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A B S T R A C T

Viral infections have detrimental impacts on neurological functions, and even to cause severe neurological
damage. Very recently, coronaviruses (CoV), especially severe acute respiratory syndrome CoV 2 (SARS-CoV-2),
exhibit neurotropic properties and may also cause neurological diseases. It is reported that CoV can be found in
the brain or cerebrospinal fluid. The pathobiology of these neuroinvasive viruses is still incompletely known, and
it is therefore important to explore the impact of CoV infections on the nervous system. Here, we review the
research into neurological complications in CoV infections and the possible mechanisms of damage to the
nervous system.

1. Introduction

In December 2019, Corona Virus Disease 2019 (COVID-19) epidemic
emerged in Wuhan, China, causing global attentions (Thompson, 2020).
The virus is known as especially severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2). It was recently documented that, in addition to
systemic and respiratory symptoms, 36.4% (78/214) of patients with
COVID-19 develop neurological symptoms, including headache, disturbed
consciousness, and paresthesia. Severely affected patients are more likely
to develop neurological symptoms than patients who have mild or mod-
erate disease (Mao et al., 2020). Additionally, autopsy reports have re-
vealed brain tissue edema and partial neuronal degeneration in deceased
patients (Xu et al., 2020). Furthermore, on March 4, 2020, Beijing Ditan
Hospital reported for the first time a case of viral encephalitis caused by a
novel coronavirus (CoV) attacking the central nervous system (CNS). The
researchers confirmed the presence of SARS-CoV-2 in the cerebrospinal
fluid by genome sequencing. It illustrated that COVID-19 has potential to
cause nervous system damage (Xiang et al., 2020). With the now ongoing
COVID-19 pandemic, it is particularly necessary to make clinicians aware
of the impact of various CoV infections on the CNS. This article reviews the
epidemiology, possible mechanisms of neuroinvasion, and management
strategies pertaining to CoV infections with potential nervous system in-
volvement.

2. CoV infections affecting the CNS

Many viral infections can cause serious damage to the structure and
function of the nervous system, including severe encephalitis due to
viral infections in the CNS, toxic encephalopathy caused by severe
systemic viral infections, and severe acute demyelinating lesions de-
veloping after viral infections. (Michalicova et al., 2017; Wright et al.,
2008). Some viruses are neurotropic and can invade nervous tissues and
cause infections of immune-functioning macrophages, microglia, or
astrocytes in the CNS (Al-Obaidi et al., 2018; Soung and Klein, 2018).

CoV have an average diameter of 100 nm, and they are spherical or
oval. There are large spikes of viral membrane glycoproteins on the
surface, and, when observed by electron microscopy, these negatively
stained virus particles show a typical crown-like shape. CoV is a posi-
tive-sense single-stranded RNA virus, which harbors the largest genome
among currently known RNA viruses, with a genome length of about
26–32 kb (Schoeman and Fielding, 2019). The pathogen of the now
ongoing novel pneumonia outbreak is the novel CoV 2019 (SARS-CoV-
2), which is the seventh known CoV that can infect humans; the re-
maining six are HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1,
SARS-CoV, and MERS-CoV (Corman et al., 2019). The most common
and important types of CoV infections with potential nervous system
damage are described below.
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2.1. SARS-CoV

Severe acute respiratory syndrome (SARS) is a zoonotic respiratory
disease caused by SARS-CoV that started in Asia and spread throughout
the world in 2003. It has the characteristics of acute onset and strong
infectivity, and is a great threat to human health. The main clinical
manifestations of SARS are fever, chills, dry cough, and difficulty
breathing. In severe cases, respiratory failure and death may occur (Lai
et al., 2004). In addition, SARS-CoV could induce neurological diseases
such as polyneuropathy, encephalitis, and aortic ischemic stroke (Tsai
et al., 2005). Autopsy studies demonstrated that signs of cerebral edema
and meningeal vasodilation could be detected in most cases of SARS.
Furthermore, infiltration of monocytes and lymphocytes in the vessel
wall, ischemic changes of neurons, demyelinationn of nerve fibers, as
well as SARS-CoV virus particles and genome sequences could be de-
tected in the brain (Gu et al., 2005; Zhang et al., 2003).

