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ABSTRACT
Multispecies coalescent (MSC) is the extension of the single-population coalescent model to multiple
species. It integrates the phylogenetic process of species divergences and the population genetic process of
coalescent, and provides a powerful framework for a number of inference problems using genomic
sequence data frommultiple species, including estimation of species divergence times and population sizes,
estimation of species trees accommodating discordant gene trees, inference of cross-species gene flow and
species delimitation. In this review, we introduce the major features of theMSCmodel, discuss
full-likelihood and heuristic methods of species tree estimation and summarize recent methodological
advances in inference of cross-species gene flow. We discuss the statistical and computational challenges in
the field and research directions where breakthroughs may be likely in the next few years.

Keywords: anomaly zone, BPP, deep coalescence, gene flow, Markov chainMonte Carlo, multispecies
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INTRODUCTION
Developed in the 1980s, the coalescent is a stochas-
tic process that describes the genealogical history of
a sample ofDNA sequences taken from a population
[1–3].Whereas traditional population geneticmod-
els of drift and mutation describe changes in allele
frequencies over generations in the population, the
coalescent focuses on the sample and traces the ge-
nealogical history of lineage joining of the sampled
sequences backwards in time.The coalescent model
is in particular suited to inference using genetic
sequence data [4–7].

The multispecies coalescent (MSC) is an exten-
sion of the single-population coalescent to the case
of multiple species [8]. It integrates the process of
species divergences and the within-population pro-
cess of drift and mutation. Placing the coalescent
in the context of a species phylogeny makes it pos-
sible to use the ever-increasing genomic sequence
data from multiple species to address a number
of important biological questions, and in the past
two decades, the MSC has emerged as the natural
framework for such inferences. These include esti-
mation of population parameters (such as species di-
vergence times, population sizes for extant species

and extinct ancestors and rates of cross-species
gene flow), estimation of species phylogeny accom-
modating heterogeneous gene genealogies across
the genome and delineation of species boundaries
(species delimitation) [9–12]. In molecular phylo-
genetics, incorporation of the MSC to accommo-
date the so-called gene-tree–species-tree conflicts
has beenheralded as a ‘paradigmshift’ [13]. Stochas-
tic fluctuation in genealogical history of sequences
across the genome, when accommodated in the
model, is not a ‘conflict’ or ‘problem’, but rather a
sourceof information for important evolutionary pa-
rameters such as ancestral population sizes [14–16]
and rates of cross-species gene flow [17,18].

The past decade has seen exciting advancements
in the implementation and extension of the MSC
model for inference using genomic sequence data.
The data we consider in this review are sequence
alignments at hundredsor thousandsof loci,with the
different loci having independent coalescent histo-
ries while all sites in the sequence at the same locus
share the same history. Ideal data for such analysis
are short segments sampled from the genome that
are far apart [16]. While we use the term gene or
locus, the data should ideally be non-coding DNA,
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Figure 1. The Fisher-Wright model for a diploid population of N individuals or 2N= 20
sequences, with n= 5 sequences sampled at random from the present generation. The
coalescent focuses on the genealogical relationships among the sampled sequences
(in blue). Coalescent time Ti (during which there are i lineages in the sample) is in
generations.

although exonic data have been successfully used in
such analyses [19,20]. We describe the major fea-
tures of theMSCmodel (in particular, the probabil-
ity distribution of gene trees and coalescent times),
and discuss its applications in two major areas: the
estimation of the species phylogeny and the infer-
ence of cross-species gene flow. We focus on full-
likelihood methods (maximum likelihood or ML
and Bayesian inference), as they have the best statis-
tical properties, but include heuristicmethods based
on summaries of the data in our discussion. Several
comprehensive reviews on heuristic methods have
been published [9,10,21–23]. We review recent ad-
vances in using theMSCmodel to infer ancient gene
flow, includingmodels of continuousmigration (the
so-called isolation-with-migration model) and the
introgression/hybridizationmodels.We end the pa-
per with a discussion of the challenges and perspec-
tives in the field. Our focus in this review is onMSC-
based analyses of multilocus sequence data, and we
do not consider population genetics methods that
use summary statistics such as allele frequencies and
single nucleotide polymorphisms (SNPs) to infer
demographic processes including population struc-
ture and admixture [24,25].

MULTISPECIES COALESCENT
Fisher-Wright model and the coalescent
The Fisher-Wright model [26,27] in population ge-
netics describes the biological process of repro-
duction and drift in an idealized population of
constant size, with non-overlapping generations,
random mating and no population structure or se-
lection (Fig. 1(a)). Individuals of the next genera-
tion are generated by random sampling of gametes
from the current population: the frequencies of alle-
les at a locus (say,A and a for two alleles) in the next

generation are generated by binomial sampling
given the allele frequencies in the current generation.

The coalescentmodel describes the same process
of reproduction and drift, with the focus on the sam-
ple of sequences and with time running backwards
(Fig. 1(b)) [1]. When we trace the genealogical his-
tory of the sample backwards in time, lineages join
or coalesce when we reach their common ancestors.
While the forward Fisher-Wright model and back-
ward coalescent model are two characterizations of
the same process, the coalescent approach of focus-
ing on the sample offers major advantages for many
inference problems using genetic sequence data. For
example, coalescent simulation of the genealogy of
the sample is often far more efficient than forward
simulation tracking the whole population.The basic
coalescent model has been extended to accommo-
date demographic changes, recombination, popula-
tion subdivision and selection [5,7]. Here we focus
on the basic coalescent and on the probability distri-
bution of gene tree topologies and coalescent times
generated by the process.

Consider first n = 2 sequences sampled from a
diploid population of size N. With random mating
assumed in theFisher-Wrightmodel, sequences pick
parents at random when we trace the genealogical
history of the sample to the previous generation. As
there are 2N parental sequences to choose from, the
probability that the two sequencespick the samepar-
ent (that is, they coalesce) in the previous genera-
tion is 1/(2N). In other words, coalescent occurs
as a Poisson process at the rate of 1/(2N), faster
in smaller populations, and the coalescent time (the
waiting time until the two sequences find their com-
mon ancestor) has a geometric distribution with the
mean of 2N generations. Thus, two sequences sam-
pled at random are on average separated by 2N× 2
generations or θ = 4Nμ mutations per site, where
μ is the mutation rate per site per generation. Pa-
rameter θ , known as the population size parameter,
is the average distance between two sequences sam-
pled at random from the population. It is also known
as heterozygosity and can vary hugely even between
close species. Typical values include θ ≈ 0.1% for
humans [28] and 0.1%–5% forHeliconius butterflies
[29].

In analysis of sequence data, it is convenient to
measure time by the mutational distance so that
one time unit is the expected time to accumulate
one mutation per site. With this time unit, the co-
alescent waiting time for two sequences (t2) is ap-
proximately exponential with the mean θ/2, with
density

f (t2) = 2
θ
e−2t2/θ . (1)
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If there are n > 2 sequences in the sample,
there will be ( n2 ) = n(n − 1)/2 pairs and each
pair coalesce at the rate of 2/θ , with the total rate
( n2 ) · (2/θ).The timeuntil the next coalescent event
has an exponential distribution with mean

θ

2

/(
n
2

)
= θ

n(n − 1)
.

When a coalescent occurs, each of the ( n2 ) pairs
has the same probability to join. The number of lin-
eages is then reduced from n to n − 1, and the pro-
cess repeats, until themost recent common ancestor
(MRCA) is reached (Fig. 1(b)).

The n− 1 successive coalescent events generate a
genealogical tree (G) of the sequences in the sample.
This is a rooted tree with the internal nodes ranked
by age, and is called the ranked tree or labelled history
[30] (Fig. 1(b)). The number of possible labelled
histories for a sample of size n is

Hn =
n∏

i=2

(
i
2

)
= n! (n − 1)!

2n−1 ,

and each of themoccurs with equal probability, f(G)
= 1/Hn. Furthermore, the n − 1 coalescent times
t = {tn , tn−1, . . . , t2} are independent exponential
variables, with means

E(ti ) = θ

2

/(
i
2

)
.

The joint probability density of the gene tree and
coalescent times is thus

f(G, t) = 1∏n
i=2

(i
2

)
n∏

i=2

[(
i
2

)
2
θ

× exp
{

−
(
i
2

)
2
θ
ti
}]

=
n∏

i=2

2
θ
exp

{
− i (i − 1)

θ
ti
}
. (2)

Multispecies coalescent: basic features
The extension of the single-population coalescent to
multiple species has been called the interspecific co-
alescent [31] or censored coalescent [8], and is now
commonly known as the multispecies coalescent
[32]. Suppose that there are s species, which are re-
lated through a species phylogeny. Instead of a sin-
gle parameter θ , the model now involves two sets of
parameters: s− 1 species divergence times (τ s) and
2s − 1 population size parameters (θs), with a to-
tal of 3s − 2 parameters (Fig. 2). Both the τ and θ

are measured in the expected number of mutations
per site.

