed at atmospheric oxygen levels to isolate immune 
cells. These cells are then cultured in defined media supplemented 
with fetal bovine sera and incubated in a humidified, 5% CO2 
incubator at 37°C. Cells may be stimulated with recombinant 
cytokines or other activating molecules in to order to differentiate 
and/or activate the cells.

As scientists, we wish to minimize variables in our experi-
ments to increase the probability of reproducibility, defined as the 
repeatability, robustness, reliability, and generalizability of experi-
ments. Subtle and not so subtle variables in our experiments can 
make a difference from one set of hands to another and from one 
laboratory to the next. Differences in atmospheric oxygen levels, 
between labs at sea level and those at high elevations, may influ-
ence results. The concentration of CO2 in laboratory incubators 
may be variable, and these levels should be routinely surveyed 
for accuracy.

Another issue with increased non-physiological oxygen lev-
els is reduced cell viability. Excess oxygen can be toxic to cells 
due to increased levels of damaging reactive oxygen species. 
Enhanced cell survival in low oxygen has long been appreciated 
by the hematopoietic stem cell (HSC) field (25) and has recently 
been revisited (26). Mantel et al. showed that isolation of HSCs 
from bone marrow in a low oxygen environment increased 
the cell viability and the ability of the cells to transplant into 
a new host. HSC-derived immune cells may also benefit from 
such isolation protocols, increasing viability of recovered cells.  
We should reconsider current incubator designs and include 
routine experiments to examine if our phenotypes are more 
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apparent/enhanced in lower oxygen conditions, more representa-
tive of the host environment.

COnCLUSiOn

As our prioritization of data reproducibility in research continues, 
it is becoming more important to be cognizant of the numer-
ous environmental factors that shape our immune responses. 
Immune cells sense oxygen levels and adapt their function to 
these levels. Oxygen is an important variable that we often fail to 
coordinate our in vitro experiments with physiological levels. As 
careful and diligent biologists and experimentalists, we need be 
aware that physiological oxygen conditions and our commonly 
used methods for in vitro cultures do not match. We should, when 
warranted, evaluate the role of oxygen in our experiments. These 
deliberations will aid in increasing data reproducibility within 

and between laboratories, as well as increase translation between 
in vitro and in vivo analyses.
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