2.2. MERS-CoV

Middle East Respiratory Syndrome (MERS), caused by MERS-CoV,
originates from bats, and the intermediate host is camel. Patients with
MERS-CoV infection usually present with pneumonia-related symp-
toms, such as fever, myalgia, cough, and dyspnea. Severe cases can lead
to acute respiratory distress syndrome (ARDS), septic shock, multiple
organ failure, and death (WHO MERS-Cov Research, 2013). MERS-CoV
is known to be potentially neuroinvasive, and that a retrospective study
found that 25.7% of patients with MERS can develop insanity and 8.6%
of patients have seizures (Saad et al., 2014). Kim et al. also reported

that almost 1/5 of patients with MERS-CoV infection show neurological
symptoms during the infection process, including but not limited to
disturbance of consciousness, paralysis, ischemic stroke, Guillain-Barre
syndrome and other poisoning or infectious neuropathy. Interestingly,
their neurological complications are not accompanied by respiratory
symptoms, but delayed by 2–3 weeks (Kim et al., 2017).

2.3. SARS-CoV-2

The genetic similarity between SARS-CoV-2 and SARS-CoV is
79.5%, and its similarity to bat coronavirus is as high as 96% (Wu et al.,
2020). Patients infected with SARS-CoV-2 have symptoms of varying
degrees, ranging from fever or a mild cough to pneumonia and ex-
tensive involvement of multiple organ functions with a mortality rate of
2% to 4%. At present, clinical data have revealed that some patients
with COVID-19 have symptoms similar to intracranial infections such as
headache, epilepsy, and disturbed consciousness. Moreover, a growing
number of COVID-19 patients report a sudden loss of smell or taste. It is
therefore likely that anosmia and dysgeusia might be observed in pa-
tients with COVID-19 (Giacomelli et al., 2020; Ryan, 2020; Hopkins and
Kumar, 2020). In fact, some even develop COVID-19-related symptoms
only after showing neurologic symptoms (Mao et al., 2020). Recently,
Beijing Ditan Hospital reported for the first time a case of viral en-
cephalitis caused by the novel CoV attacking the CNS. The researchers
confirmed the presence of SARS-CoV-2 in cerebrospinal fluid by
genome sequencing, adding support to the theory this new pneumonia
virus can also cause nervous system damage (Xiang et al., 2020). It is
therefore likely that other pathogenic bacteria, such as bacteria, may

Fig. 1. The mechanisms of coronaviruses infections and neurological damage caused by coronaviruses. The coronaviruses can cause nerve damage through direct
infection pathways (blood circulation pathways and neuronal pathways), hypoxia, immune injury, ACE2, and other mechanisms. Meanwhile, the coronaviruses have
detrimental effects to attack the lung tissue, and causes a series of lung lesions such as hypoxia. Furthermore, the coronaviruses can enter the nervous system directly
through the olfactory nerve, and also enter the nervous system through blood circulation and neuronal pathways, resulting in neurological disorders. Ab: antibody;
ACE2: angiotensin-converting enzyme 2; CSF: cerebrospinal fluid; ER: endoplasmic reticulum; TNF: tumor necrosis factor.
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destroy the blood–brain barrier, and secondary intracranial infections
may cause headaches, projectile vomiting, visual loss, and limb con-
vulsions in patients with severe COVID-19 symptoms.

3. Nervous system diseases related to CoV infections

3.1. Viral encephalitis

Encephalitis refers to inflammatory lesions in the brain parenchyma
caused by pathogens, including neuronal damage and nerve tissue le-
sions. It is characterized by acute onset, and common symptoms include
headache, fever (mainly high fever), vomiting, convulsions, and con-
sciousness disorders (Ellul and Solomon, 2018). Early diagnosis of viral
encephalitis is critical. In the ongoing pneumonia epidemic, the treat-
ment team of Beijing Ditan Hospital confirmed the presence of SARS-
CoV-2 in the cerebrospinal fluid of patients with COVID-19 by genome
sequencing, thereby clinically verifying viral encephalitis (Xiang et al.,
2020). This provided a solid basis for CoV causing the encephalitis.

3.2. Infectious toxic encephalopathy

Infectious toxic encephalopathy, also known as acute toxic en-
cephalitis, refers to a type of reversible brain dysfunction syndrome
caused by factors such as systemic toxemia, metabolic disorders, and
hypoxia during the process of acute infection (Mizuguchi et al., 2007;
Tauber et al., 2017; Young, 2013). The basic pathological changes in
this disease include cerebral edema, with no evidence of inflammation
on cerebrospinal fluid analysis. Its clinical symptoms are complex and