A a b c

θA θB θC 

θBC

θABC

τBC

τABC

1 – ϕ ϕ/3
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b c a b c a c a bB C

Figure 2. A species tree for three species (A, B and C)
showing parameters in the MSC model, and the four pos-
sible coalescent histories for a locus with one sequence
from each species, with probabilities (1 − φ, 1

3φ, 1
3φ, 1

3φ),
where φ = e−2(τAB C −τB C )/θB C is the probability that se-
quences b and c do not coalesce in species BC. Note that
the first two histories correspond to the same rooted gene
tree G1, and there are three gene trees: G1, G2 and G3.
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Figure 3. A species tree for three species, (A, (B, C)), with a
gene tree for five sequences at a locus to illustrate the MSC
density of the gene tree with coalescent times.

Given the species tree, coalescent events occur
independently in different populations, with the co-
alescent rate (2/θ) given by the population size.
Whenwe trace the history of the sequences at a locus
backwards in time and reach a speciation event, the
coalescent process and rate are reset, because of the
change in population size and because of sequences
coming from the sibling species. For example, in
Fig. 3, sequences c1 and c2 coalesce at the rate 2/θC
in speciesC.When they enter speciesBC at time τ BC,
the coalescent rate (for each pair) is reset to 2/θBC
and thenumberof lineagesbecomes3. Furthermore,
we assume that gene trees at different loci are inde-
pendent. One important feature of the MSC model
is that the divergence time between sequences from
two species must be greater than the species diver-
gence time: sequences split before species or equiva-
lently the gene tree fits inside the species tree. This in-
trinsic constraint between the species tree and the
gene trees is the source of computational challenges
in Bayesian implementations of the MSCmodel.
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There are two important probability distributions
under the MSCmodel: the (marginal) probabilities
of gene tree topologies [21,33,34] and the joint dis-
tribution of the gene tree topology and coalescent
times [8].The former is useful for two-stepmethods
of species tree estimation, which use reconstructed
gene tree topologies as data, while the latter is
used in full-likelihood methods, which use informa-
tion in gene tree branch lengths (coalescent times)
as well.

Probabilities of gene tree topologies
Under theMSCmodel, the gene tree topologies and
coalescent times have a joint probability distribu-
tion given the species tree and parameters. For small
species trees, it is easy to derive the marginal proba-
bility of gene tree topologies [2,33,35]. This line of
work typically assumes one sequence sampled per
species at every locus, so that there is no coales-
cent in modern species at the tips of the species tree.
The case of three species is considered in [2]. Let
the three species be A, B and C, with the phylogeny
S = (A, (B, C)) (Fig. 2). Let the divergence times
be τ = (τBC , τABC ) and the population sizes be
θ = (θBC , θABC ). Suppose that three sequences are
sampled from the three species (a,b and c).There are
three possible gene tree topologies:G1 = (a, (b, c))
matches the species tree, while G2 = (b, (c, a)) and
G3 = (c, (a, b)) are the mismatching gene trees.

When we trace the genealogy of the three se-
quences, sequences b and cmay coalesce in popula-
tion BC as a Poisson event at the rate of 2/θBC just
as in the single-population coalescent. Note that the
probability that aPoissonevent of rateλdoesnot oc-
cur in a time interval t is e−λt . Thus, the probability
that sequences b and c do not coalesce in population
BC or over the time interval�τ = τABC − τ BC is

φ = e−2�τ/θBC = e−2(τABC−τBC )/θBC . (3)

Here �τ/(θBC/2) is known as the internal branch
length in coalescent units—one coalescent unit in
population BC is 2NBC generations or θBC/2 muta-
tions per site. If b and c coalesce in population BC,
the gene tree must be G1. Otherwise, all three se-
quences enter species ABC and coalesce in random
order so that the three gene trees occur with equal
probability.Thus, the probabilities for the three gene
trees (G1,G2,G3) are

P(G 1) = (1 − φ) + 1
3
φ = 1 − 2

3
φ,

P(G 2) = P(G 3) = 1
3
φ. (4)

CA abc a

tabcd

tbcd
tcd

tabcd tabcd

tcd

tcdtab
tab

τBCD

τCD

τABCD

B D
G1 G2a G2b

d a b c d b c d

Figure 4. Asymmetrical species tree for four species A, B, C
and D, and three labelled histories (G1, G2a, G2b) for a locus
with one sequence from each species. Here G1 matches the
species tree, while G2a and G2b are distinct labelled histories
sharing the same topology ((a, b), (c, d)), which is different
from the species tree.

For certain species trees and parameter values, a
mismatching gene tree may be more probable than
the matching gene tree. The species tree is then said
to be in the anomaly zone [33,34].The anomaly zone
does not exist for species trees of three species—as
P(G 1) > P(G 2) = P(G 3) in equation (4), but can
occur for asymmetrical species trees of four species,
and for any species tree of five or more species [34].

Consider the asymmetrical species tree for four
species S = (A, (B, (C, D))) of Fig. 4, and sup-
pose that the three divergence times are very close,
with τABCD ≈ τ BCD ≈ τCD. Then all three coales-
cent events for the four sequences (a, b, c and d) will
most likely occur in the root population ABCD, so
that the 18 = ( 42 )(

3
2 )(

2
2 ) labelled histories will have

nearly equal probability 1
18 . There are 15 possible

rooted gene trees, 12 asymmetrical and 3 symmet-
rical. Each symmetrical gene tree (e.g. G2 in Fig. 4)
corresponds to two labelledhistories (G2a andG2b in
Fig. 4), so that its probability is∼ 2

18 . Each of the 12
asymmetrical gene trees (e.g.G1 in Fig. 4) is compat-
ible with only one labelled history, with probability
∼ 1

18 . Thus, P(G 2) ≈ 2P(G 1). When the diver-
gence times (τ s) are unequal but the internal
branches are short enough, it is possible for the
symmetrical mismatching gene tree G2 to have a
higher probability than the matching asymmetrical
gene tree G1, in which case the species tree is in the
anomaly zone.

If the species tree is in the anomaly zone, the sim-
ple majority-vote approach of using the most com-
monly observed gene tree as the estimate of the
species tree is statistically inconsistent: the more
gene trees there are, the more certain that the
species-tree estimate will be incorrect. Note that the
existence of the anomaly zone is not an intrinsic dif-
ficulty for species tree estimation; it instead high-
lights the importance of adopting a proper statis-
tical inference framework. Full-likelihood methods
are consistent for all species trees both inside and
outside the anomaly zone, as they accommodate the

Page 4 of 18



Natl Sci Rev, 2021, Vol. 8, nwab127

probability distribution of the gene trees under the
MSC appropriately. The discussion of the anomaly
zone typically assumes true gene trees and ig-
nores phylogenetic reconstruction errors in esti-
mated gene trees.There have been only a handful of
empirical examples of the anomaly zone, in African
Anopheles mosquitoes [20], skinks [36], flightless
birds [37] and gibbons [19].

The probabilities of gene tree topologies can be
used to calculate the likelihood function for estimat-
ing the species tree using (reconstructed) gene trees
as input data, as in the STELLS program [38]. How-
ever, popular heuristic methods such as MP-EST [39]
and ASTRAL [40] do not use this theory and are in-
stead based on species triplets or quartets. Further-
more, calculation of the probabilities of gene tree
topologies, which involves summing over all coales-
cent histories that are compatible with each gene
tree, becomes expensivewhen the number of species
increases [21].

Joint probability distribution of gene
trees and coalescent times
While the marginal probability of the gene tree
topology may be challenging to compute, it is
straightforward to derive the joint distribution of
gene tree topologies and coalescent times. The gen-
eral form, for an arbitrary species tree and an arbi-
trary number of sequences, is given in [8].

The joint density of gene trees and coalescent
times is a product over the populations on the
species tree, and as a result, we focus on the contri-
bution from one population. A population is repre-
sented by a branch on the species tree (sayXY) or by
the daughter node of the branch (sayX). Let τX and
τ Y be node ages or divergence times, and θX be the
population size. Suppose thatm sequences enter the
population at time τX and l sequences leave the pop-
ulation at timeτ Y, with1≤ l≤m. For example, in the
gene tree of Fig. 3, m = 3 lineages enter population
BC while l = 2 lineages leave it. Unlike the single-
population coalescent, under the MSC, lineages en-
tering apopulationdonotnecessarily find their com-
mon ancestor in that population, and the coalescent
process may be ‘censored’ [8]. Note that if X is the
root of the species tree, lmust be 1.

The MSC density for the part of the gene tree
residing in population XY is the product of three
components. The first is the joint density of the
m − l independent exponential coalescent waiting
times {t Xm , t Xm−1, . . . , t

X
l+1}. The second component

is for the gene tree topology in XY, and is a prod-
uct of m − l probabilities, each being the probabil-
ity, 1/( i2 ), of choosing two out of i lineages to join,
for i = m, m − 1, . . . , l + 1. These two components

are the same as in the single-population coalescent.
The third component is the probability that no coa-
lescent events occur in the last time interval before
reaching τ Y. Multiplying the three components, we
obtain theMSC density of the gene tree in XY as

(
2
θX

)m−l

exp
{
−

m∑
i=l+1

i (i − 1)
θX

t Xi

− l(l − 1)
θX

(
τY − τX −

m∑
i=l+1

t Xi

)}
.

(5)

For example, the contribution of species BC to the
MSC density of the gene tree in Fig. 3 is

2
θBC

exp
{
− 6

θBC
t BC3 − 2

θBC
(τABC −τBC −t BC3 )

}
.

(6)

As coalescent processes in different populations
operate independently, the MSC density for the
whole gene tree at a locus is the product of the con-
tributions across all populations. For the gene tree of
Fig. 3, this is

f (G, t|S,�) =
[
2
θA

e−2t A2 /θA

]
× [e−2τBC /θC ]

×
[

2
θBC

e−6t BC3 /θBC−2(τABC−τBC−t BC3 )/θBC

]

×
[

2
θABC

· 2
θABC

e−6t ABC3 /θABC−2t ABC2 /θABC

]
. (7)

The four pairs of brackets correspond to speciesA,C,
BC and ABC, respectively. Coalescence is not possi-
ble in speciesB as only one sequence is sampled from
that species.

Withmultiple loci in the data, the jointMSCden-
sity of the gene trees is a product across all loci, be-
cause the genealogical histories at different loci are
assumed to be independent.The formulation allows
the loci to have different sampling configurations.
For example, the number of sequences from each
species may vary among loci and some species may
be missing at some loci.

SPECIES TREE INFERENCE
UNDER THE MSC
Species-tree–gene-tree conflicts
The gene tree representing the coalescent history of
the sequences at a locus may not match the species
tree. Such a discordance may occur because when
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we trace the history of the sample backwards in
time, sequences from different species may not co-
alesce as soon as they reach the most recent com-
mon ancestor on the species tree but instead coa-
lesce in more ancient ancestors (e.g. gene trees G1b,
G2, G3 in Fig. 2). This delayed coalescence or deep co-
alescence is also known as incomplete lineage sorting.
While several biological processes, including gene
duplication followed by gene loss or horizontal gene
transfer [41,42], can cause the gene tree to differ
from the species tree as well, deep coalescence is
more fundamental because coalescent is simply bi-
ological reproduction and drift and thus may affect
every species. Deep coalescence is more common
when multiple species arise through a rapid succes-
sion of speciation events, resulting in very short in-
ternal branches on the species tree relative to the co-
alescent waiting time (note that φ in equation (3) is
greater for smaller�τ and larger θBC).Theexistence
of the anomaly zone is an extreme case of deep coa-
lescence. Deep coalescence is related to how short
the internal branches are, rather than how deep they
are on the species tree, and may thus occur in both
shallow and deep species trees [43].

Full-likelihood methods
ML methods [44,45] and Bayesian inference
[46–49] use the joint distribution of gene trees and
coalescent times [8] and operate on multilocus
sequence data directly. Let the sequence data
be X = {X j }, where Xj is the alignment of nj
sequences at the jth locus for j= 1, 2, . . . , L. Let S be
the species tree, and let� = {τ , θ , η} be the vector
of parameters, including species divergence times
(τ), population sizes (θ) and parameters in the
mutationmodel (η).The likelihood of the sequence
data given theMSCmodel has the form

f (X |S,�) =
L∏
j=1

∑
G j

∫
t j

f (X j |G j , t j , η)

× f (G j , t j |S,�)dt j , (8)

where f (X j |G j , t j , η) is the phylogenetic likeli-
hood given the gene tree Gj and branch lengths t j
at locus j [50], while f (G j , t j |S,�) is the MSC
density of the gene tree described above [8]. As the
genealogical histories at different loci are indepen-
dent, the likelihood of the sequence data is a product
across all loci.The summation in equation (8) is over
all possible gene tree topologies for the sequences,
and the integral is nj − 1 dimensional, over the
nj − 1 coalescent times on each gene tree. The gene
trees and coalescent times are not observed, and the

likelihood function averages over them, accommo-
dating their uncertainties.

Thespecies treeS and theMSCparameters� can
be estimated usingML bymaximizing equation (8).
Both the phylogenetic likelihood f (X j |G j , t j , η)
and MSC density f (G j , t j |S,�) are straightfor-
ward to calculate, but averaging over all the pos-
sible gene tree topologies and coalescent times at
each locus is computationally infeasible except for
small data sets. The only ML implementation avail-
able is the 3S program [44,45], which enumerates
the gene trees anduses numerical integration (Gaus-
sian quadrature) to calculate the integrals. Although
limited to three species and three sequences per lo-
cus, 3S can handle tens of thousands of loci.

With more than three species, the Bayesian
method has a computational advantage over ML,
with theMarkov chainMonteCarlo (MCMC) algo-
rithm averaging over the gene trees and coalescent
times. We assign prior distributions to the species
tree andmodel parameters. For example, the species
tree can be assigned a uniform prior over all rooted
trees, while the population-size parameters (θs) can
be assigned gamma or inverse-gamma priors. The
inverse-gamma priors for the θ are conjugate (so
that both the prior and posterior for the θ are inverse
gamma), allowing the θ to be integrated out analyti-
cally [51], which helps withMCMCmixing.The age
of the species-tree root can be assigned a gamma or
inverse-gamma prior, while the other node ages can
be constructed using a Dirichlet distribution [52].
The MCMC algorithm samples from the joint pos-
terior distribution of the species tree, the MSC pa-
rameters and the gene trees at all loci

f (S,�, G , t|X )∝ f (S,�)
L∏
j=1

f (X j |G j , t j , η)

× f (G j , t j |S,�). (9)

In particular, the samples of (S, �) generated
by the algorithm are from the marginal posterior
f (S,�|X), and the frequency at which a species
tree is visited is an estimate of its posterior probabil-
ity. In this way, MCMC averages out the gene trees
and coalescent times numerically.

The first implementation of the Bayesian ap-
proach is the program BEST [53]. This uses the sam-
ples of gene trees with branch lengths produced by
MRBAYES [54] and applies an importance-sampling
correction because MRBAYES does not assume that
the gene trees are distributed according to the MSC
density. This strategy does not work well, as the
species tree and the gene trees place tight constraints
on each other in the MSC model. Currently, two
Bayesian programs under the MSC are in common
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use: *BEAST [46] and BPP [47–49], both of which ex-
plicitly use theMSCmodel.The algorithm in BPP for
species tree inference goes through several proposal
steps in eachMCMC iteration, as follows.

(1) Update the coalescent times t j on the gene tree
at each locus j.

(2) Update the gene tree topology Gj at each lo-
cus j through a subtree-pruning-and-regrafting
(SPR) algorithm.

(3) Update the population sizes (θs).
(4) Update the species divergence times (τ s).
(5) Update the species tree topology S through

a nearest-neighbor interchange (NNI) or SPR
move, whichmay change the gene trees to avoid
conflicts.

(6) Use a multiplier to rescale all node ages on the
species tree and on all gene trees.

Perhaps the greatest challenge in such MCMC
algorithms comes from the constraint between the
species tree and the gene trees. Consider step 4 for
changing species divergence time τAB, the age of the
ancestral node for two sister species/cladesA and B.
Let tab be the sequence divergence time for two se-
quences fromA and B.Then τAB < tab. If the dataset
includes thousands of loci andmany sequences from
A and B at each locus, the smallest of tab among all
locimaybe almost identical to the current τAB.Then,
when we use a sliding window to change τAB, the
window size will have a width near zero, and the
MCMC is virtually stuck. A ‘rubber-band’ algorithm
was proposed in [8], which changes τ and the af-
fected node ages on gene trees jointly. Similarly, in
step 5, it is very inefficient to change the species tree
when all gene trees are fixed. A breakthrough was to
make coordinated changes to the gene trees when
an NNI algorithm is used to change the species tree
[47].The algorithm has since been extended to SPR
[48,55] and ported to *BEAST as well [55,56]. Those
improvements have pushed the limit of datasets that
can be analyzed using Bayesian MCMC programs
from∼100 to∼10 000 loci [19,20].

Heuristic or summary methods
Many heuristic methods for species tree estimation
have been developed, which use summaries of the
data rather than the original mutlilocus sequence
alignments. For extensive reviews, see [9,10,22,23].
Here wemention four commonly used ones: MP-EST
[39], ASTRAL [40], NJ-ST [57] and SVDQUARTETS

[58].
MP-EST [39] estimates triplet gene trees un-

der the molecular clock (rate constancy among lin-
eages), and then uses a composite likelihood func-
tion, treating the frequencies of the triplet gene trees

as input data from a trinomial distribution (with
probabilities given in equation (4)). A composite
or pseudo-likelihood is constructed by multiplying
those probabilities for all possible triplets, ignoring
lack of independence among them. This compos-
ite likelihood is maximized to estimate the species
tree.

ASTRAL [40] uses a phylogenetic method to infer
unrooted gene trees, and extracts the quartets from
them. It then finds the species tree that is most com-
patible with the quartets in the set. A procedure has
also been developed to attach local support values
for nodes on the inferred species tree [59].

NJ-ST [57] uses a distancemethod to estimate an
unrooted species tree from a collection of unrooted
gene trees.The species tree estimate is the neighbor-
joining tree built from a distance matrix where the
distance between two species is defined as the aver-
age number of internal nodes on the gene tree be-
tween the species.