diverse. Patients with a mild course of the disease may develop head-
ache, dysphoria, mental disorder, and delirium. Seriously affected pa-
tients may experience disorientation, loss of consciousness, coma, and
paralysis (Dobbs, 2011; Mizuguchi et al., 2007). Acute viral infection is
also an important cause of this disease, exemplified by a respiratory
infection caused by CoV. Patients with COVID-19 often suffer from
severe hypoxia and viremia (Guo et al., 2020), which has the potential
to cause toxic encephalopathy. Moreover, almost 40% of patients with
COVID-19 develop headache, disturbed consciousness, and other brain
dysfunction symptoms (Mao et al., 2020), and that an autopsy study
reported that edema has been detected in brain tissue of COVID-19
patients (Xu et al., 2020). Collectively, these findings provide the evi-
dence that COVID-19 could cause infectious toxic encephalopathy, al-
though detailed studies are greatly required.

3.3. Acute cerebrovascular disease

A considerable amount of evidence indicates that especially re-
spiratory-related infection is an independent risk factor for acute cer-
ebrovascular disease (Elkind, 2007; Warren-Gash et al., 2018). Data
from the use of experimental mouse models suggests that influenza
virus can aggravate ischemic brain injury by triggering a cytokine
cascade and increase the risk of cerebral hemorrhage after treatment
with tissue-type plasminogen activator (Muhammad et al., 2011). The
infection of CoV, especially SARS-CoV-2, has been widely reported to
cause cytokine storm syndromes, which may be one of the factors that
CoV cause acute cerebrobasilar disease (Mehta et al., 2020; Chen et al.,
2020). In addition, critically ill patients with severe SARS-CoV-2

Fig. 2. Pathogenesis of nervous system injury caused by coronaviruses. ACE2: angiotensin-converting enzyme 2; BBB: blood brain barrier; IL: interleukin; MHC:
major histocompatibility complexes; SIRS: systemic inflammatory response syndrome.
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infections often show elevated levels of D-dimer and severe platelet
reduction, which may render these patients prone to acute cere-
brovascular events (Wang et al., 2020). It is therefore likely that during
CoV infections, patients at risk of developing cerebrovascular disease
should be alerted with regard to the occurrence of acute cere-
brovascular events.

4. Mechanisms of CoV infections on the nervous system damage

4.1. Direct infection injury

The genetic material and even proteins of various viruses can often
be detected in nervous system tissue samples (such as cerebrospinal
fluid or brain), suggesting that viruses can directly invade the nervous
system and cause nerve damage (Koyuncu et al., 2013; Leber et al.,
2016).

4.1.1. Blood circulation pathway
A typical virus entering the CNS through the blood circulation is the

JE virus, which multiplies in the vascular cells of the skin area affected
by the mosquito bite. It is subsequently released into the blood to re-
produce in mononuclear macrophages throughout the body. The sec-
ondary release into the blood may increase the permeability of the
blood–brain barrier through the produced cytokines, thereby pro-
moting the virus to enter the brain and causing viral encephalitis (Unni
et al., 2011). Although there is rare evidence that CoV, especially SARS-
CoV-2, invade the nervous system via the blood circulation pathway
(Koyuncu et al., 2013; Desforges et al., 2019), subsequent studies are
expected.

4.1.2. Neuronal pathway
Neuronal pathway is important vehicles for neurotropic viruses to

enter the CNS. Viruses can migrate by infecting sensory or motor nerve
endings, achieving retrograde or anterograde neuronal transport
through the motor proteins, dynein and kinesins (Swanson and
McGavern, 2015). An example of a neuronal pathway is that of olfac-
tory neuron transport. The unique anatomical organization of olfactory
nerves and the olfactory bulb in the nasal cavity and forebrain effec-
tively makes it a channel between the nasal epithelium and the CNS
(Koyuncu et al., 2013). As a consequence, CoV can enter the brain
through the olfactory tract in the early stages of infection or nasal
vaccination (Desforges et al., 2019; Mori, 2015). For example, after CoV
infects nasal cells, it can reach the entire brain and cerebrospinal fluid
through the olfactory nerve and olfactory bulb within 7 days and cause
inflammation and demyelinating reaction. However, removal of the
olfactory bulb in the mice, resulted in a restricted invasion of CoV into
the CNS (Bohmwald et al., 2018). Gu et al. also detected SARS virus
particles and genome sequences in brain neurons (Gu et al., 2005). The
observations mentioned here indicate that CoV can invade the CNS
from the periphery through neural pathways.

4.2. Hypoxia injury

When a virus proliferates in lung tissue cells, it causes diffuse al-
veolar and interstitial inflammatory exudation, edema, and the for-
mation of transparent membranes. This, in turn, leads to alveolar gas
exchange disorders causing hypoxia in the CNS, increasing anaerobic
metabolism in the mitochondria of brain cells (Abdennour et al., 2012).
The accumulation of acid can cause cerebral vasodilation, swelling of
brain cells, interstitial edema, obstruction of cerebral blood flow, and
even headache due to ischemia and congestion (Abdennour et al.,
2012). If the hypoxia continues unabated, cerebral edema and the
cerebral circulation disorder may worsen sharply. With intracranial
hypertension, the brain function gradually deteriorates, and drowsi-
ness, bulbar conjunctival edema, and even coma can be observed
(Abdennour et al., 2012). In addition, for patients at particular risk of

developing cerebrovascular disease, hypoxia may also induce the oc-
currence of acute cerebrovascular disease such as acute ischemic stroke.
Owing to the fact that the patients with COVID-19 often suffer from
severe hypoxia (Guo et al., 2020), hypoxia injury may cause subsequent
nervous system damage.

4.3. Immune injury

Nervous system damage caused by viral infection may be mediated
by the immune system (Klein et al., 2017). The pathology of severe viral
infections is closely linked to the development of a systemic in-
flammatory response syndrome (SIRS). SIRS could be abnormally in-
itiated in severe pneumonia caused by CoV infection, while early anti-
inflammatory intervention effectively prevent immune damage and
reduce the risk of injury in the nervous system (Mehta et al., 2020; Fu
et al., 2020). Furthermore, SARS and COVID-19 have resulted in a large
number of fatalities, most of which have been due to multiple organs
failure (MOF) caused by virus-induced SIRS or SIRS-like immune dis-
orders (Yin et al., 2004; Chen et al., 2020). The persistence of CoV
infections and its ability to infect macrophages, microglia, and astro-
cytes in the CNS are particularly important. A neurotropic virus can
activate glial cells and induce a pro-inflammatory state (Li et al., 2004).
interleukin (IL)-6, an important member of the cytokine storm, is po-
sitively correlated with the severity of COVID-2019 symptoms (Wan
et al., 2020). Additionally, experiments have confirmed that primary
glial cells cultured in vitro secrete a large amount of inflammatory
factors such as IL-6, IL-12, IL-15, and TNF-α after being infected with
CoV (Bohmwald et al., 2018). Furthermore, activation of immune cells
in the brain will cause chronic inflammation and brain damage.

4.4. Angiotensin-converting enzyme 2

Angiotensin-converting enzyme 2 (ACE2) is a cardio-cerebral vas-
cular protection factor existing in a variety of organs, including the
nervous system and skeletal muscles, playing a major role in regulating
blood pressure and anti-atherosclerosis mechanisms (Miller and Arnold,
2019). Meanwhile, ACE2 is also an important target for various CoV
and influenza viruses (Turner et al., 2004; Wrapp et al., 2020; Yang
et al., 2014). Binding to ACE2 receptors, the above-mentioned viruses
may cause abnormally elevated blood pressure and increase the risk of
cerebral hemorrhage. In addition, given that SARS-CoV-2 spike protein
could interact with ACE2 expressed in the capillary endothelium, the
virus may also damage the blood–brain barrier and enter the CNS by
attacking the vascular system (Baig et al., 2020).

4.5. Others

The biological properties of the CNS may facilitate exacerbation of
the neurological damage caused by CoV infections. The CNS has a dense
parenchymal structure and the usual lack of permeability of its blood
vessels is a barrier to virus invasion. However, if a virus gains access to
the CNS, it is difficult to remove (Reinhold and Rittner, 2017). Due to
the lack of major histocompatibility complex antigens in nerve cells, the
elimination of viruses in nerve cells depends solely on the role of cy-
totoxic T cells; however, the apoptosis of mature neurons after virus
infection also has a relatively protective effect (Wuthrich et al., 2015).
Furthermore, the homeostasis characteristics of the cells in the CNS also
contribute to the continued existence of the virus (Reinhold and Rittner,
2017) (Fig. 1; Fig. 2).

5. Conclusion

CoV infections can affect the nervous system, and it is currently
believed that CoV in concert with host immune mechanisms may turn
these infections into persistent infections that may lead to neurological
diseases. Therefore, patients with CoV infections should be evaluated
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early for neurological symptoms, including headache, consciousness
disorder, paresthesia, and other pathological signs. Timely analysis of
cerebrospinal fluid and awareness and management of infection-related
neurological complications are key to improving the prognosis of cri-
tically ill patients.
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