All those three methods are two-step methods,
treating estimated gene tree topologies as data.They
are consistent, with the probability to recover the
correct species tree approaching 1 when the num-
ber of gene trees increases. As discussed above, the
anomaly zone does not exist for rooted triplets or
equivalently for unrooted quartets. However, the
argument for consistency is based on the assump-
tion that the input gene trees are known without er-
ror. Phylogenetic reconstruction errors are known
to affect the performance of two-step methods [60].
Furthermore, as those two-step methods use gene
tree topologies but not branch lengths or coalescent
times, they suffer from unidentifiability issues [9].
They can estimate the species tree topology but not
all parameters in theMSCmodel.

Another summary method is called SVDQUAR-
TETS [58]. This is a quartet method, designed for
data of coalescent-independent sites, sites that have in-
dependent histories. Such sites are similar to SNPs
but include constant sites as well. Genome sequenc-
ing projects do not generate such data. When the
method is applied to multilocus sequence align-
ments, sites are pooled across loci, as in the con-
catenation method, so that the data are the counts
of 256 (=44) site patterns for the species quartet.
Note that the site-pattern counts pooled across loci
are summaries of the original multilocus alignments.
When all sites have independent histories, the sum-
mation over gene trees and the integral over coales-
cent times under theMSCmodel (equation (8)) are
analytically tractable [58,61]. Pooling sites across
loci causes information loss and identifiability issues,
so that the method is unable to identify all parame-
ters in theMSCmodel even if the species tree topol-
ogy is identifiable [9,62].
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Figure 5. A simulation experiment to compare four methods of species tree estimation: ML analysis of concatenated data, ASTRAL, MP-EST and BPP.
(a) Species tree used in the simulation. Two sets of parameter values are used: τ ABCDO = 3θ , τ ABCD = 1.25θ , τ ABC = 1.125θ and τ AB = θ in set 1, and
τ ABCDO = 3θ , τ ABCD = 1.05θ , τ ABC = 1.025θ and τ AB = θ in set 2, with θ = 0.01. (b) and (c) Proportion of replicates in which the estimated species
tree is the true tree (blue) or the mismatching tree S= (((A, B), (C, D)), O) (red). Data of multilocus alignments were simulated using the simulate option
of BPP [49] under the JC69 model [66], with one sequence sampled per species at each locus, and with a sequence length of 500 sites. The outgroup
sequence (O) is used to root the tree by concatenation/ML and ASTRAL, but not used by BPP or MP-EST. The number of replicates is 100 for BPP and 500
for the other methods.

Some two-step methods use both gene tree
topologies and branch lengths (coalescent times)
[63]. However, those methods were found to have
poorer performance thanmethods based on topolo-
gies alone [64,65]. This is because the methods ig-
nore random sampling errors in branch-length esti-
mates. It is easy to see that sampling errors in branch
lengths may have a major impact on estimation of
the species tree and theMSC parameters. For exam-
ple, if two sequences from two species are identical
at a locus so that the estimated coalescent time is
tab = 0, the species divergence time τAB will be
forced to be 0 as well (since τAB < tab), which may
have a dramatic effect on species tree estimation.
While coalescent times or branch lengths on gene
trees contain much information [62], it is important
to accommodate their uncertainties.

Comparison between full-likelihood
and heuristic methods
Figure 5 shows results from a small simulation to
illustrate the different performance of a full-
likelihood method (BPP), two summary methods
(ASTRAL and MP-EST) and ML analysis of concate-
nated data. The species tree is challenging with
short internal branches in both sets of simulations.
BPP recovered the true species tree with higher
probability than the two summary methods and
concatenation. For set 1, all four methods are
consistent, with the probability of recovering the

true species tree approaching 1 for every method
when the number of loci increases. For set 2, the
species tree is in the anomaly zone, and concatena-
tion/ML is inconsistent, with the probability for the
mismatching balanced tree approaching 1, while the
other three methods are consistent. Note that the
ML method applied to concatenated data assumes
one tree and one set of divergence times for all loci
and can be inconsistent [67].

Heuristicmethodsbasedondata summarieshave
a huge computational advantage over full-likelihood
methods. For large datasets with hundreds or thou-
sands of species and thousands of loci, they may be
the only methods that are currently feasible com-
putationally. Heuristic methods have poorer statis-
tical performance than full-likelihood methods, and
the difference can be large for challenging species
trees with short internal branches [9,19,62,64,68].
As two-step methods typically ignore phylogenetic
reconstruction errors in gene trees, their perfor-
mance may suffer from uncertainties in the gene
trees [60,64]: for thosemethods, species trees are only
as good as the gene trees on which they are built [9,23].

An important strength of full-likelihood meth-
ods is that they can provide estimates of param-
eters in the MSC model when the species tree is
fixed [16,56]. The MSC model for a species tree
of s species has s − 1 divergence times (τ s) and
2s− 1 population sizes (θs) (Fig. 2), all of which can
be identified and estimated by full-likelihood meth-
ods using multilocus sequence data. In contrast,
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summary methods use only a portion of informa-
tion in the data and are unable to identify all param-
eters in the model. For example, in the case of three
species, the MSC model involves seven parameters
(two τ andfive θ), but there are only twodistinct fre-
quencies of gene trees (equation (4)), so that two-
step methods using gene tree topologies alone can
identify only the internal branch length in coales-
cent units: φ or 2�τ/θBC of equation (3). For large
datasets for which species tree estimation using full-
likelihood methods is too expensive, it may be ad-
visable to use summary methods to infer the species
tree, and then full-likelihood methods to estimate
the population parameters on the species tree.

MULTISPECIES COALESCENT WITH
MIGRATION OR INTROGRESSION
In the past two decades, analyses of genomic data
have highlighted the prevalence of cross-species
gene flow [69–71]. Ancient gene flow has been
detected in a variety of species, from mosquitoes
[20,72] and butterflies [73] to hominins [74]. Like
deep coalescence, gene flow causes genealogical
fluctuations across the genome, posing challenges to
species tree estimation [75–78]. Perhaps more im-
portantly, hybridization can lead to rapid genomic
changes, leading to beneficial new phenotypes and
ecological adaptations. Inferring the mode and tim-
ing of gene flow may help us to achieve a better and
richerunderstandingof theprocessof speciation and
adaptation [70,71].

Two types of model of gene flow have been
developed, both as extensions to the MSC model.
The first is the migration model (MSC+M), also
known as the isolation-with-migration (IM) model
[17,79], which assumes that gene flow occurs at a
certain rate every generation. The second is the hy-
bridization/introgressionmodel (MSC+I orMSci)
[80,81], inwhich hybridizationoccurs at a fixed time
point in the past. Here we discuss the distribution
of gene trees under those models of gene flow. ML
and Bayesian methods of inference proceed as be-
fore (equations (8) and (9)), except that the model
may involve parameters thatmeasure the timing and
strength of gene flow and the gene tree may include
the migration or introgression history, as well as the
tree topology and coalescent times.We alsomention
a few heuristic methods for testing for the presence
of gene flow and estimating its rate.

Isolation with migration
Consider two populations A and B with population
sizes θA and θB that have been exchanging migrants

A

R

MAB

MBA

a
s1

s2

s3

s4

t
ττR

m2

m1

m1

m2

s5

s6

b

Gene treeIM model (b)(a)

B

θR

θBθA

Figure 6. (a)Migration (MSC+M) or isolation-with-migration
(IM) model for two species (A and B) showing the parame-
ters. (b) A gene tree for two sequences (a and b) with diver-
gence time t and four migration events, with t = ∑6

k=1 sk .
The migration rates (per mutational time unit) are shown
beneath the horizontal lines representing migration events.
Note that time runs forwards in (a) when we define migra-
tion rates (MAB or m2) and backwards in (b) when we trace
the genealogical history at the locus.

at the rates of MAB and MBA since their divergence
at time τR (Fig. 6(a)). The parameter vector in the
IM model for two species is thus � = {θA, θB, θR,
τR,MAB,MBA}. Here the population migration rate
MAB = mABNB is the expected number of migrants
fromA to B (in the real world with time running for-
wards) per generation, with mAB the proportion of
individuals in populationB that are immigrants from
populationA.The rateMBA =mBANA is defined sim-
ilarly. Note that migration rates in the IMmodel re-
flect the long-term effects of migration, genetic drift,
recombination, as well as natural selection purging
introduced alleles [71]. We consider the probability
density of gene trees under the IMmodel.There are
two formulations, depending on whether the gene
tree at a locus includes the migration history.

In the first formulation, the gene tree includes
the tree topology and coalescent times, but not the
migration history (or with the migration history in-
tegrated out). This relies on the theory developed
in the structured coalescent framework in which the
backwards-in-time process of coalescence and mi-
gration is describedusing a continuous-timeMarkov
chain [82–84]. The state of the chain is specified by
the number of sequences in the sample and their
population IDs [18,45,61]. Consider the IM model
for the two species (A and B) of Fig. 6(a) and sup-
pose that two sequences (a and b) are sampled at
locus j (Fig. 6(b)), so that the gene tree is just the se-
quence divergence time tj (we suppress the subscript
and write tj as t henceforth). When we trace the ge-
nealogy of the two sequences backwards in time, the
sequences may move between populations and they
may coalesce. The possible states are sAA, sAB, sBB, sA
and sB. Here sAA means that both sequences are in
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populationA, sBB means that both are in B, while sAB
means that one is in A and the other is in B. With
only two sequences in the sample, there is no need
to distinguish sAB and sBA. If the two sequences have
coalesced, the state becomes sA or sB, and these are
lumped into one artificial absorbing state, sA|B, since
there is no need to trace the history any further. Let
Q = {quv} be the generator matrix for the Markov
chain over the time interval (0, τR), where quv is the
instantaneous rate of transition from states u to v.
That is,

Q =
⎛
⎜⎜⎜⎝

s AA s AB s B B s A|B
s AA −2(m1 + 1/θA) 2m1 0 2/θA
s AB m2 −(m1 + m2) m1 0
s B B 0 2m2 −2(m2 + 1/θB ) 2/θB
s A|B 0 0 0 0

⎞
⎟⎟⎟⎠.

(10)
Here the time unit is one mutation per site,
m1 = 4MBA/θA =mBA/μ is themutation-scaled mi-
gration rate into species A and m2 = 4MAB/θB =
mAB/μ is the rate intoB. Note that theMarkov chain
runs backwards in time while the migration rates
(e.g.MAB and m2) are defined under the real-world
forward-in-time view. For example, in the first row,
the transition from sAA to sAB represents migration
from B to A in the real world, and either sequence in
A canbe themigrant, so that the rate is 2mBA per gen-
eration or 2mBA/μ = 2m1 per mutational time unit.
The transition from sAA to sA|Bmeans that the two se-
quences coalesce inA, with rate 2/θA. State sBB is not
reachable from sAA instantaneously.

The transition probability matrix over any time
0 < t < τR ≡ τ is then P (t) = {puv(t)} = eQt ,
where puv(t) is the probability that, given state u at
time 0, the chain will be in state v at time t. The ma-
trix P(t) is analytically tractable in special cases (e.g.
when the model is symmetrical with MAB = MBA
and θA = θB, [18]), but can be calculated in general
using efficient algorithms for matrix exponentiation.
Let s0 be the initial state, which is one of sAA, sAB and
sBB, depending on which species each sequence is
sampled from(s0 = sAB in the gene tree of Fig. 6(b)).
The density of the divergence time t is

f (t |�) =

⎧⎪⎪⎨
⎪⎪⎩

ps0s AA(t)
2
θA

+ ps0s B B (t)
2
θB

if t < τ,[
1 − ps0s A|B (τ)

] 2
θR
e−2(t−τ)/θR

if t ≥ τ.

(11)

Recall that the probability density f(t) means that
f(t)�t is the probability that the divergence time is
in the small interval (t, t + �t). In the case of t
< τ , the two sequences coalesce before reaching τ .
The probability f(t)�t is a sum of two terms, corre-
sponding to the coalescent occurring in eitherAorB.

The first term, ps0s AA(t)(2/θA)�t , is the probability
that both sequences are in species A right at t, times
the probability, (2/θA)�t, that they coalesce during
(t, t + �t). Similarly, the second term is the prob-
ability of coalescent occurring in B. In the case of
t > τ , the two sequences do not coalesce in either
A or B before time τ and both enter the ancestral
speciesR. Here 1 − ps0s A|B (τ) is the probability that
theMarkov chain is in anyof the two-sequence states
at time τ (in otherwords, sequences a and bhave not
coalesced by time τ). Inside species R, the two se-
quences coalesce at the rate 2/θR, with the waiting
time (t− τ) exponentially distributed.

Note that calculation of P(t) for the Markov
chain integrates out themigration history at each lo-
cus analytically, so that equation (11) is a function
of the divergence time t but not of the migration
events or times. Even in the case of two sequences
(Fig. 6(b)), there are an infinite number of migra-
tion histories that give rise to the same t, and equa-
tion (11) averages over all of them.

TheMarkov chain (Q) specified above applies to
two species and two sequences. A different Markov
chain has to be constructed if there are more species
or more sequences. The theory is general and works
for arbitrary numbers of species and sequences. For
a tree of s extant species, we divide the timeline into
s epochs according to the (s− 1) species divergence
times. In each epoch, the populations are fixed so
that the coalescent andmigration rates stay the same,
and a Markov chain can be constructed [18,61].
With the MSC density of gene trees calculated this
way, the likelihood under the IM model is given by
equation (8), although the parameter vector � in-
cludes themigration rates as well.This strategy of in-
tegrating out the migration history may offer a huge
computational advantage. However, the number of
states in theMarkov chain grows explosivelywith the
increase in the number of species and the number of
sequences [61]. The formulation is feasible for very
small numbers of species and sequences only. The
only implementation of this strategy appears to be
theMLprogram3S [18,45], which is limited to three
species and three sequences, although tens of thou-
sands of loci can be handled.

In the second formulation, the gene tree at a
locus includes the tree topology, coalescent times
and the fullmigration history, including the number,
times and directions ofmigration events (Fig. 6(b)).
The probability density for such a gene tree is easy
to compute because both coalescent and migration
are Poisson events with exponential waiting times
[85–87]. In the gene tree of Fig. 6(b), the time pe-
riod (0, t) is broken into six time segments by the co-
alescent,migration and speciationevents, andwithin
each segment, the number of lineages is constant,
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as are the coalescent and migration rates. Then the
probability density of the gene tree (G) is given by
the rates for the coalescent and migration events
times the probability of no events over the whole
time period

f (G |�) = [m2
1e

−2s2/θA−m1(s1+2s2+s3+s5)]

×[m2
2e

−2s4/θB−m2(s1+s3+2s4+s5)]

×
[
2
θR

e−2(t−τ)/θR

]
. (12)

The three pairs of brackets represent contributions
to the gene tree density from species A, B and R,
respectively. For species A, there are two migration
events into A (with ratesm2

1), a coalescent does not
occur over time segment s2 and migration does not
occur over segments s1, s2, s3 or s5, during which
the number of lineages is 1, 2, 1 and 1, respectively.
Hence the term for speciesA.Note that theprobabil-
ity of no events, or the probability that none of mul-
tiple independent Poisson events with a total rate of
λ occurs, over time t is e−λt . The contribution from
species B is given similarly. In speciesR, a coalescent
occurs after the waiting time s6 = t− τ , so the rate is
2/θR and the probability of no event is e−2(t−τ)/θR .

Unlike equation (11) in which the gene tree
means divergence time t, here G represents the full
coalescent and migration history at the locus, such
as the (backwards-in-time) transitions of sequence
b from B into A at time s1 and back to B at time
s1 + s2, and so on. If we sum over all possible histo-
ries that have divergence time t (one of which is that
of Fig. 6(b)), the marginal density f(t) will be given
by equation (11).

Equation (12) is easily generalizable to more
species and sequences. For a general gene tree, one
can break the time period from the present time to
the root of the gene tree into time segments by the
coalescent and migration events at the locus and by
the speciation events. Then the probability density
of the gene tree is simply given as the product of
rates for the coalescent andmigration events that oc-
curred times the probability of no events over the
whole time period.

This formulation is used in Bayesian implemen-
tations of the IM model such as IMA [88,89] and
G-PHOCS [90]. The posterior is given by equa-
tion (9) except that the gene tree Gj includes the
migration history. G-PHOCS is an extension of an
earlier version of BPP [8,16] and is computation-
ally more efficient than IMA and can deal with a
few thousand loci. The algorithm averages over the
migration history at every locus and becomes in-
efficient at high migration rates, as there will be
manymigrationevents to averageover.Note that the

sequence likelihood depends on the gene tree and
coalescent times but not migration events.

Multispecies coalescent
with introgression
Theintrogressionormultispecies coalescentwith in-
trogression (MSci) model assumes that gene flow
occurs between species at fixed time points in the
past (Fig. 7). There are two types of nodes on
the species tree: speciation nodes and hybridization
nodes. While a speciation node (if it is not the root)
has one parent, a hybridization node has two par-
ents, with their contributions to the hybrid species
represented by probabilities ϕ and 1− ϕ. When we
trace the history of sequences backwards in time and
meet a hybridization node, each sequence picks one
of the two parents according to probabilities ϕ and
1 − ϕ. The parameters in the model include the in-
trogression probabilities as well as the species di-
vergence/introgression times (τ s) and population
sizes (θs), with � = {τ , θ ,ϕ}. The introgression
probability ϕ, also written as γ , has been called (in-
appropriately) ‘inheritance probability’ or ‘heritabil-
ity’. Like the migration rate in the IMmodel, the in-
trogression probability reflects the long-term effects
of drift and selection on introgressed alleles. The
MScimodel has been referred to as the networkmul-
tispecies coalescent [91,92] ormultispecies network
coalescent [93,94]. We avoid the term ‘network’ as
it has been used to refer to a variety of processes, in-
cluding gene tree reconstruction errors [95].

Four typesofMScimodel are implemented inBPP

(Fig. 7) [81]. In model A, two species SH and TH
merge to form a hybrid species HC. This scenario
may be rare, but the model can be used to accom-
modate introgressions involving ghost or unsampled
species (Fig. 8(a) and (b)). Model B assumes intro-
gression from species RA to TC at time τ S = τH.
This is distinguishable using genetic data from the al-
ternative model in which there is introgression from
RB to SC (B2 in Fig. 8(d)). Model C (Fig. 7(c)) is
a case of hybrid speciation. Model D assumes that
two species RA and RB came into contact at time
τX = τ Y and exchanged migrants.

The two parental branches are sometimes called
the ‘major hybrid edges’ and ‘minor hybrid edges’,
according as ϕ > 1

2 , and the binary species tree that
remains after all minor hybrid branches are removed
is called the ‘major species tree’ [95].This character-
ization is useful if gene flow occurs in pulses as as-
sumed by the MSci model, but may be misleading
if gene flow is continuous. For example, continuous
migration at a low rate per generation can drastically
change the gene tree distribution so that, when the
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MSci model is fitted to the data, the major species
tree may reflect gene flow, rather than species diver-
gences [20,72,78].

Below we consider the probabilities of gene tree
topologies under theMScimodel.These can be used
in the two-step methods to estimate the introgres-
sion probabilities or to infer the introgressionmodel
using reconstructed gene trees as input data, as in the
PHYLONET/ML program [96].

The calculation is very similar to that under
the simple MSC model (equation (4)). Consider
model B (Fig. 9(a)), with three sequences at the lo-
cus (a, b, c) [78]. If sequences b and c coalesce in
speciesT, the gene treewill beG1 = (a, (b, c)), while
if a and c coalesce in species S, the gene tree will be
G2 = (b, (c, a)). If neither event occurs, the two coa-
lescent events for the three sequences will occur in
species R and the three gene trees will occur with
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Figure 9. (a) MSci model B for three species (Fig. 7(b)) and
(b) a gene tree for four sequences for illustrating the gene
tree density under the MSci model.

equal probabilities. Thus, G3 = (c, (a, b)) must be
the least probable gene tree. We have

P(G 1) = 1
3
ϕφS + (1 − ϕ)

(
1 − φT + 1

3
φT

)
,

P(G 2) = ϕ

(
1 − φS + 1

3
φS

)
+ 1

3
(1 − ϕ)φT ,

P(G 3) = 1
3
[ϕφS + (1 − ϕ)φT ]

= 1 − P(G 1) − P(G 2), (13)

where φS = e−2(τR−τS )/θS and φT = e−2(τR−τT )/θT

are the probabilities that two sequences entering
species S orT do not coalesce in that species (cf.φ of
equation (3)). Consider gene tree G1, which means
that sequences b and c coalesce first. If sequence c en-
ters S (which happens with probability ϕ), G1 can
occur only if sequences c and a do not coalesce in S.
Hence the first term, ϕφS · 1

3 . If sequence c entersH
(which happens with probability 1− ϕ), sequences
b and c can coalesce in T or R. Hence the second
term, (1 − ϕ)(1 − φT + 1

3φT).
The gene tree probabilities (equations (13)) are

functions of ϕ, φS and φT, while φS and φT are sim-
ple functions of the internal branch lengths in coa-
lescent units on the species tree. We have P(G 1) <

P(G 2) if (1− ϕ)(1− φT)< ϕ(1− φS), or if b and
c are more likely to coalesce in T than are a and c to
coalesce in S [78].

Next we consider the joint density of (G j , t j ),
the gene tree with the complete history of coales-
cence and introgression events at locus j, including
the parental path taken by each sequence at each hy-
bridization node. This is used in full-likelihood im-
plementations of the MSci model. This joint den-
sity is very similar to that under the MSC without
gene flow (equation (7)), with the only modifica-
tion that each time a sequence passes a hybridization
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Table 1. A partial list of computer programs implementing
the MSC model with and without gene flow.

Method MSC IM&MSci

Full likelihood 3S 3S
BPP IMA3
*BEAST G-PHOCS

BPP

*BEAST
PHYLONET

Two step ASTRAL PHYLONET

MP-EST PHYLONETWORKS

NJ-ST

node, there is a probability ϕ or 1 − ϕ depending
on the parental path taken.Thus, for the gene tree of
Fig. 9(b),

f (G j , t j |S,�)=[e−2τH /θC ]×
[
ϕ
2
θS

e−2(t2−τS )/θS

]

×[1 − ϕ] ×
[
2
θT

e−2(τR−τT )/θT

]

×
[
2
θR

· 2
θR

e−6(t1−τR )/θR−2(t0−t1)/θR
]
. (14)

The five pairs of brackets correspond to speciesC, S,
H, T and R (Fig. 9(b)). For species S (i.e. SR), se-
quence c1 picks parental path S and coalesces with
sequence a at time t2, so that the contribution to
the gene tree density from S is ϕ(2/θS)e−2(t2−τS )/θS .
Introgression is counted as an event in the receiv-
ing population (rather than the source population)
when we trace the lineages backwards in time and
reach a hybridization node.

Bayesian implementations of the introgression
model can then proceed as before, with the joint
posterior of the MSci model and parameters given
by equation (9), except that S now represents the
MSci model, the parameter vector � includes the
introgression probabilities (ϕs) as well as the di-
vergence/introgression times (τ s) and population
sizes (θs), and the gene tree Gj includes the intro-
gression history at the locus. There are currently
three Bayesian MCMC implementations of the
MSci model: PHYLONET/MCMC-SEQ [93], *BEAST
[94,97] and BPP [81] (Table 1). PHYLONET and
*BEAST can allow changes to hybridization events
in the MCMC and can infer the introgression
model from the data. Those programs appear to
reach their limits with <100 loci. BPP assumes
that the MSci model is specified and fixed and
the program estimates the parameters under the
model. It has been applied to datasets of over
10 000 loci [29,81]. Also, BPP implements four
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X Y
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X Y

Z W
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X Y
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β
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 α

1– β

(1– α)β (1– α)(1– β)

αβ α(1– β)
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Figure 10. Displayed species trees are binary trees that
result from removing one of the two parental branches at
each hybridization node in the MSci model. With k hy-
bridization nodes, there are 2k displayed species trees. Their
probabilities are given by the introgression probabilities
at the hybridization nodes: αβ , α(1 − β ), (1 − α)β and
(1 − α)(1 − β ).

different types of introgression model (Fig. 7),
while only model A is available in PHYLONET

and *BEAST.
Binary species trees generated by taking differ-

ent parental paths at hybridization nodes are called
‘displayed species trees’ [92] or ‘parental species
trees’. An interesting formulation of theMScimodel
specifies the distribution of the gene trees as a mix-
ture over the displayed species trees, with the mix-
ing probabilities given by the introgression prob-
abilities at the hybridization nodes (Fig. 10); see,
e.g. [98,99]. To simulate a gene tree, one would
sample a displayed species tree first and then gen-
erate the gene tree according to the simple MSC
model. This is in general incorrect as it forces all se-
quences at the locus to take the same parental path
at each hybridization node, whereas correctly there
should be a binomial sampling process when two
or more sequences reach a hybridization node. In
the model of Fig. 10, if sequences b and c reach
species Y, it should be possible for one of them
to take the left parent and the other the right par-
ent. In the special case where each hybridization
node on the species tree has at most one sequence
from all its descendant populations, the formulation
is correct and can be used to derive the probabil-
ity distribution of gene trees. For example, equa-
tions (13) for the case of three species and three
sequences (Fig. 9(a)) can be derived this way. It is
also interesting to note that, under the MSci model,
the most probable gene tree may have a topology
that is different from all of the displayed species
trees [100].
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Heuristic methods for inferring gene flow
A number of heuristic methods have been devel-
oped to test for the presence of gene flow and to es-
timate its strength. Here we mention a few briefly.
Themost popularmethod is theD-statistic orABBA-
BABA test [101].This uses the species tree (((A, B),
C), O) for three species A, B and C, with the out-
group species O, and is based on the counts of site
patterns when one sequence or genome is available
from each species [102].There are three parsimony-
informative site patterns:AABBmatches the species
tree, while ABBA and BABA are the mismatching
patterns, where A and B are any two distinct nu-
cleotides. The probabilities for the two mismatch-
ing site patterns ABBA and BABA should be equal if
there exists deep coalescence but no gene flow, but
they are different if there is gene flow between the
non-sister species (A and C or B and C) in addition
to deep coalescence. Thus, gene flow can be tested
by using the site-pattern frequencies to examine the
deviation of

D = f AB B A − f B AB A

f AB B A + f B AB A
(15)

from 0.TheD-statistic has been extended to the case
of five species, assuming a symmetric species tree in
the so-called DFOIL test [103]. The site pattern fre-
quencies can also be used to estimate the introgres-
sion probability, as in the programHYDE [104,105].
From

f1
f2

= pAAB B − pAB AB

pAB B A − pAB AB
= ϕ

1 − ϕ
, (16)

one gets the estimate

ϕ̂ = f̂1
f̂1 + f̂2

. (17)

This is based on the hybridization model with τ S =
τT and θ S = θT (Fig. 7(c)). The estimate should be
biased if this symmetry does not hold.

A similar argument may be applied to gene tree
topologies instead of site patterns (equation 13,
Fig. 9(a)). The probabilities of the two mismatch-
ing gene trees ((b, c), a) and ((c, a), b) are equal
if there exists deep coalescence but no gene flow,
but different if there is in addition gene flow be-
tween the non-sister species (A and C or B and C).
Thus, the observed frequencies of gene tree topolo-
gies can be used to estimate the introgression prob-
ability, as in the SNAQ method [95,106]. Assume
that φS = φT = φ in equations (13), and let f2 =
P(G 2) = 1

3φ + ϕ(1 − φ) and f3 = P(G 3) = 1
3φ

be the probabilities of the two mismatching gene

trees.Then

ϕ̂ = f̂2 − f̂3
1 − 3 f̂3

. (18)

TheD-statistic cannot beused todetect geneflow
between sister species or to estimate the time of in-
trogression. Such unidentifiability issues also exist in
other methods that detect hybridization events us-
ing genome-wide averages, such as the average inter-
species sequence divergence [107] or the joint allele
frequency spectrum [108].

Unidentifiability, low information content
and challenges of identifying
the mode of gene flow
One area where more research is urgently needed
is the identifiability of introgression models. If the
probability distributions of the data are identical
for two sets of parameter values (� and �′), with
f(X|�) = f(X|�′) for essentially every dataset X,
then � is unidentifiable given data X. Several stud-
ies have examined identifiability issues of sum-
mary methods that use gene tree topologies as data
[76,80,91,109], but little research has been done on
full-likelihood methods.

Some cases of unidentifiability are easy to iden-
tify. If it is impossible for two or more sequences to
be in one species whenwe trace the genealogical his-
tory of the sample backwards in time, the popula-
tion size (θ) for that species will be unidentifiable,
since it takes two sequences to define a distance.
For example, in the MSC model with no gene flow
(Fig. 2), the population sizes for the extant species
are unidentifiable if only one sequence is sampled
from each species per locus, but this unidentifiabil-
ity disappears whenmultiple sequences are available
fromeach species. Furthermore, parameters ormod-
els that are unidentifiable using gene tree topologies
alonemay become identifiable when both gene trees
and branch lengths (coalescent times) are used. In
the case of three species, there are only three gene
trees, so that use of gene tree topologies can iden-
tify only one (under the MSC model) or two (un-
der the MSci model) parameters, whereas there are
7 (Fig. 2) and 13 (Fig. 7(a)) parameters in those
two models, respectively, which are all identifiable
when information from both gene trees and coales-
cent times is used.

The identifiability of full-likelihood methods ap-
plied to data of multilocus sequence alignments,
with multiple sequences per species, is the most
interesting case, because full-likelihood methods
are expected to be optimal from a statistical point
of view and because multilocus alignments are
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Figure 11. MSci model D (bidirectional introgression)
(Fig. 7(d)) has an identifiability issue. (a) Model D showing
the definitions of parameters. (b) and (c) Two sets of parame-
ter values� and�′ that are unidentifiable. The dotted lines
indicate the main routes taken by sequences sampled from
species A and B, if the introgression probabilities α and β

are < 1
2 .

the dominating data form in such analyses. Flouri
et al. [81] conjectured that the MSci model is
identifiable on multilocus sequence alignments as
long as it is identifiable on data of gene trees
with coalescent times. Given this, the problem
of identifiability can be studied by considering
the gene trees with coalescent times (Gj and
t j ) as the input data.

It is noted that MSci model D (Fig. 7(d)) has
an unidentifiability issue of the label-switching type
[81] (Fig. 11). For every set of parameters,�= (θR,
θA, θB, θX, θY, τR, τX, ϕX, ϕY), there is a ‘mirror’
point�′, which has identical parameter values as�

except that θ ′
X = θY , θ ′

Y = θX , ϕ′
X = 1 − ϕX and

ϕ′
Y = 1 − ϕY . Both� and�′ have exactly the same

likelihood, f(X|S, �) = f(X|S, �′), for all possible
data X. This is a label-switching issue, and does not
affect the utility of the model: one may apply a con-
straint such as ϕX < 1

2 to remove the unidentifiabil-
ity or apply more sophisticated post-processing of
the MCMC sample if the ‘twin towers’ are not well
separated [110]. The cases where the bidirectional
introgression involves non-sister species or where
there are multiple introgression events are yet to be
studied.

Even if all parameters are identifiable, typical
datasets may lack information for their reliable esti-
mation. For example, typical datasets may be highly
informative about species divergence times, but not
about population sizes for ancestral species, es-
pecially if those species correspond to very short
branches on the species tree [111]. In the case of
three species both gene flow between non-sister
species and population structure in the ancestral
species can cause the asymmetry in the probabili-
ties of the twomismatching gene trees [112], so that
the two models are unidentifiable using gene tree
topologies alone. In general, it may be hard to distin-

guish the different models of gene flow, such as the
complete isolationmodel (MSCwith no gene flow),
themigration (IM)model, the isolation-with-initial-
migration (IIM) model [113] and the introgression
(MSci) model. Simulationmay be useful to evaluate
the power to distinguish suchmodels using genomic
datasets.

CONCLUSION
The multispecies coalescent model provides a pow-
erful framework for analysis of genomic sequences
sampled from multiple species to extract the rich
information about the evolutionary history of the
species. Incorporating species phylogeny in popula-
tion geneticmodels of population subdivision opens
up opportunities for addressing many exciting ques-
tions in evolutionary biology, such as detecting gene
flow during and after species formation and delin-
eating species boundaries, as well as inferring de-
mographic changes and estimating population sizes
for extinct ancestral species. As discussed in [92],
the basic MSC model accommodating species phy-
logeny and coalescent is in effect a nullmodel, which
can be extended to include other important biologi-
cal processes, leading to models such as
� H0: MSC (null model),
� H1: MSC +migration (MSC+M or IMmodel),
� H2: MSC + introgression (MSC+I or MSci
model),

� H3: MSC + population structure,
� H4: MSC + recombination,
� etc.

Currently, large differences exist between full-
likelihood methods and heuristic methods. The for-
mer have higher statistical efficiency while the lat-
ter are orders-of-magnitude faster computationally.
There is thus much room for improvement for both
classes of methods. For the present, a pragmatic ap-
proach to analyzing largedatasetsmaybe touse sum-
mary methods to estimate the species tree and then
full-likelihood methods to estimate the parameters.

Analysis of the simple three-species case [62]
suggests that there is rich historical information
both in gene tree branch lengths (which two-step
methods such as ASTRAL, MP-EST and SNAQ ig-
nore) and in the stochastic fluctuation of genealog-
ical history across loci (which genome-averaging
approaches such as SVDQUARTETS and D-statistic
ignore). Heuristic methods that make use of both
kinds of information may thus have much improved
power. For Bayesian implementations of the MSC
model, mixing inefficiency of the MCMC algorithm
appears to be a far more serious problem than the
increase in computational cost for each MCMC
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iteration [48]. Developing smart proposal algo-
rithms that respect and accommodate the mutual
constraints between the species tree and the gene
trees is likely to bring dramatic improvement to the
capacity of the full-likelihoodmethods. To empirical
biologists, the MSC framework makes it possible
to ask exciting evolutionary questions; to method
developers, it offers rich opportunities for test-
ing cutting-edge algorithms in computational statis-
tics (in particular, trans-modelMCMC algorithms).
With the advancements of sequencing technologies
and rapid accumulation of genomic sequence data as
the driving force, the field will in all likelihood con-
tinue to be a research hotspot in the coming years.
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75. Leaché AD, Harris RB and Rannala B et al. The influence of gene flow on
Bayesian species tree estimation: a simulation study. Syst Biol 2014; 63: 17–
30.

76. Solis-Lemus C, Yang M and Ane C. Inconsistency of species tree methods
under gene flow. Syst Biol 2016; 65: 843–51.

77. Long C and Kubatko LS. The effect of gene flow on coalescent-based species-
tree inference. Syst Biol 2018; 67: 770–85.

78. Jiao X, Flouri T and Rannala B et al. The impact of cross-species gene flow on
species tree estimation. Syst Biol 2020; 69: 830–47.

Page 17 of 18

http://dx.doi.org/10.1093/genetics/122.4.957
http://dx.doi.org/10.1093/sysbio/syp034
http://dx.doi.org/10.1111/j.0014-3820.2005.tb00891.x
http://dx.doi.org/10.1371/journal.pgen.0020068
http://dx.doi.org/10.1093/sysbio/syw001
http://dx.doi.org/10.1093/sysbio/syz019
http://dx.doi.org/10.1111/j.1558-5646.2011.01476.x
http://dx.doi.org/10.1186/1471-2148-10-302
http://dx.doi.org/10.1093/bioinformatics/btv234
http://dx.doi.org/10.1093/sysbio/46.3.523
http://dx.doi.org/10.1016/S0169-5347(01)02203-0
http://dx.doi.org/10.1098/rspb.2004.3035
http://dx.doi.org/10.1093/genetics/162.4.1811
http://dx.doi.org/10.1093/molbev/msp274
http://dx.doi.org/10.1093/molbev/msu279
http://dx.doi.org/10.1093/sysbio/syw119
http://dx.doi.org/10.1093/molbev/msy147
http://dx.doi.org/10.1007/BF01734359
http://dx.doi.org/10.1073/pnas.0611164104
http://dx.doi.org/10.1073/pnas.0611164104
http://dx.doi.org/10.1073/pnas.0913022107
http://dx.doi.org/10.1080/10635150701429982
http://dx.doi.org/10.1093/bioinformatics/btg180
http://dx.doi.org/10.1007/s00285-016-1034-0
http://dx.doi.org/10.1093/molbev/msx126
http://dx.doi.org/10.1093/molbev/msx126
http://dx.doi.org/10.1093/sysbio/syr027
http://dx.doi.org/10.1093/bioinformatics/btu530
http://dx.doi.org/10.1093/molbev/msw079
http://dx.doi.org/10.1093/sysbio/syp047
http://dx.doi.org/10.1007/s00285-013-0671-9
http://dx.doi.org/10.1007/s00285-009-0260-0
http://dx.doi.org/10.1093/sysbio/syt059
http://dx.doi.org/10.1016/j.tpb.2014.12.005
http://dx.doi.org/10.1016/j.tpb.2014.12.005
http://dx.doi.org/10.1093/bioinformatics/btaa605
http://dx.doi.org/10.1016/j.gde.2007.09.001
http://dx.doi.org/10.1002/bies.201500149
http://dx.doi.org/10.1016/j.gde.2017.08.007
http://dx.doi.org/10.1126/science.1258524
http://dx.doi.org/10.1101/gr.159426.113
http://dx.doi.org/10.1038/nature21347
http://dx.doi.org/10.1093/sysbio/syt049
http://dx.doi.org/10.1093/sysbio/syw030
http://dx.doi.org/10.1093/sysbio/syy020
http://dx.doi.org/10.1093/sysbio/syaa001


Natl Sci Rev, 2021, Vol. 8, nwab127

79. Nielsen R and Wakeley J. Distinguishing migration from isolation: a Markov
chain Monte Carlo approach. Genetics 2001; 158: 885–96.

80. Yu Y, Degnan JH and Nakhleh L. The probability of a gene tree topology
within a phylogenetic network with applications to hybridization detection.
PLoS Genet 2012; 8: e1002660.

81. Flouri T, Jiao X and Rannala B et al. A Bayesian implementation of the multi-
species coalescent model with introgression for phylogenomic analysis.Mol
Biol Evol 2020; 37: 1211–23.

82. Notohara M. The coalescent and the genealogical process in geographically
structured populations. J Math Biol 1990; 29: 59–75.

83. Nath HB and Griffiths RC. The coalescent in two colonies with symmetric mi-
gration. J Math Biol 1993; 31: 841–52.

84. Wilkinson-Herbots HM. Genealogy and subpopulation differentiation under
various models of population structure. J Math Biol 1998; 37: 535–85.

85. Beerli P and Felsenstein J. Maximum-likelihood estimation of migration rates
and effective population numbers in two populations using a coalescent ap-
proach. Genetics 1999; 152: 763–73.

86. Beerli P and Felsenstein J. Maximum likelihood estimation of a migration ma-
trix and effective population sizes in n subpopulations by using a coalescent
approach. Proc Natl Acad Sci USA 2001; 98: 4563–8.

87. Wang Y and Hey J. Estimating divergence parameters with small samples
from a large number of loci. Genetics 2010; 184: 363–79.

88. Hey J. Isolation with migration models for more than two populations. Mol
Biol Evol 2010; 27: 905–20.

89. Hey J, Chung Y and Sethuraman A et al. Phylogeny estimation by integration
over isolation with migration models.Mol Biol Evol 2018; 35: 2805–18.

90. Gronau I, Hubisz MJ and Gulko B et al. Bayesian inference of ancient human
demography from individual genome sequences.Nat Genet 2011; 43: 1031–4.

91. Zhu S and Degnan J. Displayed trees do not determine distinguishability under
the network multispecies coalescent. Syst Biol 2017; 66: 283–98.

92. Degnan JH. Modeling hybridization under the network multispecies coales-
cent. Syst Biol 2018; 67: 786–99.

93. Wen D and Nakhleh L. Coestimating reticulate phylogenies and gene trees
from multilocus sequence data. Syst Biol 2018; 67: 439–57.

94. Zhang C, Ogilvie HA and Drummond AJ et al. Bayesian inference of
species networks from multilocus sequence data. Mol Biol Evol 2018; 35:
504–17.

95. Solis-Lemus C, Bastide P and Ane C. PhyloNetworks: a package for phyloge-
netic networks.Mol Biol Evol 2017; 34: 3292–8.

96. Yu Y, Dong J and Liu KJ et al. Maximum likelihood inference of reticulate
evolutionary histories. Proc Natl Acad Sci USA 2014; 111: 16448–53.

97. Jones GR. Divergence estimation in the presence of incomplete lineage sort-
ing and migration. Syst Biol 2019; 68: 19–31.

98. Kubatko LS. Identifying hybridization events in the presence of coalescence
via model selection. Syst Biol 2009; 58: 478–88.

99. Meng C and Kubatko LS. Detecting hybrid speciation in the presence of in-
complete lineage sorting using gene tree incongruence: a model. Theor Popul
Biol 2009; 75: 35–45.

100. Zhu J, Yu Y and Nakhleh L. In the light of deep coalescence: revisiting trees
within networks. BMC Bioinform 2016; 17: 415.

101. Durand EY, Patterson N and Reich D et al. Testing for ancient admixture be-
tween closely related populations.Mol Biol Evol 2011; 28: 2239–52.

102. Patterson N, Moorjani P and Luo Y et al. Ancient admixture in human history.
Genetics 2012; 192: 1065–93.

103. Pease JB and Hahn MW. Detection and polarization of introgression in a five-
taxon phylogeny. Syst Biol 2015; 64: 651–62.

104. Blischak PD, Chifman J and Wolfe AD et al. HyDe: a Python package for
genome-scale hybridization detection. Syst Biol 2018; 67: 821–9.

105. Kubatko LS and Chifman J. An invariants-based method for efficient identifi-
cation of hybrid species from large-scale genomic data. BMC Evol Biol 2019;
19: 112.

106. Solis-Lemus C and Ane C. Inferring phylogenetic networks with maximum
pseudolikelihood under incomplete lineage sorting. PLoS Genet 2016; 12:
e1005896.

107. Aeschbacher S, Selby JP and Willis JH et al. Population-genomic inference
of the strength and timing of selection against gene flow. Proc Natl Acad Sci
USA 2017; 114: 7061–6.

108. Kern AD and Hey J. Exact calculation of the joint allele frequency spectrum
for isolation with migration models. Genetics 2017; 207: 241–53.

109. Pardi F and Scornavacca C. Reconstructible phylogenetic networks:
do not distinguish the indistinguishable. PLoS Comput Biol 2015; 11:
e1004135.

110. Stephens M. Dealing with label switching in mixture models. J R Statist Soc
B 2000; 62: 795–809.

111. Huang J, Flouri T and Yang Z. A simulation study to examine the information
content in phylogenomic datasets under the multispecies coalescent model.
Mol Biol Evol 2020; 37: 3211–24.

112. Slatkin M and Pollack JL. Subdivision in an ancestral species creates asym-
metry in gene trees.Mol Biol Evol 2008; 25: 2241–6.

113. Costa RJ and Wilkinson-Herbots H. Inference of gene flow in the process
of speciation: an efficient maximum-likelihood method for the isolation-with-
initial-migration model. Genetics 2017; 205: 1597–618.

Page 18 of 18

http://dx.doi.org/10.1093/genetics/158.2.885
http://dx.doi.org/10.1371/journal.pgen.1002660
http://dx.doi.org/10.1093/molbev/msz296
http://dx.doi.org/10.1093/molbev/msz296
http://dx.doi.org/10.1007/BF00173909
http://dx.doi.org/10.1007/BF00168049
http://dx.doi.org/10.1007/s002850050140
http://dx.doi.org/10.1093/genetics/152.2.763
http://dx.doi.org/10.1073/pnas.081068098
http://dx.doi.org/10.1534/genetics.109.110528
http://dx.doi.org/10.1093/molbev/msp296
http://dx.doi.org/10.1093/molbev/msp296
http://dx.doi.org/10.1038/ng.937
http://dx.doi.org/10.1093/sysbio/syy040
http://dx.doi.org/10.1093/sysbio/syx085
http://dx.doi.org/10.1093/molbev/msx307
http://dx.doi.org/10.1093/molbev/msx235
http://dx.doi.org/10.1073/pnas.1407950111
http://dx.doi.org/10.1093/sysbio/syp055
http://dx.doi.org/10.1016/j.tpb.2008.10.004
http://dx.doi.org/10.1016/j.tpb.2008.10.004
http://dx.doi.org/10.1186/s12859-016-1269-1
http://dx.doi.org/10.1093/molbev/msr048
http://dx.doi.org/10.1534/genetics.112.145037
http://dx.doi.org/10.1093/sysbio/syv023
http://dx.doi.org/10.1093/sysbio/syy023
http://dx.doi.org/10.1186/s12862-019-1439-7
http://dx.doi.org/10.1371/journal.pgen.1005896
http://dx.doi.org/10.1073/pnas.1616755114
http://dx.doi.org/10.1073/pnas.1616755114
http://dx.doi.org/10.1534/genetics.116.194019
http://dx.doi.org/10.1371/journal.pcbi.1004135
http://dx.doi.org/10.1111/1467-9868.00265
http://dx.doi.org/10.1111/1467-9868.00265
http://dx.doi.org/10.1093/molbev/msaa166
http://dx.doi.org/10.1093/molbev/msn172
http://dx.doi.org/10.1534/genetics.116.188060

